From 2064ae46b0d721b66058e6858ca9a4ce5bc04538 Mon Sep 17 00:00:00 2001 From: Arity-T Date: Thu, 22 May 2025 15:30:30 +0300 Subject: [PATCH] idz4 --- idz4/.gitignore | 6 + idz4/img/task1.png | Bin 0 -> 142437 bytes idz4/img/task1_1.png | Bin 0 -> 14335 bytes idz4/img/task1_2.png | Bin 0 -> 21391 bytes idz4/img/task1_3.png | Bin 0 -> 25412 bytes idz4/img/task1_4.png | Bin 0 -> 41401 bytes idz4/img/task1_5.png | Bin 0 -> 24743 bytes idz4/img/task1_6.png | Bin 0 -> 41545 bytes idz4/img/task2.png | Bin 0 -> 116157 bytes idz4/img/task2_1.png | Bin 0 -> 46972 bytes idz4/img/task2_2.png | Bin 0 -> 36245 bytes idz4/img/task2_3.png | Bin 0 -> 24917 bytes idz4/report.tex | 691 +++++++++++++++++++++ idz4/ИДЗ 4_1 Артём.ipynb | 1265 ++++++++++++++++++++++++++++++++++++++ idz4/ИДЗ 4_2 Артём.ipynb | 634 +++++++++++++++++++ 15 files changed, 2596 insertions(+) create mode 100644 idz4/.gitignore create mode 100644 idz4/img/task1.png create mode 100644 idz4/img/task1_1.png create mode 100644 idz4/img/task1_2.png create mode 100644 idz4/img/task1_3.png create mode 100644 idz4/img/task1_4.png create mode 100644 idz4/img/task1_5.png create mode 100644 idz4/img/task1_6.png create mode 100644 idz4/img/task2.png create mode 100644 idz4/img/task2_1.png create mode 100644 idz4/img/task2_2.png create mode 100644 idz4/img/task2_3.png create mode 100644 idz4/report.tex create mode 100644 idz4/ИДЗ 4_1 Артём.ipynb create mode 100644 idz4/ИДЗ 4_2 Артём.ipynb diff --git a/idz4/.gitignore b/idz4/.gitignore new file mode 100644 index 0000000..6d3c5f8 --- /dev/null +++ b/idz4/.gitignore @@ -0,0 +1,6 @@ +**/* +!.gitignore +!report.tex +!img +!img/** +!*.ipynb \ No newline at end of file diff --git a/idz4/img/task1.png b/idz4/img/task1.png new file mode 100644 index 0000000000000000000000000000000000000000..8c30db3d7594e9b741a4f8b15efb6c66a26f36cd GIT binary patch literal 142437 zcmb@ubyU@9+dm4TAYCF|A|Tx%ARyh{-7O*AA|(wX-Q6MGUD7EH(%s$X-t)}7&%D3$ z&pBtEwRDX-o6UFMab2If2$GW#MMl6wfP#WT78eszfP#9y3-o#G(umn6Ko~UkPW2d?C?JOeabICZQ-48U8AY8X@y535oVcw3s)+FNA{~ zR%DNa(c~IlMWHyyJw0xICyN_695#w>ZeH``OIx6bt~csW;)tfQQ84HIrjHZwuV2$a zm?^I|3AKjA~il9XLqi;$g5ijuMdA6y^|5?pI^TM zl@d`OcrwLesAIfd$1l{|D^^=f<-1=Up7)VOY?o3cJwDt`boe6{IPU#cDpq4!WMhip zz0LQc5G~Vb-uB1VNnh;_*`t?w`_p*f_3h~Z!_LFi^0fB9K1z_o8>h{A@23aKaE)q< z9eN?}#~afo?r^@xYe5HI&xea?r3`@=w>x=h4r#waj0a-n7aJUf1IfZ04;w;mFZM*A z9`DKy$(SsE7o(@x82A79`Jqs$AoK2r;l=Kh!{#7vE1`|-hl^Lpc&y)kmuOOkkMQ0} z`MHjyerSm3B8kv(-N16YJE(Px^V4c@2;y=+l#1YcOA znJtd#wpUWy#ZY>n*6Q_v&GL6BwQ`}*&DmDo=1|f^i|5^WV^EZ5>Bn*x=orSnT)I=BtDLT<*@tevn3OVRJL5T+S4S;()(5*&MYk#I?W($- zbC(D6j%ghE>XjxQi8F*QOZPWtj?15UE+!Rg zj+ozR)>wUYHtLJ~c()!cd)^5D@!Iwkjf&JYA*XG+7bR&JKF4p9p~M{RRxfR>kpvde z>)t1go$0c)ORzP)cijx7E7m5zzLU@Gm9>@%i;9Nqoo$U+f(5CI{owBO>1=bTV<>dr z-p8s*sWbh1O&{4h);~uDoS9#~-?W`9zTonMFT&oUlugans{b5h&q6L4n?01o5psq_ zqw+05>DLR|q=&6E?|iq5-72%OH!C$pzcB2O@i?rdDosaTZ^6b-1*qG-KzKE(y~^o+ zNlT~Q@MFpIN_%%AFX9j{*|0Y}Xjb*yS?=yh9Yy-s-i9RIZWu)DT?V zcxV$^vZbGff$cYg30tNGOd>uZ6a? z&DkGIm&7ScpT34{wb-D1|BP07Fo7kH^Xa6QxVtPtFc2jur)Im0DIAx@`m8H3V*xL7dzBvk~*YNK!BEK>nUk+-~%5wCWXdb5-WTfze}6 zAy;|g(IQ&9&2GwdKEI+VCrWCUB%GH$YY#EtN>{?~V7K#y1M$ZDpmyNv`2%BcW44|p zK+Z2zOqDPmX<4M{|I`AcP9ff3EoTQ;%ia;SIsOU4zrzs+(R@Eu-5oZ{&b;bGq9pj> zc8+#gSv;99FG#Tc{Odz?fnr{8f>it`2XMm_GX(s*igQD-8Fru0@wTnnkr>aAsGH`u zUp9W;2)<_X9mezP90Yr`eZ10n4(>bbzEI^FI48Mq#2#|32&gW^CQYB_s>B@}px3eX zZx`))3E|nl^Y^|rxl!kCu|;;a?+@DkHYyVWRk@|Z9tQJtyyg$tm}CZb9e^3{Z26Ol}Y@=<-CnSkbY+Xval%@*KBBx zA8c9cBbRYsq>q7tK^L17Rto#4L^X?V$V8(Bk5mVj6P~ko%vU)yNqRDYWPZpN^RYs1Mn~mQ~ zr_o7z9oeJ@R}a^kWbi5~R*l_lE5&&i6vu~)xS1~Klrj^g)S|BvI7mw4uU)asVBr7N z3*H18P2F6AV>ID@)Qs(2tWhoDFs}EWnCtDRogq1>lef4*8=>*amp%A4-}XRB2$n%* zDgR|$gBv)^Z3zF)#0;5;M=iON7oSVA32K0lNf1FF)aNTlRrgWoZ{ec*uQh%e2rnul z&+sBvO`@j@!VkRrNwWoZO}O_}tb##-CyPccqV-I-fW%c@v=3-}{obydhR+HXpo>`_=wmtqlm#baH9>ZK5bL4MAC*>;J~ zWxYFHR@SsI2_UBSt1RVF7U5mr>cZ?>Z|t?{(G-+Y{XSkY@CcnQnei{zGyc( z$tSUY>Z*t4${x+AG#SDhtB0Al+2*%LFk!>xE`0>;Z*`hZCYh7ev4-12Fk-J+@d2N zt_VIn-Jg9lMRW6)!fBGw{MRCWPc>S;fz>-3(pzeBy;Ub*Ow_F~64xI<#;3Rkh2Egv zA{!dtW@ct3h%yz8I~gy<-1Te|tJO(wC*vm-R4kR-i`W2z%h-hTor#ceX^uF)T$vP& zL7lG81E_rWa?Xyhu{eh8gihYwq2hU!&jdeGAg%oG?;r4L?8bz`esd6f^LSzZFbo~9 z8)JRVVo*G92~G79cH4d7y6YEBUdpr~v0FX!ktSe_My}k0icL@a^jp1s6W#g?D`M6C z<>TEEc4Lvj1VU|FF?|=Vt6|T~7wE=xJf$KPX}-$dLtc}yje$5>T5gd%qVnOl_NQ7{ zMje0Nf=(2zfo!t`Z`{3Auxx+RJEr-0uk=ZZ9T0DF6au(}<;2 zuL3J#p<1Rhr9G9v>)8OQhuf+_>eUu8zl+sb4%UA~uik=D3g^n96-k17Hg6_EfP$~l1x>-=%ZQ3{nxHX$x`2wQb5ndoDOj; zzk(pD(B(zeoUaKwYOBG<#gFV1YAqi1GtZ%S>@Ied-2h1L-skI#O~7QgnjwibHK3wk zSFiJW;HtKoRT$(P0M++!54L%X!Zng6>pm<6_5Nyr?UTloBeBcP@9)^xogm|@&sY~=6+ZJ`12-%l(RJb%Ed1nw;# z(_J4_%|@wKeWq@X*61wf=XJ4%;2@<)QITH8e}4t4bBlUkB3qH#sp*%TZ!20~M2n0CAvjH@q?fX=_q3eO+oJSmM{_xtm;5rAW1EeB0ByE_Ax^xZ6kSqLC= zY&h8L-Z1>U#(+3NZl_UEV$Z)=m3i47h zdJk%sWx!3yTlTt>Ze9BT(BA7-9IBAu26Un1I4Z?}+sgyV)~84Ai^E0D*1s3@t#hta zfqO)9!=dT(2TBxx-gB4ifSp1r3uEi2ovVUdTxMm9e`F|Mv%5t34~RTkBb^1CZ7+u5S%| z>)XHYV{~!?qy95weD+X@IQo)C#wdvztJ!mw_eu}kJ{y5xg@cR$kw3TB1g#yNPh;w* zp(q}k#ShLa42MGF;pBwR8~wuI{!VJ!9D`L;00*@IP`HlAq;>$UL_q_}1+`b9#pA|o z?