\documentclass{article} \usepackage[14pt]{extsizes} \usepackage[T2A]{fontenc} \usepackage[utf8]{inputenc} \usepackage[a3paper, landscape, left=25mm, top=20mm, right=20mm, bottom=20mm, footskip=10mm]{geometry} \usepackage{tabularx} \usepackage{caption} \usepackage{graphicx} \usepackage{array} \renewcommand{\arraystretch}{1.4} % изменяю высоту строки в таблице \begin{document} \setcounter{page}{8} \begin{table}[h!] \centering \caption*{Table 2. Machine learning algorithms comparison.} \footnotesize \begin{tabularx}{\textwidth}{|p{6cm}|X|X|X|X|X|X|X|X|X|X|} \hline \textbf{Article} & \textbf{DT} & \textbf{KNN} & \textbf{SVM} & \textbf{NN} & \textbf{LASSO} & \textbf{RF} & \textbf{PCA-LDA} & \textbf{XGB} & \textbf{GLM} & \textbf{LR} \\ \hline Classification of paclitaxel-resistant ovarian cancer cells using holographic flow cytometry through interpretable machine learning~[1] & + & & + & + & + & & & & & \\ \hline Heterogeneity of computational pathomic signature predicts drug resistance and intra-tumor heterogeneity of ovarian cancer~[2] & & & & & + & & & & & \\ \hline Mitochondria-related chemoradiotherapy resistance genes-based machine learning model associated with immune cell infiltration on the prognosis of esophageal cancer and its value in pan-cancer~[3] & & + & + & + & + & + & & + & + & \\ \hline Molecular separation-assisted label-free SERS combined with machine learning for nasopharyngeal cancer screening and radiotherapy resistance prediction~[4] & & & & & & & + & & & \\ \hline A Predictive Model for Initial Platinum-Based Chemotherapy Efficacy in Patients with Postoperative Epithelial Ovarian Cancer Using Tissue-Derived Small Extracellular Vesicles~[5] & & & & & + & & & & & + \\ \hline Identifying genes associated with resistance to KRAS G12C inhibitors via machine learning methods~[6] & + & + & + & & & + & & & & \\ \hline \end{tabularx} \end{table} \end{document}