Сравнение используемых алгоритмов

This commit is contained in:
2024-10-31 10:54:33 +03:00
parent 72d43bb8f3
commit 315335e91a

View File

@@ -189,6 +189,28 @@
\end{tabularx} \end{tabularx}
\end{table} \end{table}
\newpage
\begin{table}[h!]
\centering
\caption{Machine learning algorithms comparision.}
\footnotesize
\begin{tabularx}{\textwidth}{|p{3cm}|c|c|c|c|c|c|c|X|c|c|}
\hline
\textbf{Article} & \textbf{DT} & \textbf{NB} & \textbf{KNN} & \textbf{SVM} & \textbf{NN} & \textbf{LASSO} & \textbf{RF} & \textbf{PCA-LDA} & \textbf{XGB} & \textbf{GLM} \\
\hline
Classification of paclitaxel-resistant ovarian cancer cells using holographic flow cytometry through interpretable machine learning~\cite{paclitaxel} & + & + & + & + & + & & & & & \\
\hline
Heterogeneity of computational pathomic signature predicts drug resistance and intra-tumor heterogeneity of ovarian cancer~\cite{heterogeneity} & & & & & & + & & & & \\
\hline
Mitochondria-related chemoradiotherapy resistance genes-based machine learning model associated with immune cell infiltration on the prognosis of esophageal cancer and its value in pan-cancer~\cite{mitochondria} & & & + & + & + & + & + & & + & + \\
\hline
Molecular separation-assisted label-free SERS combined with machine learning for nasopharyngeal cancer screening and radiotherapy resistance prediction~\cite{sers} & & & & & & & & + & & \\
\hline
\end{tabularx}
\end{table}
% & \textbf{PCA-LDA}
\newpage \newpage
\begin{table}[h!] \begin{table}[h!]