{~>$gQI1kYFX-`Z@y3v#;SK#R#rFL>QyhXw;Uk9J7FA4Xx28(7qN`PZkPM&Om}6V z(yTt!*nk7Wa~4{zd$M3Z0)Jd}J`1GUA$V z#-`n@#uYw9S;rpmfd$gEmz7aE{FezC;{a$sPf`zJS1M>ewYicY&YHyEDN?a#3s@ zoc&waNaq;#cndFqJbJCVNPtwZ_(;NRk#HFKxA(y*3U=B?WN1Q58)5#uO#z-5bBE9N z4?lWoHf$0#2`%%A{FEe#+HGN9gq7w~QCSPdqw%Rqj#S^|hMMbh+<-I)m8*ME*t^JI z6SgjVBS)9Tf8lL(CMJ^B=#LIJL+v-1$W_K6$CyqCT)ZS)f>rgv)G3qgpztJ$c$coj>J)%L;JVr|eP=t51Erq9K^S|SUG-sKi zjdnj*L6ewXzh+sJeey$C%^epx&Gg9M)k;?=RX&9r$L_<$#%|{_bp`?_xTyI@^JMyz}uA~mCIgpl7ef%s;nAv$Vz-)tnQ;OcT1SZBg3U!U`i{6HW4kslkN455?R zz=~mKqmIMxV7>G<$B^KH6JSq^ibef!9?2Of0kIJv|LhHC9Z;+e%Xv$8PE$@HD&d+T4;=9Q6Lh$7&W)bap zwm8|sF~GFmXG0tvL((1Ey3BU@yW|Py$}z;VH7!<4{ju<~4Fr{v$KEsd^aL)mA_&em z$Eu~qXYUqxuK)NN#EyXDW>v?!19Q=(cNp006 zl1vn3%nqKEjqGkv3`#LjzHU$-D84_w(Yz}D_%;_aw^o2jFt@m`Yhd6CEL*A3*#JU6 z!7HlRNcE2}*^sNZ>SI~A)`GOjSbrgfyT9sJPLdL-^Z4=yh0MfzoQfN(9*tRCJHa(3 zH0INraY=@tjRwhB+A(dhWJBtDLYWQ*-}fm8jE6YL7_rFA6EJVk{iacnrW!bzdzk->6jg#ZMh|tOFj}>DISforDKP3(OU3qw-p5M3@ zy08Klbf}r$t2Q-JYhel&{uo$vYU$Cko1TE8~q5`19bg3;gppy5_2 zR$IC91`;T9{KPP9EmKqu5;{4c$3b9^b`Qe#`m2xdFAi|vq?p&@L8i=%(6k!JWB zZ9m9xTE_w5dEwK7h5gLblT0dM@dJX=_!6=wUhyYPg!WtX0X-mu6M|~*kNn^<&l@?uxHr39oEQ1E5nc_={3^nlGHrlhYD&=5 zsg(`@I2`o|^AS3d7ss4+U|;W$cz1*JEQcjkzd4UO&4u@vO~Vfvb`p*gNfXZ{aHW@@ z{GNKpfI?2)p-@-gBOB35AIBaG#5Xz}o&Ex8hX@x)4lzD_NjB6YO41z4Pfj~%rEZvg zo4)gP%DjJa3$xHoXW8SU(kebbw0xDOxsHwztYsW0G)IF6oerOf+m)>xQXl<^DIGn^ zYgz^yOP*6>+Nzo((rea80gRn;2_(W0OYc)W>cX8ZfWfBf`Kz_?pZAmLQKtE{OfNv$ zeW5iOPJSOnCjc|W9w_l%(X+Hr?k6nuUKZt6T%|b= z{^}C?B3-2pYc#3cFBUw_B;A7^G@3QE4`(BMw=q0wbHO_D`}Bq!(yzH|^eE{2X&qBf zl_}J^eG?hwY&ceB0iji~qa<*#XUKy^vBANdv~uQT7+k$bYbWDw356|h#tvnh+fI7o zjv$GfHrf@y6&|QbfdEG%GpCo)SIzfE8zmZF1%g6k*5RI8?lq>=QaiqnEvU9$)bJa# z{*{yjX$C+B1CmLy;gBU6jdY5u{mj|DWyN1{UtCQcm)=1qcV{xpL%gy)D?cbs= z^rh)t)PxonZR5f)%|bq4APAcaDvIHq zp$WwM{3-O@j>Q+!rl@szCWxI*L~bEX%I7$aLg!b66>ri{_F%936HzW;SC%UqbQgFC zJY}AIEr+;b&eEaL$Bp6&+xmHaWXpr;kF3+!6|VjPY5;j(6t%r|d>lXvcVj{O?eP+j z0GNS>SUOD+m9^fw0PaIyxj8-SzG}i>A5qA#a3Kp{acbDDtGV2E(4<^2@bmnYF$Y1C z6Ik`r1`ikI(t~4(G+-$wo^A|Ka_N-A_W{qfy9Y)kx#qo5zk2=wuJ?heveJfd4ybX= z4==5&;UA{vD=JDsg{wmPRWk)ppXxFoY`y051wsuu&Wp}rs^26IdoJ z_ULkwGFU%@iN+EBm>O@4w$~oEXr*+_l`?uA_lvuB&6woQOW9~Z`Q1rBa0GGKzBb1I zRJm9B)+9teV!_TPmN!>Q3?N#kUJ?oUfYtIk-p70tjE(`$|xh z{XsG81iCKfbi3H@J*r6EuC({eh9IXr6>&V15Bd?W=j}GV-5)%_k_60s$sIj+C`8=Z zNB5yT`qo~;^=Y1!(K5S{a#xW;tWKs}1ElRHJr>4vtE}pH$quPbdkWUt75M=z?3N>?&_Q@Ap-T?<@YN z4*rXp;^HDN7MDd8)iDMg&!aE4I|$y{MB9RVvQTbTV|y?4*?~jf9FGvvdAK}Ubl3Xy z5W(fNF9uxVG3}`~Rz-)U6kbn_mvnA{`sHX7CB9>zOX+80^sMPeqW4gfu5S){oR5hL zm$8N7tnwmJbjXpc?lO=;1YGJ3;J5G5zjc#hI)xStPvLgX1;jAu>(`wQv-6K~XaPX< z*?vNY`_Wgs>?N5elY$|DNGgCc`pqx1%@an-yZ0NM2p^-TGZ1-J3FEcDeMLUD`}*t) zXZoKfh%w`Cx<3c4-$O66sbiL4`YgeA_5F-6tb{4hmJQq(#(yD4rs7!wvk>iu-)i^Mn}<+`sIWNIqgog&agrxyz$0`-T+l^+ zWITI;@NH+;g`HYy9Z{q(oexd*or51@1>6ISZ_Y95dsZ6V$|i$sw2_LC%6=BX9E0v) zgLykv{>azg$ef^Vx3eO;SRG+vSmmWn`(C8dkYO|5AThc_g}vlKBumDL>Gy+#e>|1iB9ftMhUCb?$__iMg#bHv-ZqZT7ur#vTf>g;L+mVoeDZ-gxCMCZ%_>VXzR8%m~HaG-7<_m}+)q)ud4 zjY1`=6>DK(1|Pj08X7*Qnd*z7zReP;gvf#cAX8I0kn%2!q5HD)mtSh+lY~}$ddtus zSUCKma09PzJt~E_de^>|Uk7-JnpGEiMnowaE)4yg7v3^g-EJ*t52z?ck#0@f~^9-3o)^p_5& z`sFyS<=8#>nBs0h^S2hZH)6cm>rVK!;tA^_!LzpQ(t4G{@h5?)mL4x{jRzT#qS0pR zzgVw}$eh0UeuhjIg_F?rvb7cFY9&IysY~W^5YB`{&nd2Ts1Ap%qa?1bgc#4sxWmKt z=9`ql=f<%4Y^l#*xRZ z3bS$lD9}o2heKXbz1hEEjFSD_&rvjl?cH~4h*RdHO(T+${abS3H!7+Y@Audr3)XAw zRM71V1&1r_6LKG_@3Y*+0(By zPg+vGU|fEsw}-Zl02Q$mjrB-uNCl zN&Z-stAnE3r&FDVSa!l3>6qa0h3|pX&Z+#qd&})vdVjA>bVofE_cFMNqM(=LLPS{* zf1*;%l{&xOE1Li|92IpipKsG!cJ|m*uUm6qigH5|8+9?X>feK3Q3))2KYhsaMrfb% zXes}}#i!saaxfq;GR!GfnL1LqT#jb{B|w!%R2K_R$`GzPo4J;9JH-$uqFx{gmPck| zX;!SDzg1K-_B<1AVyE^w_D++c`i21dJfVp;Xf|80y~HH*8C4D#eC3* zC(HE(3w4^gfS?^rZ+&j5TzSuF3>_LQzU8bo==W0Au-bWKt4`Q$Nsf2_&pX zG~N(MC*AQ$7%weK%q9(Ie_+8=WPcb&&NN^CF`a)D6=&|TjKF?{+v9E!A(fp+WG%^O zS#7p(nYLZsXyd?~rujf$onVW9fj=D^T%P!MelI>LcoN2Qdy6U+1`b6I7&T^NnZlD9 zf^bZjTjAV?XoSzCT*Q*t>9F3(eR;e;ljZWbW_$pCn!~{yn;Q_#ccMgz#ypvTd2#kW z`18hl$yO;1DQ|)X8PwK$TC9O&iB>p+owOI8`MpPM=Ih+Dqn|c4kuXIR7Tx%amp+7< zl+Azat>6=6P;JqsrE0EnL~_Kz71r)`&c;YsyZ^`avp=&{9P)4nqE3PBO2=fAtNo(C zICZIREB*d~53q-n9DXxWp-!K^-y{huJYjTHPYke-oe}11aWid7DV9tURhXAg$iKQ~ zKSz_*GyWc5ROBuf)Zb~Q+Y(-7d-u-m{@B5-d4$)^ZUL$=**9*AvAu&a!dU%)D7PJ6S*N*OXt$W{85>iy`N_}-r4 z!~JpR`AQ(M0&oJ)pCVDoQjrO3-LI@IW-G`y`l5URj}(MMCCUa?bnwO{Y=xUpwH66d z`9Yv_3rLErLZx|LCU71$U+L&$+Fl>8bP)Ch2$Q20n~znQD;BC(=GK`qI_<07f}B+M zf1IEA&K#*hqTBS(@NQ>Un)xSv`aeu>ObQ=Q7~O7V4qg7|61;Y35yk*FU=oyt%pBYn z>n{fa)nVvrjA{uPRKYysp+sd68;hxf6`Q~ym-u!Ck_qb0&CmM%B2AC|Yg)DRMn8d2 zCo2h0I(H>%I>%wIxfxH6eyD#ea}G-M=^NO6-Z`j+Vq&nCpC*`12H$bjBk?|*D~`cC zfl%%uc{s>!!MCb7Yjt{pLkK7p#F^pZM>_r)8eziic6C?+Ior1}xh0ylG9Gf)Gvyzh zgVsQ`)&QA|Y7mM96eO9`P9TZXF4HT=+^{DUo!D>tC2JPO7Q}7ffg${AGP*KTXJ`08 zjpC6FZlD5ziY+Rk?x-YFs>FvPk#eBJNliCv0N0^Y!xH# z?=Vykm@Ho_5YTA|x%z7hs-UPJqq)-7u4V6PT#4wYl{HG%HSMeH7+SMEt4=b#M&47~ zv23MOufff1l<*a&*nlk^=Y6`j2Wms%j!j=VE?HARXu&qR9*<(K78ExwBpV>SRjLfD z)RCD8=VY$mefT~D&E6{W(kNC*qp+&Gx&^=fe=vr%)At9ic!)r~q57AVBSu@<;Bu0w zc4-1D89}X-PvWG{3dp={Dv!FeT_EJ@kmr(1`~X4PK9Dw5EA-!xk&z3kJc3c7)j#um zzDIAT2fyFsdUjrff6c44(|FWEwk!