diff --git a/.gitignore b/.gitignore index 55de7a3..9081ae0 100644 --- a/.gitignore +++ b/.gitignore @@ -2,4 +2,6 @@ !.gitignore !*.tex !img -!img/** \ No newline at end of file +!img/** +!ml_table +!ml_table/*.tex \ No newline at end of file diff --git a/ml_table/ml_table.tex b/ml_table/ml_table.tex new file mode 100644 index 0000000..b96645e --- /dev/null +++ b/ml_table/ml_table.tex @@ -0,0 +1,40 @@ +\documentclass{article} +\usepackage[14pt]{extsizes} +\usepackage[T2A]{fontenc} +\usepackage[utf8]{inputenc} +\usepackage[a3paper, landscape, left=25mm, top=20mm, right=20mm, bottom=20mm, footskip=10mm]{geometry} +\usepackage{tabularx} +\usepackage{caption} +\usepackage{graphicx} +\usepackage{array} + +\renewcommand{\arraystretch}{1.4} % изменяю высоту строки в таблице + +\begin{document} + +\setcounter{page}{8} + +\begin{table}[h!] + \centering + \caption*{Table 2. Machine learning algorithms comparison.} + \footnotesize + \begin{tabularx}{\textwidth}{|p{6cm}|X|X|X|X|X|X|X|X|X|X|} + \hline + \textbf{Article} & \textbf{DT} & \textbf{KNN} & \textbf{SVM} & \textbf{NN} & \textbf{LASSO} & \textbf{RF} & \textbf{PCA-LDA} & \textbf{XGB} & \textbf{GLM} & \textbf{LR} \\ + \hline + Classification of paclitaxel-resistant ovarian cancer cells using holographic flow cytometry through interpretable machine learning~[1] & + & & + & + & + & & & & & \\ + \hline + Heterogeneity of computational pathomic signature predicts drug resistance and intra-tumor heterogeneity of ovarian cancer~[2] & & & & & + & & & & & \\ + \hline + Mitochondria-related chemoradiotherapy resistance genes-based machine learning model associated with immune cell infiltration on the prognosis of esophageal cancer and its value in pan-cancer~[3] & & + & + & + & + & + & & + & + & \\ + \hline + Molecular separation-assisted label-free SERS combined with machine learning for nasopharyngeal cancer screening and radiotherapy resistance prediction~[4] & & & & & & & + & & & \\ + \hline + A Predictive Model for Initial Platinum-Based Chemotherapy Efficacy in Patients with Postoperative Epithelial Ovarian Cancer Using Tissue-Derived Small Extracellular Vesicles~[5] & & & & & + & & & & & + \\ + \hline + Identifying genes associated with resistance to KRAS G12C inhibitors via machine learning methods~[6] & + & + & + & & & + & & & & \\ + \hline + \end{tabularx} +\end{table} + +\end{document} diff --git a/report.tex b/report.tex index 18eaa33..0a31317 100644 --- a/report.tex +++ b/report.tex @@ -14,6 +14,8 @@ \usepackage{moreverb} %для печати в листинге исходного кода программ \usepackage{graphicx} +\usepackage{pdfpages} + \usepackage{array} \usepackage{multirow} @@ -167,7 +169,7 @@ % \section{Results} - + \newpage \begin{table}[h!] \centering \caption{Methods used in research papers.} @@ -189,6 +191,7 @@ \end{tabularx} \end{table} +\newpage \addtocounter{table}{-1} \begin{table}[h!] \centering @@ -206,42 +209,12 @@ \hline \end{tabularx} \end{table} - - \newpage - \begin{table}[h!] - \centering - \caption{Machine learning algorithms comparision.} - \footnotesize - \begin{tabularx}{\textwidth}{|p{3cm}|c|c|c|c|c|c|X|c|c|c|} - \hline - \textbf{Article} & \textbf{DT} & \textbf{KNN} & \textbf{SVM} & \textbf{NN} & \textbf{LASSO} & \textbf{RF} & \textbf{PCA-LDA} & \textbf{XGB} & \textbf{GLM} & \textbf{LR} \\ - \hline - Classification of paclitaxel-resistant ovarian cancer cells using holographic flow cytometry through interpretable machine learning~\cite{paclitaxel} & + & & + & + & + & & & & & \\ - \hline - Heterogeneity of computational pathomic signature predicts drug resistance and intra-tumor heterogeneity of ovarian cancer~\cite{heterogeneity} & & & & & + & & & & & \\ - \hline - Mitochondria-related chemoradiotherapy resistance genes-based machine learning model associated with immune cell infiltration on the prognosis of esophageal cancer and its value in pan-cancer~\cite{mitochondria} & & + & + & + & + & + & & + & + & \\ - \hline - Molecular separation-assisted label-free SERS combined with machine learning for nasopharyngeal cancer screening and radiotherapy resistance prediction~\cite{sers} & & & & & & & + & & & \\ - \hline - \end{tabularx} - \end{table} - \addtocounter{table}{-1} - \begin{table}[h!] - \centering - \caption{Machine learning algorithms comparision (continued).} - \footnotesize - \begin{tabularx}{\textwidth}{|p{3cm}|c|c|c|c|c|c|X|c|c|c|} - \hline - \textbf{Article} & \textbf{DT} & \textbf{KNN} & \textbf{SVM} & \textbf{NN} & \textbf{LASSO} & \textbf{RF} & \textbf{PCA-LDA} & \textbf{XGB} & \textbf{GLM} & \textbf{LR} \\ - \hline - A Predictive Model for Initial Platinum-Based Chemotherapy Efficacy in Patients with Postoperative Epithelial Ovarian Cancer Using Tissue-Derived Small Extracellular Vesicles~\cite{platinum} & & & & & + & & & & & + \\ - \hline - Identifying genes associated with resistance to KRAS G12C inhibitors via machine learning methods~\cite{kras} & + & + & + & & & + & & & & \\ - \hline - \end{tabularx} - \end{table} + \newpage + \addtocounter{table}{1} + \includepdf[pages={1}, fitpaper, pagecommand={ + \thispagestyle{empty} + }]{ml_table/ml_table.pdf} \newpage @@ -266,6 +239,7 @@ \end{tabularx} \end{table} + \newpage \addtocounter{table}{-1} \begin{table}[h!] \centering @@ -288,18 +262,6 @@ % \addcontentsline{toc}{section}{Conclusion} % Conclusion text - \newpage - \phantom{text} - \newpage - \phantom{text} - \newpage - \phantom{text} - \newpage - \phantom{text} - \newpage - \phantom{text} - \newpage - \phantom{text} \newpage % \section*{Literature} % \addcontentsline{toc}{section}{Literature}