Добавил glut в таблицу с алгоритмами
This commit is contained in:
@@ -18,21 +18,24 @@
|
|||||||
\centering
|
\centering
|
||||||
\caption*{Table 2. Machine learning algorithms comparison.}
|
\caption*{Table 2. Machine learning algorithms comparison.}
|
||||||
\footnotesize
|
\footnotesize
|
||||||
\begin{tabularx}{\textwidth}{|p{6cm}|X|X|X|X|X|X|X|X|X|X|}
|
\begin{tabularx}{\textwidth}{|p{9cm}|X|X|X|X|X|X|X|X|X|X|X|X|X|X|}
|
||||||
\hline
|
\hline
|
||||||
\textbf{Article} & \textbf{DT} & \textbf{KNN} & \textbf{SVM} & \textbf{NN} & \textbf{LASSO} & \textbf{RF} & \textbf{PCA-LDA} & \textbf{XGB} & \textbf{GLM} & \textbf{LR} \\
|
\textbf{Article} & \textbf{DT} & \textbf{KNN} & \textbf{SVM} & \textbf{NN} & \textbf{LASSO} & \textbf{RF} & \textbf{PCA-LDA} & \textbf{XGB} & \textbf{GLM} & \textbf{LR} & \textbf{Cox}
|
||||||
|
& \textbf{SuperPC} & \textbf{Enet} & \textbf{GBM}\\
|
||||||
\hline
|
\hline
|
||||||
Classification of paclitaxel-resistant ovarian cancer cells using holographic flow cytometry through interpretable machine learning~[1] & + & & + & + & + & & & & & \\
|
Classification of paclitaxel-resistant ovarian cancer cells using holographic flow cytometry through interpretable machine learning~[1] & + & + & + & + & & & & & & & & & & \\
|
||||||
\hline
|
\hline
|
||||||
Heterogeneity of computational pathomic signature predicts drug resistance and intra-tumor heterogeneity of ovarian cancer~[2] & & & & & + & & & & & \\
|
Heterogeneity of computational pathomic signature predicts drug resistance and intra-tumor heterogeneity of ovarian cancer~[2] & & & & & + & & & & & & & & & \\
|
||||||
\hline
|
\hline
|
||||||
Mitochondria-related chemoradiotherapy resistance genes-based machine learning model associated with immune cell infiltration on the prognosis of esophageal cancer and its value in pan-cancer~[3] & & + & + & + & + & + & & + & + & \\
|
Mitochondria-related chemoradiotherapy resistance genes-based machine learning model associated with immune cell infiltration on the prognosis of esophageal cancer and its value in pan-cancer~[3] & & + & + & + & + & + & & + & + & & & & & \\
|
||||||
\hline
|
\hline
|
||||||
Molecular separation-assisted label-free SERS combined with machine learning for nasopharyngeal cancer screening and radiotherapy resistance prediction~[4] & & & & & & & + & & & \\
|
Molecular separation-assisted label-free SERS combined with machine learning for nasopharyngeal cancer screening and radiotherapy resistance prediction~[4] & & & & & & & + & & & & & & & \\
|
||||||
\hline
|
\hline
|
||||||
A Predictive Model for Initial Platinum-Based Chemotherapy Efficacy in Patients with Postoperative Epithelial Ovarian Cancer Using Tissue-Derived Small Extracellular Vesicles~[5] & & & & & + & & & & & + \\
|
A Predictive Model for Initial Platinum-Based Chemotherapy Efficacy in Patients with Postoperative Epithelial Ovarian Cancer Using Tissue-Derived Small Extracellular Vesicles~[5] & & & & & + & & & & & + & & & & \\
|
||||||
\hline
|
\hline
|
||||||
Identifying genes associated with resistance to KRAS G12C inhibitors via machine learning methods~[6] & + & + & + & & & + & & & & \\
|
Identifying genes associated with resistance to KRAS G12C inhibitors via machine learning methods~[6] & + & + & + & & & + & & & & & & & & \\
|
||||||
|
\hline
|
||||||
|
Turning to immunosuppressive tumors: Deciphering the immunosenescence-related microenvironment and prognostic characteristics in pancreatic cancer, in which GLUT1 contributes to gemcitabine resistance~[7] & & & + & & + & & & & & & + & + & + & + \\
|
||||||
\hline
|
\hline
|
||||||
\end{tabularx}
|
\end{tabularx}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|||||||
Reference in New Issue
Block a user