&Ai>n0sHHP3|C>1D>|C}5^f+R(K+7u*c2?szT z;c%6(&^!u6Tpnn{LA-n7Q|+P%$T3f9H_7TwZMh2@t)I~;o%!dzvzc_9W4_g%JKMM2 z)nY#XM5eq7i~CZj{O<9uOav&pUI+34iH~Zz?=2?Z{j9pEp4P#%rgrNJm8vg?k^K0x zJ&X;7pPW`_!^cuf3BbrnY_JNkvRu_b3yfz3t_^*zZbqTf!f`WrF0%KUs z$47ze4Lm~7=Vak*J5RcqAiFn^=quskrG^ z40rQ1(>quwea9G6H#@jHS!#}ZpdzSC}rY#4{t-6EvI7|k9GehS<1;iGqPWcj{NRuasa~CnfZ7e9F@pb&;OheQE*09$dD`j z1_KuZHG!{uLA3Qdj3gO{%@VB>bCsN*qG)K31!v1%)7%F4X!po4muJ<$0$mb&&3#vH#(4t}8}nk*oN zARWwAV@ld`LlQxLV*BPA%;|^^=Y4RjnJbHLFH^(%rAMmFrJO~zGh?3#T5a}zO>wA?YAe0TemRR9J3^cd?0+~A_puZl-6C;z*%xYl{~pQ(4n#uv)35G$q8uEFo$BX?2=lnmVT4;cKCx#@+n4@c6d+)4YoF z39n}g&obhhH)&<1S;m$lin|^g1*@K!?wwf4T|FCx0PBNJvVcGaixG<3@}EM& z$bTJ9%tvo>^`gUEO@I`Tm7254Y{P% z9ORvi|Bj7qnvl&pw=9Cpd=*d$t|RgRVIKo9)Bk~F2AA1aojm@=hurqBJ_0Apd-JyW z;m7ibQP} z5Ju()-6~QC329;sJrl}H|A`LO@fB6a8y^~n1VxQHJZ+v8uguSRQ3r5rAiJ3*-3Cce-Fm1LnO zehM0-EQqL1Yp>aog^rp6qd)X0UvZ4g#HimNIu;LNxwM`}Oq6pPKi=O|fs!Pouc&Q6 z;BJB`ZLaB?s;%uGP(vjUL>rt-B_fRd{#=f=iBm3_OJsLjP}oJzA$nlSCTTGWrD-f0eSo`TDJYmTGJ7t+l@HgeBD+r z1JMs2@$A+M@euTOpNR=oIRuGngM*n3!ZC!<5%wrXOYRNe&Ew8y5z#42y6v3_zyGsQw?r7W|{NKrJURam`zV#4h{K3eo{ z`qJ&04*Sudw=i6aQ6doYZ6|zV(}nmHhp;FTbK4gr2VXu>>vvWDbcGpz1lQ9bmaZeT z-5=yB5VZYqYYN?jawp~E zVOKvuBz+ML_lm#w)or#sD`O>GrT(ZodY=-`f9jSA#m{*E)_75(uyF(y|4UA66;l3~19;J}N2AZ;iM zBsCiUPBAyM{Jp<4Bki?fdg8YG~ zJ>~xtnig*UX;S}rqyHx_v72ygaRl*5Fo<$a^S{4kcv9(E37C{S|E+1WqnaTPNG!ER z)w>*t7zqL}R)uE$8|E;8_&N~3^LZA~oRq+904WFHwnc}KClz`IncQ+-at(wiHh{He zQ>MCn)u=N22qvvCuE4P+_3~|RNc~G1qu8(q&w<6DlMG>!MXF`LwUaBI4m9Q}j1d99 z6x4#q+8sk~ZG>&a_nl$-Uzw~IINdg4RR4Nr3I(+qtAuUF`DS+xI`s-aV99?Bc}<7m zb_cR)nZV%*vBXuIW(nm2t_;Y~eQ3B^a^C?IV72Z2f^7uk0S1Kxn(Y+lJod(O5RnPF zlv)wO^7HY<m3h?if;F?1m*(P;O@g5@mwK z9VC|Mfc@77#J6cRI)&-Dth``~WQU}Z*_Z$=$pFA|TNSCZ4wqAICuk`A7oJ zK>R~U?l?3-ET6-=f0%*FxEoOEORQ^kSUW-!c_?O)WI`+LKZSkBGpNHiN5KFK_ouMIf^qh#=!v}!uL5fEJj zbgu62QF6b4vs6x2YqQMT078il)A;+#t!am?PhR?G2O#s_u!mfJw+rMmq0OxJa9r1! z9~ofDf?_KSs1Wgk;?U}&X9 z`I2f(pr-o(0-+&9rZBU%YqNlUW7jy9`@kZ|Kw_$S`G%gU`khDfHmx}xH>dtTR0==e zfQLXx;Q74%&4nYDh0SUva&tI^Ce(cm7c$`@@dilsx8B_uiJLN~FK<}Dn9*FLbJub~!d)|P$?gl6}`<@0JP=YS$Rh(x?+SlWkzTyv#3d&3E7`bksIW(*^O1j!>B9rq|4jsU6a zW;;c0C< zHy7AsA+z~^z)ogEbk4sOvLMt(3r?dA+)Kh`Fd1^f2m6m?XWz$tigJP056Qg?gD-fM zRFuCeoYXCo>w|xwo8a-B`Jy12OI75zQEO{ctUHz~%u3|@N~`?I7yKKImw>ls0T?gf zL8DrzBwqLNXeC8Dkrn+?@x;Sd@AHOGUVVXLiR+QbJgSQ_tl%%x*)4Z=ALUR_tUEDl>5h@29ut|%T-K%&P4ln2h zyX8MX?OF9+$phNRn*%5>%c;Vgn^zf5JLBYFH#_z)KhptQ9}ta}XK%)#uZr{i=2fG< z-C65j@ia|<5T$NGUQD4DIByXeV7#IVolL|G5Zwunm|T_m&&DUb_p1dOr^h`6yA`8(8Z& z2IT}cIXdpXIFP-x{J%$3x8Y(OqGG5h51=UjJaB^glGm7zSy(E1+dtVUv(YX72vc^R z5PZ)SRB7e*j5~$RaaV~>FaT)|7~hWAY_8`5HifIoUQpamZKX{`+fjf~n}MLxG+_Cq zjb^JrZ8Q}oC*W5}^(4N0qYLn5G0;jSvS09fE`xc3Ys)Uv<3H^|r;4x3=4hQxpVuSi zJQRJ8V7@Sa=UB=&D^zDR@IfwySow+imPLzsE1Oi0W^Du&GnrkA1`^>HBs}%`g{ukK7P_I{PWbGC6u z@xm6G=e&u-XSYJj(ggJtlT3%P%@d5BelN>JyMhRqYrOaEe2)w`KI2+11_e6upNYH= zZR(X8$xC&k_BkL^e_ze)dTPWpK3%5E$8<{~_|8soNOtzxaI1s+uuiZw7>2Bx*He=3 z>An&SAB#kJV8!4>v77-iq6kjj1&xgyl}$y(zA^6Q)dD|c&A|L~^B1@Fg z@62elE~#t+gI>JP->UaI7He5F;ge2ZEUL1Ralbe>36-tj^uX`VjJ^N3`Z)ldvU8yhGLP>NFWW3L!=w46!*N}6&bWcu8+5I!Di`lCD^^GaQ?%fXjnN%@N8 z`CWJ;CkM<+3W(ES)eEgbAzQ7%47SCWTHWITq_y_+44rmJ`HMpDDYw$O31hVm=!R$iB5B4rX-xx9uqEAH;UX{MXXolSXf<9fjkni!?y;{O^?R zHGIBy1PX!>2POefoiMOke2SCtkO(;C244%p#n3W?c?nCe{+?whWRZoypo+wnX}AhQ^YS(X2QwtWNA2_;C@+tWu*SI6N-p zFF9a!N%EYYM~f=o#0o37?3Yh`R52Pr5m6k&Vd2n9U#3yY2dbqI+x;k$NDF>o%94Ck zfo&Cxo-yl>ZES1uh#*@&nR zk$tprOCheOp$T5?KHqd`I;V-6E-5 zg0Y@;?HpX6f(b5;cq=ZdtHRT@oF*UJzGMsSKX0{v21QN%jwhsMK5$B!r4gXZgUyJ2 z5;H%;?Ynh;V*~rLRjPS~s|EGQ2=zA(fEhYPU`WU5{@QM3Q&G)8o7F0B<^+gQ^))Tr zfbp)XzYHV!Kd3PWDjI#JJeQ{ zKg)QpDa{Y>zD;@{C>CEF&DWNd=jd+{9|;inLVGiRo-0tK{Mkd~+T?O#aN-S6-{=tq z#Vgm-z{353u4M!(mFpjk<%?C|$6ze7k&2Z8G!lH~^>7=cOY^d5*2$;vA((%IOwH9k z)6n+=W}lzp=KJ<9ErE2ebT>*KzywrcS=9IK=8Dso&gvhm`if)Z`s0EJ@$zE{n_&2l z(w9!zVh+_Brv5f zB>J9Xt%leBO)IrskK?-?_&aYg${7rHTj~hr+hKa7j4JOhaX0$cwFXtZUtkD-3F$)N8$M zeTKNRUG~O*_fc5pQ`int`#$^hxz}>ys!+}THs~B$W)~@)jQv%RIG@sPg1%HLKL@irj&a8Z z(xA?E9a4jl`v{!w@6eBbh@VUYB@zWo%Lh@KpJqt=%Bl2n!1T{*O1oT?qEs|MX3XH+ zOAjKs02{qq;VZwNWNI;_;L?n;;C$=}mwb$!GEkM?AM}%Fr$sM^$#Mz!07K~q33aRG zxyXnAgi!+fVh#jeFzrs4@kE-ZVzfR+^I>19Wl+udcd*55d$=yn`z{$ZPQBXP>e|fX$?67b+v}z{{N{;|4h}aBu z=K;GinLwh{oS<~0-yKBsQN61eq$xAxqM}S`T2MVtJ+DJLgC%g4+e_F(Fq2y}b9o&V zw)*>WHQgpZCHLVUD{Lz5KBL@0@HCsIsLXsbAwFxO(q8g;SL8-k<`XYW-p0(H8yOl^ z<{7f(_n+O|yw=D-E67UgraLSDdXNOe#?{#k2E5;dzQx(g3e0r#Bqp4W99=W+awF+B4V1#~N#V|WoRLmK-BWD_Q(SgS8>v_(+i z3E2EpDo$qUlZasvv)x!6W^GQHF82`V zFG-))y7wiTznyNL(1Gl#_s&u*Wn3&f8tFUUx$-qJzJ6by|F~kG9Zu3e=DH>^!Z96! zcZ-E#4J>A@2)F=^ zWVfXt6#TICI$gL~!JmJoqc&wpli+`cGoTu1C;m!=@LfW^TL&km742WI431%I5wPIN zg={gA^IgUwgx$IyGTbfB}P3d$|djXWAh*ma19izePVFqZ`7a0*E1SwAKc+9p-FNa=|^W24B%%<}=2~F75k@py!edQ|~ zDP}$)L1BUfBL^Zz8*?Jlu3*xyUEU7XyQBh)Z8N$2s8K&h-YcB$r*?~_zn-p_r53RR z*9tMD$p zHDb9_wPLiCtSft(7)P=iFHD>p38jXKU%hSaZsdeHe%WN1=w)3`djRq4>$Fu2%E|Zv zJeo=>Zu3bIQS9 zv{Z82OV_x~8iN+ayg%$ZAZ}j08hJ{IHdsx1KcL~b`Fb>cS6aHonMA=cuOLlnwqLxh z*v+A^-4ET*#GcI`0~OEmM`v!Tn!7Jccv*SP}wwXF4g_xuaRbu^nc@93MF%73OX zTDx}B8a-1KG3=Cd;~Tfg(5yW8aY16)5{ktmzy8nZ2;M*9unyR+aBEH$kv$#Tlhi2? z#3~J1SO#(KMr(GMhkC3G|9&>hOgmng_t*|wh77*;+&5XQ@^9BuL4Z{ui3=1mM44w-ky zKjc!FX_J^L z2vt&O1go|0{QYS^acJJWc1a#3mheXRt1DRk-Qw4u@L=G)pm(}0_eYJ9nq`=xhNKmH zbu~spz{yj+LqUCon~gSfTvGllIi|E{fyrY6d;I~nx^bJ{uDTpExP^(oJnYYFvLjVw z%zR^(lW!zVhE4C-_UMUG(zVW1EC;)4d1epm2D|*BKBmH%?-b7=wLcbkU0aa?BZ0jZKl^@`^t+$ewctNI&FF*`>pid!#MNJ-`p?`2v}k%E}0&O1vuv=MlN&hEz#2DNiH+(4UG0|b5Yc|@d!WqB0$8xyo;vGW*D||kSfz= z;*5vOxXLU629_)^;sj-g`Jy7Dl*ui$3pS=#f zjdY)i3|GItYj(OYp`Pj_?o=O*?VW5yag%|kJqHHN;Fk+=(ta){f3%|={|L`^oD9hikD|6fsPa-{3M5Cm zn};Cfno&i684)} zh78_1$kGU}M)Ad)bH{)`(qAoqZZKD(Ra8o^9&JtPb-5KptD}0KZU+vRnklTq_-qIc zhgrby(EV}meB};*(B&hC3^pK3$uVwqf5q?EdBOZl{SK?;1#1S?&GU~{dT)No4F1xW z;r-3_0rOK=-@2ufYk++_SnDii8ecnsT>=1;$pVP^59>8{%eZP1gDqXI>tn6@+hitSjEVVSb@F;CEU9T)I36W+1eeW3cY* z3k5X@@5+At`+*xafNrsg%=D0<0wW9sDw*K}le`&Ic__V>N#>c<@AsS6C$H>b_#>6U zIGhv0qD-T=L|}`!URGEH&L^<++;E=z7s*omDf%&;_YqM4k|{ZK(K!RS8O|=2%wfwsaa{W(3N|7Bhq&}D1KCRC+v&a$xZWNIldeDBKR`QU zvK$4ME<(}zQRnU5kJ8S8O{n~xJyG$I!siUKF=q_F-A5K(wdFDVQxp@jDy_E!?0n$3 zF9rEiV)L8eq?7{YRSv{-mPM*xFNDD7*fFXh=gP}78qC%Z$&kKaJAYfNV05}dU_-f& z-owJ-^UFP$`ChBOfycI#9)Nau_dBR?lbd>QN{1~a*l#E*jqrIZM{5~eFXPW~B~`qr zz8_o}^S$8YNkTJBDN{Bo=E8kkrj*k}l*Y;))m?4GF#iSPh#)XoHfF40H{C&bx|DM? zl4m|w9rwkUXFXLg{N}IW;9oB`Tx|L2P3RR9!~hSI0jIN7wi*Awe=xz!r1B*79}*?6 zO8n37sFXCNt#e+d>^^)JoL*<{nr$$imSO)~`-9zgw~(Nq>t)J)q|vY&hRjm}he5C! zzxTu1$yosLWb|ji<5}a*2oAU>E^@HFp2JBQ0lTut;VihFF%a774Ios)lh zhk1Mo0WA&F3osS(z~po00H(J1wj@#DNh*tMfQiMmv0U}6;7Cjo8L!zOhGy)hEQR=M zXlHe2f07PG85~&2hxvcK@TnUlCqOFR~X zr9s+_V@hVCpHskgq9XDsb^C7`(`yQiC2Ep$tzj){a9WR225?dqOo!EB3M;A0H()5u zp4W+fI_G(nA$17M{w0hp@WoX@+$@k#P7pcWlE{ZMd$o7$B1Y5keUrRR7#W<3JO`RV zx#x+Cz1LD7O^IR!OZL@jA((AP|_CwI(AX?$^CDpZ(KOEYfEJKD4Sk^Lsbh2r+rSf`k% z3_Du#a~RwV!d(8fHLFgskHg}3C9n|OsH8e5;4XYv>hb!c4FfIv#FywcGU<1MkND1C zw1Q7t0tVeTotZk@kWE^SGYHfOW)ZX2T!x zD=dRBI=6}vYpHcSKOHM-UgX;&uZotU2e6*a37v4(W4noc6NC}4g)1Ittd?1U&nVqe zMDovTl&RXTc0E^YPfqOD>AD^(uVA<#Y@=PCoubdFYIS_9xE{HA|Axn__e6~9k_t(D zpE&x0t^SVbXMR%i@oDWc3IJT@jbjrI7_lZ^r5_ty@>>wO^6@CfTiE}30(9lnEm$&{i+&@fy>Rm;j;=>y;FE+s8;5S&hCq zm?efGCXU8}9&Z7duLeBAw8159h$fSXw((94li%l7V+8pj8SX4`Y53D)GCX+bW-una zPS$6)0%`CN>H7<~;3P3%WT8xXX=m7DYJ}v5*$G5bM%`J(X?Gp4J&^>TAVJR9UE`-Sa(2Sm1DvGrsD$tC&NiSy$t%Wa>1drK1%Q0 z_kX&ddOxG#qagG>%qy2eMe$bt`ACeH!ms0cY6OngmWcHs$a_;)Md2+*yny|8q1!^M zJEU?P1;E;E+zMWcKC#0F_QEiCKnwiE4Nt7`v4rWy1|{X8a(VrR5ZFEFXUm;ewZKCU` zr^K9#o*n1j7k#{(5iDf*I5hk0;M4GZm6$jt8@csQ_vXsu4Uc8VU#Qg)-)4Gs^dHAO zQ2;68)ihIcW9JZIqnS4E>$8}sDDiU65a(dJj+W7Yuv;gk&fi_?wHYhT5&*Bu-P1%h z7<9hOJ=E^uuY&xv@FRt2`Y;=vTh|>GlMYR9vTEj+>uuMP)7I`P(cyq_&*(yN0xN=^-!qkjoL9pX2uvfeWagxR zKe_@X8IPP#vF`1rM-zq}NN0q|mqW-yyq+Q4|AstGRe&P`Dj56P; z)-5mozZv#9nMxV_{OLne=oOie9hbqBBK#ynu?m6qv6bnU8%O9$e4hPS0g zNP2lq{M*RBinT9k`>6^|oxcA2nBjz$!y{Jzc;pN2axTtPbOqL(mj{7*SwdFNO#X~H zMMxU7vxTe9*LF5weFgzA*Uv7& zm+FvrL_+KfcD{d|YPxu1(GbOmT^je(@C^dY9cO(Z??2T~*Q@Qy*G(6s_=<3_C+*6< ztgkg*U0bmpIz)>Nr}&Z8r#<{~9{A$Q8oj8o#a+WAOud)$&o$?Ocm2F1y0igYsFE@w zrc>BIrx2bIIHl5I`tfY>(fdkmUQdlQs_;Fv*YPJ+Ev&rDuXA?Pf9$jJ98U`Gt!;hR z;EMKQ4?PsYZQj9A6y^Ji7SKKc#Tw=dRzu)HN`8RSs+S$9s$c$-zIQ z(H6^eXIlOr-UjFhUefjJCXHdzlvj*s3pcIz=*9IuFq;?raoVb3$ud@cE^0?+%imDG zK4Rb=hA5t$2@PO<=@^OZF9Ha!9SB=)AJ8_qfC4Y4xX|`i#}F;RgNo+~lW=yS5Z#aa z*pd}{Z;Kjk$Kmrl|Ml1vQ<-|qF$sxcaE&1^q}R=*cUV{}J&sB@-jclITACk=)Mtq@ zK%gm*rcm%+i|mofF&nnh_oEZ2mHw)u9J0d_66ys}>aBaRk7#j~&HCd;qsxzVT$sE! z!{~I-^EN-q6FC;XUoJa;Pa@EqnnNoz+&^0ssFu|EdMU32V|GIS(o8E?Do_+x*`DQo z`RXGt7@!a?_MQW6u2%lAWWERjHbHAi;01xb;IRH%)!HZL*{`W;9u&DQN%^5Wrw1&^ zKm7Flq2+EEi;{z>b3#FN!shtQrpVXzSA@?_{d_AC=kJp-x;;^!^TuzVQ#I+-YcV9k zXn$7fhzBj?o4;==)_A!#T2iU-Vym(z_xMy+mTJSpG0e&7QK9t>qFBF`eNx%ajtoiz zg*qj#AX}4RNC)S(O`@es;u0uT7>Rh+pKu?X*pRS0bbrD4*R}Xj>=~l?WHl zB!+uDXfb1X9+#QpOnM$nHc}>#IvJ4lUNyI(gQ>38H(a_pcmpx7xsZOrEfB!r7iqME zk*<79JUEv$>*laWb1oGpnfio>fUQiw?i!T^Peumr7sEa=_#;0Ri=v&7DPz*%`K9N_ z_kFXNPqVLQ#YgmPm(A`Y!ce2q#Vf^}Xzp?VbR*(Z#eT$)uhT`X>dCh@^d9Z|DT=R0 zYhXD==@E%#WosnO=w<&~4PWrdzLvr}18r2O{AV9lz_UZ~s7H=JtLQ?U?0MIfwF833 z5|b6zqsvGHk4KCRmDXsF+4a6UVVxx{KB(MpB(1zTXTTcj`-acv=bcUlU5)Wa=%vfK zw`I}^Sh|0oFgZlh_|@q1R+tcLaL>dSk^B_eU`>oAE07x3KbH$6UIY;c-lFH)-+ zdD`D`)pDz2g+tdZh{w|^^6^g>Ups;eaEC8Fb)crSsB8E`EJlw0XKT%eLSJccb}sZ7 zHO1Oxoi^5m_0$+c)1kRsa?I1KEs}jIoAB%)0rLcE7*l-<{mwQNGrb9}`8; zOM4FlJvG27`}K{m{70?LtR?KMJo%PPPE;&vBj2koq8dhP_yNN`7-S|K1j{#uo_;{( zif}M?!NPue+!Vs`kwCuIn4guT(zWf-j)fv+B;{qnCka|~&78-U*ZLHShO=)uCH_`9 zev4blJHLS<$9lpffWs_ktL7#qea35-{0jH+EsmH+uucDqe6IV5JHH*PZE&4v3|@Q9 zh+Fo|_Qivopl=Vtb)O@CSt@=gqsZ9E4;b0W{tyr8@*8R1ttkB7$>0;>nJ<>Z!d_04 z**KfYT03guXch(M=SyVdXWa%%^@^)R({dTaD0Ptv3&|#Y40AQ~+j*P5%M)%dWb9QK-T#nfw+*)C2NYwITO7iQ%ccmx4)GGt?9-IvS z$ZZsk8Ed(D0yu7JbGQ0j@4N5f!~8NWsO?BGp+ZsgUc&4IFVahTdlN zH%LXqIVT7`YDi1!WB?psU8GQKsWb^JG>@ zb%_Q$hz$1@(>HIu++G;BT-g=F59nCEG zaz0_y26f+w`04Zb{7}}Zzwp|%@v>M#g0JI*~+5zeX-kjbjKqA|cZv0o1R<2HxS2_z@i6~OuRV4!`3RikQA;P{0d zHxq%Vf^r57ERUEvx?>o{Yw^vTb=2FtdVYS{4U9fC(IQfe&Gn)9$vORs)TZ^Vowpd9 z(GxTZL6QPDFf#86Vaf#`3*s}`^E~`d+$mO!i{vVU+x%xmAdfjbFBkjwG@3qO1fRPJdsE>@YwQoZ`uKzGiDlNf)Nf^KTfBnO6uFbF7$BzH=1^ za?LUTkqEiFRr|kj3k_1N41Z#7bcG;?F~2+!gWFvNfqeq9%ux|g3jb6pJZWTgM=#C^ zxG#Q)U3{bI((xoNtlxWMmlRaCqeAa9J+3I;NF*uR?Pu0ExsuV!R4Jxa_aPm8JbGuH z_s$y^vnK*>vtzyymg~|k$Z;gL8QzoH%;*(KRNz!O$og((GlCs}y%uPkZ3Q-R=lDKV z%jYPuPJ5-PF2S%$J7H%__i6nDV1gT}ePhxf{mN(eo?Bb95^FjT9b-xKM8trx4r#y^r`g12ykG|Iv;Ul zJcT2&{HDaa2geQQexxMfEnG4rT)cke50dS5b_x8M@TmJdyA8yTP!K>Jl_--yhlFlp zUc6B~u|k{Cqh_61Bf8|$r|1-4i|0%{?i!&*AQIBJtkykl+K1?xX<-Xafw&X|i-$h- z1B3V7cHUTdzetHNSSI5>#Mk}ikhLz8A!@qE+~}jc2^wRNRnFyWX-N*N8aD~;VY!x1 z3k+x1QNa}PE~0$@EhVvU%Zg&D3sZ@)NamBHlgo#u$-ESPG=_E7_iw`uh6k0^Fh$L8 zm<;1|ze;F8{D0K9=b2xMD%p(0e;G-YEIW?N_8-TR^cw$e<@QZ?+=Z#Vm8$Ea_%^C@ zx?48Gsrb#)o>XqJ$&iIIog=~m$~d~@bv9DdISb{dJ}CIjX!{@4;_UFqF^xzIQ?P$t zm#1`N9c1b~VDc2F*%#B%H&4D^<11o0nTj59;ZNUl5nY%)yp*QTY}xTjDJEYLhbd8b zZQ=4~gJJ@;G;^Przp*h7?)5;36yLe}6-ht=B1qzOL|_-&I-NF32O?A)(WDreS7EV{c+_UWR6QFz=9-KHuzfXf2I z^2ily>1#{XUC*Nx4FRj!aM32O8`3mp4NjY&kG6SF%r@QplS}D+YJa^BmWrSVp8Mos zUZKC5+UeImR3EQ=ob`qWHQ<1=^L4-mcU zC$1;A{jrYM3VuR__iIDZR-Vw1RY*_{FXHf1*o)jvd>2=8#$pPNF%x27pOe*TOUCCt>xL5I3NBO$}+@>$%3 zlA`MOyQfTMstaQY>8RdYesq|J)8aA<;7j%|Fd^1=GPq3@_4M~1%zGn$RHD0?3|+ZO zD0mg*=)2Y*+rO)0WgDjBMVf;Vm|GZ#Qrl)I7}ik@wK%h(3ntQTs+ei{6NzbI{dO@| zJ}Q3f{2*Fbn5rDIaZA>QTQSr1_u6}JEuHAMJ< z0)wYKM(~#mEh2}z5y|8>1TpUOXgi{+Nq6wm%fD(2sAZ>0S7WE3>xXj%9M)5rVnT4E zt$@6uiT$*m-L&Zz--Hast74i^0cwW362(`pXf#G#G_hP8O@5Wi-$@xKH#72B=FT?{ zDXRDH*2f22r2+@n(pA)dkv|Aw7#MdcT^Ee}aeOm(g^`-vR>*TX)8;8IZR1Ur(9-Qd z+j{K#)>^*0741UJXwFPOP1?C*2F0d0Ere!kEFN~0!qCoVnY^G@O9@Z&LhDt_^?ge7 zRT|HdHLA)h&h&96;s*`Y*CwL=BozA^&PQP@@3h}C9IG6$eA#(_s%sDPwMJq;Q9Cf| z!{|KTNbL2kVxuKn@L-gtv~on@cJa>PdB|Qt#Ub^0KRv?S^oJjfUx8F{W4l@XI*T?B z`$#Dl*lqix{36m~BzSDd2f}Xhl0MMiR8Z=_p!_g-a-P+FAgXv&cBP|giIwNQqMP1? z6Eo|oz2Ss8Hg@!-z#V5BQO_Yq{Po;zHk<-?{;YJXy}FXN4u2XQiD##yy0f`E%gNpjT2LQRxWsc2*y$CYqv zE~x)msKI#bmAQJ)Lj|?w)XX6UN7dIAlc9H&zIbS4I&Du=JVz&sYg<~xHfag+&>xo> z9IusjbkxWp07b~v@poSVX~xoAOU_;9gDv`3<1TU-d_nc0k9>4Lkkmgg$h>14AiyOe z{NaL2ag<~DJ3|ZE%Yf}`aaQy<`f}UKy;|@6=StlqH9eyvXDiIES?*HjjD12`lVpy& zB&{!q{eCkdJHxN+rFtOSR zQmoh>R_g9iFOn35#f-4)Dd!3PB2!mdG#0R)gh-D;{ zyncgxE;K0%JKO(-o(@F~pX#fK zqEf31U}UyQ=u?X?>fUQ!s&V4wvz^Nzmtjds+C??%_nhpu8)tLy@f04#^q*uW=?SDL zifQe^mkF@>PbEfZPIKx#@wUOmEFtbyTJ1#}NNt3km-aHV<5ONa2!hzVZ%3n3V0qOkiMY)c4z?*HG{f=y68yQxA%co!9XS_* zzgHn0m}t%r%1;sSh9eClGWLfdZh+jk;-0Vgh&d^N6vjbJKfgIL>~Bt`A!8TFudzXl zG6o6!pH%;?ra(YnH(B+rUH~@cJy6Tl>c}yq>kuBq_5|RUf~@{VN)_mEs$X8foYfLY z>3iU6!V(pL@}Eh`-stT>J8<5s@-P{=uk*q<_0!*r>_>&Bd7+#Ds^y{Qe3VS{b82kS z)(a9RNE9N0?}78Nr)fkkv&a!{#tX(fA-WDoMFk?#T;Ls5A8^%Bi@qV8pccI<>Sd4P zTISKv!xH$rBGt<*%K}ZPWfL4VM zhz%1ZCFrSv)z5yGLna2Mb-~`0JJ06ZqmEPjjm%9!NzaAJ@of=-&4H|t(M&W2SvwnP zI$_O06eH-O>sSb&txk=?c#}ZbUM=mu~V!$}zCd`nl(q z(hy#V=}f@|vu)3Kc2AwPceuDJ${@eji2xmt&cslF5ElOt_@*HjoWHJo1^Fojp<|qi z$4zThzp&r-X8Jo32cQj;ZfR!joZa-j7nJi;&&V~k0`s#&2rrZe@JTiuXel(CD6m&| z?ZRmLc1^ozuV#;%?vwdcJrmNTD~ReVL@hNA5b^U8hi1h!#?(Lvjy4H@{Ep?n=1!Z} zlPK!#)fq{H=DgJB3#}lm6Es#=$@xT1juz8iliR&Ta?aOr%xgKn3xJJb7|JWUZ~gcQ zLoOh%V7Z`&l_PAqa5dSYVodK|tM|GTgO9ns8sc^#p1;S==h z9ml$E9`GiYLqXOvu=U>@sYQ>5;Vj=a8+Yls2M*?c@^AsZzfXJ!AQ5-0O$UyJ+dY4M z`QUw-CcZFPfbSgf0pcyLYVNP~bY}(c1H{sp+@2GAU;3&#_z|+s;^Fl$B#=7X#)52= z`PzIRrc3WTLFfG6Rz8-0`wnJRgH&L5^cn8PvbOypnR#N-^_;({w-ES_@hMe%!_*vv zc$n`F0f;EW(DLWM;XxaK_Rf--<-y~k2dBg4&lE@??#OD|3i}x($_9!EKDD({^Iy(QQ&ff9LRNM}(-3X@`;dVX2wQXY2ONXyR=YCNoK?gUgLpZW@d- zr3+(XbZe!{Sv!jFk+3C}MB!f$lLdgPw7S4xf?C51#?h$rfa-jQ{~kZ9K7ddt{K@%( zKUSTb5(DacoXW9W@2-=@I;pZoG&m&%8$7hh$@kZk`kI$Xyv5~N<+S|44EpR4w${dn zAjgWCRF?eBuoyn(J;A-IcOafWLkRoSSm-XjuDeM-;HXGO>@XETzG%s1s&6keCd96* zl@E_&H&p&7Y(_%Y@}>v4Yb{st>fcO*ut6tH>W3hNww2M?e<7Wh(M8v#s64iON#3E> zqLV;bO{^^p2JCT6&yJdG>6NH8&M;70Z8hz8M9sx}+%-?L;)@!X=i6~B=DaHEHwJCH6`NP44fqTXjjzRh2lA#`^v`U)Cj@%9}nPsCtCR_@Dkn$gqc^(s~ zL5Yl%AjzhC!-KQUZ3v!xlJ~8KRH0olAT~HQ7IvH8HI+V>Dwq&@$CDG;U-;W2b9SlKwT_t@uKh+*<9| zcG;}vE5<|;bzW!9p-)L0HCo>jx^droP`jF0ZrH2#ppoQDIr0K04;q*l)#>L(+o4l;C#M~ zderl4y+Z)Z;?0u51;D24W@e|z+3z?vcv7v5U%$8C;a8a>bYu&Dr zr6V-5qFE*#9x-E~1`mKb1tECANo^w|ESZ}On}#rdF1|3L@D$IepO}u>e|m*>3bAs) zBcbbx8Jh1+3fAnqUL}5(9LRblAjP}MIf(1R(jC~nR%NtIr08`z$=~RMhc|k5wdI@~ zcl21ygCheY?5=nFZ&4AF$kb6r_??#J&?xv4I3@d4_S9?OgiD9my20a&=)(LCzAzM* zI{jiJ--HKfj~EW?@h+Q7?@1keyH=1~AEy+++!C^%Q-MI|%?186C5yz`wC#+R>FTm0vVWq8>` zHSCfvuTx{I-EpjqSw`ef#rMp8ZwZ+ZcDnmr59eD&8U|OcEZOQd>LZWpV;L3^vs;Ai zsZb=XNiflLZ^AUP;slfvC}_m5&nE6oy%K4JIJ5tW@`lI$?p8I$Q-d zW7WU!c&QdI^wW;tHP^kFZF5G{Lq6RUTAR0mAylJMt9h#Lq$9Wk7_41bkXJ!alcmR{ zHM}FT(njT8B%U}zE@lqVXU6X*`>PCIJ@wggAZdRFVzUL}?Xj&5NWXd#MJv<%nW(wP z`jOPo@1(jto`Hs7eZlFAvyL*FCa(H4>!Wzjw87#l(JH#{UQvyeKE+>~tYG+ffjtq7 zr^-mHJo`LwWG7cW9Q#%5Q|{uag_9Rh=Czu=4@jNSl52D|8Utv##~574w<8}v5Q!84 zo1L;Ll?qWco~6Zf@9(61TzEN1C`n993zE&as27c;zr}r%WbM}cE!Y+-&ZV9W4_kG( zU{f3O92 zmobH0&({JQz+n){I>NN+$ZX9u+7Ux+)*E#0_=?=@&cr^h-P=XwPPO74YxLzebjk^4 zJAhhh9#1cQdt*84RdB7(dJeRUJ_O%u`++aT+iLLx8XUhF$-n?|&6HJh!GMpceDDTo z${NQmSl5UxmX_Dm#4ICSyB7K`20$AT8y^A&4?3rve?Iw!6cw~=>?Kf~{7!lvoYmti z8;o4VIlhUb-vq<**T(JB?z^dvVsh61`K8nPW_d!Zc;V&UihVDhWH9!t`~>ep1s@t( z4tnW1wo%9;F#Wyaujs1n7ojq305tci5TS*}3EIIlhL^;rwVH1CX|tDOQScw$D_k@6 z!6B(yY;RqJI-mYt+e;FyFWAnfIu+P!?rhAU~bSXxt7pbDaUDMa866>{_WOo}F(Mn~&|D!DsvY>vL%_xRC=pGji(Jmm zINh&m{S5{yeD9D~0&P}7zW>;zq$@_4i`>2UGpcgu=4(p*xotS9Q9V(FH}IMn89Q-- zc`^c~bL+7KIUBT%fVr_oUA0t}07Ck2Cpg8GY+XNFIVN69nP zgx&ur8u?*-p$*l~_bCuX^Uy)QS9RCIgS~lz?I9XsJ(})YLp@qjjLJXZM|Frp#J)?J zoBjMQ(sBnZDUzL&zFa>WzAE$&)*i*=@y`B~RJe$;Rcc9xfK^~5$oVtWk$JQSi|=`8 zL@5I8AB!k9zWj(59q|NK9nf5KmkC9FZCCNm=y$1zN(CngF}E8Woj$!dYW%C2bG64= z#U6Yk;v-!%?F=c+$-hXRl_uTRI~b)&T1=12F#2boz;rlBOmdgY=Uk#KbK5vV-_h6` zhx@`#W6>iwiW4!P4&bu-)!}Z2 z`Sd4jWgZsjh$XqhzO>Rxy!xCT07sa_c^Joiy`&f{P%py6q89XI4?W}cXaM=cyppv> zdDx=*&lr%nx8@RKAAWf7%tp2T(lVS|o9{9+33(We&ipwU%u-;GuI{sIEx5f_e_7PR zKfT|QdKJ&ULG}RQ&NrBc+5%-)(w`W|Ns(I=dMrFnHO|mXa#%t~^HnSCjE&z@8Oz)% zz6HOQWTFtspM-w^L*k+B_7x+Try=M80N8 zpmhNEzTuw?xi61DR;%z@bM55aekhi`hVsr8ZOjSPwylkYywuEq@BDmAo-!qdmf5$n zOtjCEO8#YDc3{4@5d)!?C(1YRvp|$Uq>z=)Lv|7Txgn%d9LW(8s`t^j`~_x6Ul@Wg zw$FdG=zVdLrek{q&QUCVs~`3PUeNW66c0xlWBZWoCl}yeG04dn55b0uJ65`Angsf4{tby_GS<_07CeQU?UKZ3O9Eb zTjLkGrH$61?>Reg4zIHR@_kO>PiR&M$5G7Fxua6Ewq<@45Htj2v)%>rkeG3x2A?b3 zp_SeNrVW$G+tYQic|N(b^CTi3d{ke&HW1ZA3`g%gxsAc&rDk4G^^Frd`gD3{jY4Pk zwLV)<7wV@_D$!I3;4+AGleXg8=FkgIm;(YV2)kmJRkAxQIFmYWs`n5hOfi%i=^3lU zioQ{w%O|Z}Qh>tE1)O39PBcH`gn5kk#jSoglX5cCla!t(BoV?-!mH>3rq!IVHT)#( zaSS;#Ec(AcE8wEU-%n1jHH@4gjy&Bs$k8CUo}+`9t#<}Z;gwnBe%nN{oe-~Ey^R)V zF`F~rzvBA{7XvL)Cz+U0-5)4SEZ>`?)a%kPajh*lkF@02mUBBG#n*{3xU2y@M>vG*EgXsij)RsT;LxWIm~^lI z5Le-6X|tWyM%EsATn*FpR&wo7)-=pjI8r{BoMNf@PzB=P9oCN8-A^z#*LW|6fkwaQ6G;KZ5=QZwelq0cpLZQ=3L?}*jjVAf(0DMEHEXW`z{ZCeo+yo;>g*XNs-h+$NU)`9UI zi-_rlH`ONc>h|JC*rckk&u=+{4;%aQvsKQN@$FdCx-}kvfg`m$iF`I>9nuRR9%aD+ z2eDSbXc%B~>JJOe$2w#A@NTi%2aIiu#$ zfkoF_gT3jnS{|zZ8%#e%vN`p=F1xV!rwa=u1ufjnfn{e`VqX?`X@r2xA^|IBIvlXY z>Ky$b%sYTI_=1Q3JpfSy7nol?@cIIEQBD>#y~Bn2AE!!k0P2Xi`t7}7yDsUr8sGtr z$EZ?(9;kZ3k&ivKAJQE&@j=#aYtUuEAG*Y=l@5OC4-dO>`nCfMEV}EHzzFKmM&2I7 zNC;x2?2TKxeeO2e0`R^1`|0h!|KD;pCU4(jYg8+dznsq6kPpry(Hx2=>em z>!L{}xO?@=x*qY*(~h12azY=QvKp@P#CDuw1>@&>2|Qs*nFvavnjh(QAU|`?;k-uS z{&mV}-c8ak2LYD9Uw*{_AKz`rs4KF}kcoIy{3AZUjmxc8S{g!kySs8qka*u2gET~$ z-G)LUrPcfcrOCK@l+V}=B@FW~IWD5HSt`UTne<0TCn0KRWmCljHk~nyU}!+vpq}-; z_w|b9v7W4qMGo%p2T=GZ?o2~=P~s_R+#5E~M_ujFvlBlMZhl)#%^0_>QgT&N1dit8 zN3;Lo6^3#n37C@10(g)R_=E-I0tXBeNiNRXBRP4F-NluGRLKm*F5*YZz? zYsMVH{&)|ipxe49ilmH%F#QhxV0A&Rkj7G#KlLEAlsB1zC9-bOaEgWu*C% z{6YP%q!L9Ua8?U#G^J6D);RCXcQnRPysQI)(Q0Ag=-v$C4XK$!oJU^UYj8LVHmiU@ z$cSg_HWa|W(S5b`JU$LYQ8?qE-6ymfw8tZVYz=2s$Q{0ee$-dSv69+Mj+jzZTrA^E= zafN8dtgb-u^)~3h-WS4bxDeTCrv+q*Q0hOOo;U@Yu2z1y_eYXj0TRz1=4+kkmNJ!p z?i+oo#fVogS7B-@%`5DCkJ5Kunzx&2fwCG1nV8`)OiP-B;3vq(C70iWq%nKfpt|D4A0&kWTs`E|!&BT3263tL*>5CLXCTReIw8Qw z&2_YTbNFC}tWHb#>H&;Y9zu>O7u@&dP$MuC?$mJ6`0MRwWvwvxT&~v~FV&PEwo#x>{l1XVp_zJv_{Cd<{<)4}5iI%k_UhgkUF<^~0w`1TI_rL1K^)UQ zUd2`_LUf*E!$0z^(Sz@8@rI@Fg#B8o30esw5sP)ad~97KeUkk(YvlLu_bYU4gFiQa z_a*CcTl{DXS=P`xq4SRNDJVo~7%<2>ZJO-bq$RqifyqBnZ98X#&SGBIU@o*m$86^g zL+`zhTf3mlV+#A|R@oL7ME4l}=z(Y9rrXw9S?>TG!=$LLOaM^Pwm)3#q%oPF%Q-B6 zV)}8Ge%`T1?-p;|TVW8sB|}tpiEh|Hk#yra2tUIfuOF^LP^aQcDRjX@r4Sc9<6FwN zKxiJ+|FMmk8po{7){~~(%I&f{kJ0E@P^;-llS-s-MOv0 zbi%$g?&jIbDfve?e7}ImWnW|7L&nO)Bu@@N#ERA`&oEY+A}xdz{TGSHu3xEfABx>K zDxSA)oY@-1w_dUx=Fw8(p4Rk2V{h6hzkezAMQ%H`s+dKQ> zlj=NPCuzE%b@*7{!*M0OQo4Y#slgb}bd-N=jsGkKeXS97?UZ(XeFb;k*P8scx>Mw{ zm+kk*-<&|;92{#f8j$Kr6|O=Wk|(7IVf0d?sv3qBsiZx2>Og=_l&|$EU$a0*4LTi4 zD*z{ugUmqshg~8_)<mzSK_&c}+fv8=r(QjC|MuR4--wxYFZ4V!nS zh>@snJ3KFk`r$xP=5`q(eL|LX&Ca@!DH#`srGQ_kOvh5OUw^$+IECbzS~Z$;3Q-dt z5+`k$!IKa{x-V=1#TEpjdTolwrTNcC=dgE?dgl!jI)bHQRkfZec+ndAufl^4D*9F$ zox)9s_QY07YkKE>Vb+`!VU)6SrKFu@(%)p)aVbz%Vf^=8#UFJkc14U5S|g%lhB)&Lcfzs z-`d8K2!muNm_E)lD&92+d4@Tht)Pp%mR%kkf5hntF}M!x+~#g!q?4Kd=-O+q1FmF!AW>rlV(2I*cA2m^-2_*bx^lGmuQQrQ z%CwB#P=*&@-}SWWbzP-I7EaWFGd}cfR6KC$;g;rzzOuZ`zJA+Rw!H`rAqjD8`tr!E zB*6x?cx4Hw?I=B)xr9>RtVXihxURRHyT*i{=Llg??-D}M&5+Js`yGKNy*=r~w}0T) z1Q$lhxySCL-I$WGUHW9_`vued`v>-h>K*Jw*u3=>%>%mhK15sG;VI~PkEUW^2KoIfB)ONL+8cdCbzyyA{-_~FJyu_~=F&Ty*RP}t zNKL*HtQOL3VO&6wB4`RQ4T$w8;QgBjp#W=W`KukiFN%D-(0tqvR8z~2w{(?QLAyX3 z7O#`XCR@=FLCt!dmwl;~**@Ie_SN!NouubVXv|#pE{Un=Z>Hd-lnc}SCuGcGGVFW@ zOT(X%D$rFYB1JWl&GECvE?1@9@J}?)Z~y%jTe)!~^Zw}dyOc~^gmV6R8~s-s>M@y= zxnaXkSf!GVig$&S4zFlru{O!Xx zLIOWU3x)hw%7ahgz%q)L*8K$4AiP9od#KQvf^Q732#8vC5@yNAsD=u&*A&dau``$ z7U-{rf0xX$p~>+tCT?snUz1tT@i(?7M9F8#ER77lK1b)ilk78gC81*n$j*>F(V1K0 z5iXIwg)y8g@!-i9jB8~mg6arr&zz{-qF>x&Z`7AG+;_`$>V@dQt<|NPV&7>z2Fu^h zUbJ|jJe;@{y7mMvISUP;iuX;;&;^uKXl+nC!mRbka%0?mf(iam*}W%d4ZUn49Y#9e zhSYN~KNaW@(j;x5zYpQip`uebbvO->*z@CBKacp1!>qhB+FoS0d}Yq_eD8e&j3F#1 zD(t`Pf1t>>$CJu7YQrw03oRGF-)FbSu*4&kjpdc*_s+d>o3XUE9RCoAE@}0v7&$50NUQYi* zBS6;zvn)&|-D2x8F4zLYg1Gv0frviO*l-M49Pc+aoE?+`V zIrE(F6dA-eNBOXYOUBb))Tr8G`I2mWNCjrvp^`@9FEa*R5iZS-OAoE4Ja&~h2T(F< zZJ$(AjXxQIvHmS69q8YD84}I2D_F-_HY7_p=aWQ~bF`j$pQOE6Leo4slYwJ^K60Wx zJIh!88-|4{HLKk`h)b^fxI@(sW23-oEw}0OI_sVEL>QVM^Jq(FaP)n?9p=X`8(yTP zQ1bjQ(%u57tM+Xd6%kPZK@e$C5Rh)^mJlVRJ0+#11*8ON=|;LlQCdJ+xF$zq zFW>k7?fre{oS8kdnb8?Re*9Q#JepgYhTE#~Chl6f975tTmPwpZN0{OSqfeyC$M)QO9WjJGIr2&X!R>)@-A8_vZkaAoSGJ#>0u(2^m4~UN4ideoE8iZOn)RIgSFIB}P=SvhU_|!pwSN_oEhpJrIxqgocxeE$@26S1t6TYKS-l z)nh0GBWb#nA%BoF|D@wdRsYj(m=b}YJXEQR8#4Xzgt9>z=m5SlkJcRhg0Y)Gvbk4G z0*>ASd$6LVFgOrT)t*ay2_l|ro_re}-V;_VjDw*-D!4JzWM#;$$1ZVojoaJXv+o+i z(`|H#Kfw;uMaY20fM7(v%(bj}BxJ9tTX|T9;L*vY`FS`Va5PoMLSkAwlax>%`F|Pj zs7xB6Ps&tRSSUws7?f1;&bjTuk$WYx+2gG-ujwHXGjn)Y%~ma(@lCya7c4H3$<#A+ zR4neLSL&i&b2h7JAMbM1Dco7Z`I||ih?%US_6YBt{Orc#Y#b{FU11+=EUiYS&}eyw z*WB|0II`_|zw~1mh4L2^&}e!b#n90k*Lhi}U@i4XjFA;HbXl5nz5huLI;H#sT^-Mg z`rr65c~!FiBeI0yz4$`5$tXv5RR&X^^oKL+GUk}JJNVjjW}{=%Lx0SSuq$ z5^t^jOL02EE>oXBfZ@6i5bo|t_&V19WeD0rGFx!6-+OjHN zt&7U`QA)v@8&%tR!9b6}CEKq|U0Zz>^=4e2!Q@d_okf^N{4jfoofLXPO1V&oxua10 zV%m$(e~3Am6a3Php5Ntw7jo zr0bm`n!qP{1yf&y04J(WB#e@(N}OyDDAa(qwda0Y99b{OR$0Y*>W0a>tDll?G$IDL zn3YbOOcFo8{2n8Pj4`sqb(S3bsO$aL^nE|wWoMapMrNj=-u??3E<5wLezDatXQLR} z_no|nTL}oi@@$T?hgi4*vK7t_>QMi6v9oJM?qY(M9q0gzs?)vu{XSjI5cS-aT~oWF zDWYb*@hGmV7!vFj_G|+!65jIF8p(HU%6Ir!@V|IL9ko}|DD&;Q(neR@04ahK+h0z- zrQcalFF?avDK0 zzlwkf{?*xhi zvP(XR^nCs-DmHdIt-_sOCi8zJz05u-53M`A9V*Xae{U-m9Z6b9O>e1|dW~9G6IN|r zH8$htA)+qos#Nk8>tS~-Zc}jF5kp&z`&x39 z+)+Nz`H^u`S`Oj&d>n4RR0jPAxMQb=k}7MVS5Iw^OzVTc185P1Es>M~@m!e3FXJTr z`fTc2ummrC!Rv-5_{S+L8XkU?^8LBvBksE0UcTU4w=;>d&1Xl9aUKy;U%-&6$zJiH zK_*QZS@Xl|j#^$elxJZ0OF4OyP`yc@sRh$DnN`~B2*ME5?G-3CoCS&R=4!F9sb@%F zoeRz0U@^u^f}A=+V~NcJU>7`gdw(^~IM9v7U!1C&ZaLsf-51K+Y?IgDhAi;KZH#_3 zl>8b)>hd=1`aEU79bg|60%;Gv7T<^>j;eGyz)JDLj)$54yCXdUrc8_mzc2yRszb_7 z$XAygck<>52`{VfS9{de5I&{zmdsb-t`f453@bn96hLX9pybLoGy9?YjZ65rPKvPK z6+GJvR=DiBv%M$uMo{%2B4QKG@J{y*fv4FL0%bZ2IGq&%ey0wu1J}a%|8(E79g?p?;^)6 zYGk5}=^?tn7HU4-!W?FKT-or5WR16;jGgb(ezxM-GB!AsdN0J9yXJe_7~H|QN-B6f zk9S}58fpWHDcXCo|Ev6(`+Ld6j%h3zo!8Z*{jIq&Y3e-h)|?|slKZMic#6Z7NuT)o z-p1aaM}i1_>c<6anIk2tv==%a-ha48zOo0yks#ii#?qH2!(7|PjV@mx z`GyO(_8&I*mU)JkTeYI6c!|(HtE+dfM(ts>=%x(0Uwias32WRxar=TUcb<8a(iyw+ zaq7BfHOtBxuuKBWIG!m9tAy~vLv|VJlr3x_wsmP5yJfUIj#mWpGM8OLSt)OZ@W#hu z&sH3k%J3@NqXx_vt()nsZ+K zDE^)a+|1E;w+j2d z5o3svW)Jwb%sZv`;YwLVdn|Kd)#E!Lat-710ED*+E#`~CqVlEJ&T0c2XkYL=LByqr zHP@;3CRxds9=V=)PZk8n)z)*5fa%ZelRP?ow@p0k zZixG8V8qSmc{^}vsaQz=Ghp~<%%EeVXjM`7@66$!Pt8ncm;8^+p&1C}{&$G@qC_@?$E~S z#^&l_-wHm-lGGZR()?GuJsUO3|IpQuX8|<@-j!@cQKIqpu^@>vdtbH*2b!!Ab}x;= zb>S(}z&-)zj_8Tvr3oF%r5wumrO$i=y(!ljbFKWXAMzL0idLC?fBIeG?6D-(|1)#P3V_f5?sP}Z zGf?U965(6F|A2FfuUx=I9Y$o0sGef!)<)r8rVW5k{ zHO|+)aqA8tLkD!?Jt?H3d^!9w>h`M4?|8PT_KESt3U8W8aOu>>xJJ9i$le@zqL^~9 zw{Ab(p~FG_Tba0jt^O$9@z>Bnx}>*{ z6BDR#Q=s5_jHH$!^#28FG(lh?BL-ioF@sqlfo-&QFB8BB}R=NI|uuUrcK?%gTDs1uPT`Ih?J*Hijwe$@Z$vo zLAw{I%t&z#Isu-)Nx>}-7=Oza4CX1WnsB`XzX-sYR#dN_zixx!T28vz`}=3DoTaywlq&H_pPew480l)XCvM)v#@Kh!;BcXj zHdpn*t@XfIf0`J(<3i*@{V?v+9>^I2LZfCH{e%8_REp}~%~OW)r|Z7;hlzkZ(4S0U z2)qY2JMu6e%5~nJjRLT70{!ox5EC!234|qJbSMgNT#lgo$03{U&S&2nI9pXJw$*uBACf(x*wWW9rqM^zGqIta zCb)~&RjU(8OcTm4LstIY>gE1bfko|kq9@4Y@2~fr<){)On!y{<%Ugs%uc%ASf2K32pN(DoLlcBIIQ&~PE*=T>Zn=Vldatqm z8|wW$_+kpsN&P$T)3VwANN(iJgP&WdmyR%oOXTsmeT5;`H9Q%U0#Cd zkd1GvxbDA92+6Dkle0@{MTzXEKELv~>9Fx3=4x23c#i7DvyQ{0j9iPuUhUYL48g`w z#ogtBT$x)vlN+zyO;$cQvV`P1B&b|eCmkdOrCS`1i^tZiiZzCEXUq&u(Xz-raLP-E6S;X+fG8=-sJy?o!>J>NkGb8%j*(oa zBSBi5==%Dw)Zj!>QS|r6YII3s}Y$I(gfB&1J-OHMfM1~%r9qqf{ z{@-%6+ly~ef4EH013#!3LIIGq9@mJCh@Fn3qJ|*SoDp2!DvkvyN&(k1hjobiOF3WZ z7W$uZ*ym=|kA9Te_6T#PIOoWTnAcntKRbn)GQ@h$pP_C@QdO!<#{|&+2_yZHIUV*vx2ptW7TAGqL`dYK|m7#uO zPP5FPd4GHlj>OPPO$1LBcMtYeOQ^o{nkvdRnW}oM=KTEhQ|e`ZZm7z6Kuf9r4Z#fe z-y-u9owdl()JpK@5a=|w{0sHzQYIj9!V(r|rQCkeiy;&eF00%ALS(5cy5f^4{WQSa z08hDJV6TA!{U^)E`H>_1k;_LZdl@oe_W&dF6U$^n3BjlJ@4=#&~Lc`6=_cW&+$g`y*7E6B*x5~O4> ze)`2R)spf*f~~IVt2}wBe8FZkk_wuxbbj!&RM*;sbX{m^5~YMZ7w^z1Np(cgMjn8N zt65Fh^O?zXag1BK)h64sKN_%d{WuAS7H5e4YZvpP$XS?OkGdECa3Mzg0w4z(e@51=9$RW$Z-K#>w2($J*^GiNW z&UMdV%sfGYMTt1&T7BggPpQ`=_%3f=S0!mA&%M|JZ$*<;ra$2P_2VK=#9bl#8IkQK z>@NiCmzM}DgpQ_tL?_{{=6zE8Dte^aXO!YsX!JMlyx0UdgpinyssE!e8X5XklSBs+ zx#e0I_omoJb1DzF2MJz#i184W9idz#vZh#G#lJDG#Aox_nk?Ocw1&o( zMs?3>y;0i9oU>)Ec==M$0cXnGZ70+JSfUy3`c06VM{gA5g^ZYdclzsJwpoawHI5SO3O_NR(;~ zAEVn8pTshDAa1+lG2qP#o2MC)y=CTwO^q658D)#=W-;qC4aB!0ZQOL?a=qN9iGWb0 zJ`)MSIn;3^&9)>=@I60y$PRwH&at36C_&ZD`0?xfN2f%{uWWNZ<&rfU8mfg{`R!eq-> z$3HvIRUUb^zd~s!7=46RR76E`kZEo>?6o*6zwB0w5tK$*VCU^@f{0iH#l&Mr7Ff4b zHLs6IGa)IK2axS@pB)uEDu=za#c2E9ZzD1 zR^=;YI!bpjnwrO~;^ZCx4MACo#w;PDah1eN7hbieY}-w;o**8f(EXA9H;OvZ=>}#q zG=KZ-L<`ZRuEmrJ>iP|?8R}jms#|xJ)p9@`coC@Ylp;swL{hPmf z-HUHy>?;h+Y^TKt0$)wnd5QdLqM4`oG?^UQe!F-I1;_ESLFgZG|F=YbrYA2a6h?Qf z@49XcVc7rHz zOYG}>5T_x#IzPKI5%u{QYtftUo9C>O%gncqpY9o6gmN4|e(sv3iN4bNnp@^|@xAk* zVj?UxSI+KQRM8$G+#7rlym6wer__Nfs1?FOj6QyLe|0La8Z}CB%`q^nS6==no@@g{ zA{X093zi;s2Ix{7WK&}6HadX!6V1gZ+=#R7_vtghF8?b=EPqkN5A&dzcqUX^-ssE6 zNKa|?8+VxbE-%2g)vCp$Pv62Qns@4Hp^@%3D~3%TjD+YUc2tnnx1;S{*&7Cv9D9O` z)|dt81OJAlEhQ7me~Gk>$^(AybD+g7*Q1jUYWv`QX2VWelEQ~>@_~g%!=D}?f4?OW zlm;g1%c|80G(*M?t3kt}%BJNiqmE?r zV~%S|lSxt7%tkWG-JZXSs1;T7%M3&8<;_gc+a+^~P+shPjkH!%ABn(v{h*Y!HylIn zl$FqreC|zBdVYseM_#-z+pQJ)*8*avJP zvDL!m!(!Def|cJHkwWfbPYaiB1tr#t8!0>xctFZNwtNQfx@UwX!q!vxK%-`+xt_o zQUXz^$h%cVgi84O4U8;*e2dQPE|-@NpfUC%nu#WR zw;L!wz;atVV(^%tp!%Eon{RIelTZqc7}d0iq}@@D-e+89NyKRci&8(`oBV0dX7ap9 zyV}W?=e+uiAKy9s5&jMSxViU`8GQ0!fx*1iertB;gW2)%<-N!2qEUWUX`=!yeJwtT z&%=+*%!#!trcXV)+4L(B(AK-I97DQDEOfxA6C{Y4k+W(w*$0c$FTlfmA`-z zgRXbTjHH9IsX1`kXfPiK#S$^^wm*y<7O;S>LG-{Uq@Ysfp#y)rKzqQN|CO_PfOqaE z4#lB_QYnFF`R%8IA&pj<8f6TI2gJn9UNPiEdg}NREka;pUO5-amkX>z55D)94eGzK zU^h^9_fsbsw!B$vfEXIwtQeUQuR$qX5of2{=J1IR2gdsBmsw`)Bm>5d84F21cQ`r} zX+H>OSM$&!jiVwDs!n@CZDs$HiI=iLdg~VPZc5Qusrg}0DH|DeJQ-GI=^yEObk(u` zZNZF-R}97+0^$6jxvk_7Z~hHcXQ)qtuwi0ouDhHCVVkq^qEMN6hHIei-5%4&w{R;- z1`!_z16GnCiK1y*HH+OPA)Gp4y-f7CmlS3G4G!~r#;*&k{jZoeG)WQ>r!L*AdxIIN zZMUA%#1^LRFEWiXkcVWue{g^N$}lCnCb?sjxdT&pZJDgZVnmh~&y>e>?TJQ>fk1MV z=^U*qx%)w%R-j8IvjbC5xn$ouzJ`2N4td}QDuUMrcV!YU$noE-JLHG!IjA!vPks%K zS?9;IQMXuYTPQI&=P7z~ZnD=mPUu=`ZGv0KRZ$jHLo)PXR7lyYlGJsCMpGa+bGN4a zaqfcdI4;WYU_?C6bP0nCM1u*v`BR-+kmB;2XoAXKY0uX@PI-qq?vFZ1wA?ZpPyXml zQ<7!0=6A#=7wI=%U3f0p8CC3^#c=dc$m6VHBRvK^Zrz*q@IA@jI$txq@1MfA<6e>r z+K8l&j`&pWtRvY4LgoUL3$>e=1Kdc$E{bQBH9E?uwr&M+fO{?Vhcy*(z8q@W4cOYv#3c}&wyS)$rZB=Iqotq z*oGE9AZF4dC|Tai-Ipk7z$rZ)LQtNAL7XoMn7T&Qu$JNmVn}1WT=YRP^pC3y)}?%= z2Nl1EiCilMUeCrvRnUT&_4j?1YTdt?%;cC&B+>U~8C%3PzS9dV@YHw?(WrSjMBnUO ze=Ostn{iWDHZ|J?KS*(n^`t=DC10bIl#}!;pH=Y{KCm6qUf%89Mq8zwS;g)hmz6O+ zD!sY4;G6y8^knIrqf}dWROdBr*NSFB=eh3J7Qu`=3m+AJ+F_YBSzWj|+3qt*e^}&Z zlp=&vW>F!Bx^Y>@wp!$0BlS=}WcP zZKHEOC}F1`PqN~kfYw%uXbam9PaqA~_-FO?>^CXktgwBTkZR#a z5}0}!GCyTWSi;;WyB#S#j0MceXmzU`Ez`r*IB>pJe+FK6Wst^Qy(c#$T)sXY!9@H9 zRbJS0zGr+|w9O{p_EEmxl(!*x1Wjkgkt{4stQBc(e%Oio0PTzF2o1@%{;#J?ua}f^ z;Jpt$^%&Zb>5pK>Hvs-hG@&P3FFh`!OtO0+QRe2C-gD{EGp}$PhSipDB(1+Sxx)i; zc#=^B`)`GT)xnQd_3=hbVFt}dt5Wz-#HyMt{YEMf>EkFyYr1_^?r=uA-z=zHMlxle zF-yrva+4Vo!}2RN#mV{3{i358bM`~=&PrL6O4#qmepyF9_5JeQ7|p5zUC8T&+MPoC zco1+d*_7;KDx4D21ZZjo-~JMSB9_2X7odK5m+do#;}@u z=T*x`A=Y?b4t=y$h14l@jSu7lTgfT!z9XPxtj5Uj{1WSVbi&S&;`#BT z*-1K|ncf&C$96JL$=rv5y~CKd954F`PYizf44x0j<;t{aKD1Q@uPHU&06_uysL|4V zVV;6y!T}OE%z7_@w=19K8`;i!ASj;(?2k z?;?hOm}Hr`9zMpUWwN2X=>3YSNk&N2bd5!#EErY7idExX;I#wR;N^WfqbJJf;6M}Z z#8DEi^RQSA7ln_~xd%j)G_yCHf@_8#P~{@5j{7HGk-lRD*S+_D>e+%2D@mvH%Rkt+ zF0Rp^rQSCm7G-7Gxw0)xNw1c2DYywGIJDh+`525BLb+A~CB_jClHdoFg&#%@9faEkBk?l?l<7yD zr{b=y|6*QRvm!SlXyGW|n9R?C;;imp!huUv66BZD)FMrHZSOyx|HN zTJRUq+In(}KYG{c=CAp+)*k;R3BT%h*Ot=CIC$~fr(elS?Ciatw$LYhWC?*+#`SYg ze&3o(jeom7V1&q-sh!eZ6M)$t5%l~7RcZ}nW?}X8XB1%oPb%AI1g}wQzpxJ=*o>id z63%j?xXbo;=g%o9Znk_}!jWP4t&!LZdn2K|#f%^_Ht8 zU2jr;di!rxmVJBkgi-M=c8UA!hjX0oVyCGWx7SNN;@_{14%L&DhV7wi3B8sdE3+y- zSRA=$U0W%4TJ-AGr=GAk%QMyapUz(dm+b{sND1$SVwe0;T$|bms(w^4C+T`r_|gR1 zYGBCnkK*p(NgO46$sO?^Gsc>ur$K!aB_Cgw=)4^;H6wS?9J}+|!V+X)We^~9-hLOz z_0-iilMjTfVt8q_d?^LoL!Mf~o|;g|S^zpi;c9Fcgz{~$(-O1}FAsRE9NvDc(85mZ zK)JfGWm_CYJ!03L;bPxQ=Qrb+26UswuN$H zBRlwM{Xcdir+!I($jZ1d&g6SFHB7{LF!*TH<3ZrYM}?3Zemt72k&Wh8CU0ycnz*sd zcfvb-%g^iZ3Y=hm-bX4u%xO zPAnMH%3)G=z|fAO9c7Mm!!1b9U~j*_*;<;aXwD^EWm87ZC@9Y&3rD8P-C zJF@}qgzCXak7vs7H_FRe3>*gvEXx&rB-eCpZ1;7fb<5)RBygV}R*N=HeSUUv{^)JZ zku5Ew?iSC!+3_v1&s>2uuBY2q9xXPYteLgmTMe_t?oOO<=~AG18)TD{)2H{_?^Qe6 z)7GzUSM`pg3k166B{F}&T{cvx;mdl3+~((LFnl~An)6kvksvH@puj0;Y36k&e88-f z`<}%(w}?{K?*8nY%Rbl2?hxyW;2GKtOF6>VOrJ@fxW~q%i3qe0FjgkUf2`e4D-U(Z znPGO`an#@{VrFDyf9D!i?#_2Uw8+Ri zs=2<8Z_#N6t}&Jsvfc2fZG?(B?z)t%HznMJ1@{xNV-Uq!OllDETr}M0+)%dUVYDwwk)o%Fa#Rm#~(RS39S2#O9R^$0{5qJBc z*1cyx)T&8`Yo0PaR2MxPai#eCkscfdFZ7=eL47%ve?AX?fB3Q!^6uY{R+<7g%Kv<2 z=Q{n=f4=a}t)ZRkKVSI&{Fe0Grk0kc;Ab}vH2qlcZOO;3p~T!pUVyEbkh1Pf7WwI! z>rfsjfaP~UP*5Z!^yYt||6CzjWZaccHw!UNpBn!D|BQlj)XvSn?{>7vq=(6S9{Rtvdek$2UeH2lvm!Ebx8rmkLQ5q|UNH;f?LT0u3o4YF<$BQd2h* z^4jMT84v=YfCC`e?AhMZm#T(vdFb4rDUkq?eF*T^iM%kR@ynnQrUZYyW-z7sX+KR} zp9`YYKA0MES~{%_v(9D3>abnr!jYJ6e(b&pQNc*K^4!YDLX`o>dNbBHf81WlDpW3C z+TPxlm^K)@Hr|@MsX~~2%jzx9bBHo7mGL6E!Wm*u2lf$tkfg}@X;+iCgF-}G%-Nq@Vx~))>?_gp{gQ?x>}Cov78l4 ze0sR4Ise(4dwMy z@pNfg=w~w{4=OuWn+V<$VBBFaO%ixLgvmPSZAoDH+h#rKo;RA!d8=?gn_bejtiS1=w05=nmtcQ}UE!gv9i(1J7>T*%znD zy={@arxWR~NO=TOL}(^?&9aJhdbKB?sNbT~t%t1d;E$gx+ns^e)QQtb$Yqt(US+j5 z`F$)7=n6bWgg^pOt_=!QpF`q!ftzAuV=$P7UBUS2K?jO8_g0w5|u}2nTyM5I99i@hJ?@f@I zvx-IBDD^0B!Mb(pR+hW^WrBP2ksv8Zm=YB`#I(Qv)82c1_X1Zv@L6w_lMIy()?MpTc`Mg((M*u_we{x?_0Kb}a#s>xT*59!`zR+XeKT{q5M$Q7cafL8{wJ zWZ_!!lt-sahJIP1cZ|9V0YSL1l z(p0|s-Sc4z)0Sy;N>)}na~%Mn1xP!IK^OoUWfo?B)XZ6-ByccDlNGq_wnBxKDF_>H zP38N|soFP9B=OLJKLN|}LA8f7(|&1S6tM$Fn~fL&IQ&{fENqFWJw#e* z*oC{2q;Jf`Z8m`++&q9)0?glS4fQ_hE|%NJe22ZM3%bNa>nxcH5c-mgpHYSl3&CJK z3aJtpGj_*h`>&mirpQO|$tGFU{<1%)BH?Xer@L%34ixVO%+qwe z7ZnjFv@$1uy~gSS6qhXPshZ!UPDL+l9q9%ch1eB|M|pV4T|^eu_Npu}(9EhqDg8>C zxrVppqweuDnwol?L%5C~Z#?8mKVFwQd!~snV#n<|7!^Ki@j!xSH4(A8G#M9iqVlR8 z|NaU}d#&#b_i;mpS#hm(^KYmTcoNpn+DGB~v$QFHaI4!9Wz6Vjl zHMza*7^ad?WRE(z*LhP;X}ft4VYDz+E>W;^^uZQk=JC|`Ge`Y|8O7KB86Z7HfPYm7 zNE5qXGJ4YdI^bxe8CSHbj%FH+aXe8hKuvu+ped{HpNp8|6Hb!H((AP32Q~E)SyT(O+$7mJGz_oMrDUj zsg|9QI5(I^D=~V9LGhxa>PF^_X9!EBD{pH&>O(vg7Nb?SWnVAPopYu!QFX9@&X@nX z)TFxTyifmOx#`zU?S#T_zlrx970bu}l;L?~GghW&ppEsWi7m_qF+*)t`FJfRrT?G( z?WRi2@fA5`Tguy*1p1~w?&N)(0Ml)K{ z=b>m~vn;Wk0%4+ecj`>N{EBcV#>Qhmb4f!c4bbF_e}2B&MZ{Lx@SPseAmtRH0DLv*#qe zijdIRp8e;ss+`IY2&EwFsZ^l+WY5h=FW=S&d^csD>ry5_Y(LaYj&b)SF|@C;Z!kNK zPf(!5Vw4SojX$a$Hh#j!{y;G|w`#=v9E#Me=E35nzx6Kfc4=z#AH430XmX)v<1c5JOn+-+I}=u(I>T2vIdhSUhGyjo68D@K;K){*hp?D*lm6sIVb&2Q z5a9og&BgLaqj`oJN1M*3j~sJixHsbJstDC2P$_8;>r>a)giNNIC8qaPb=^x>G?c+e zTfN5ZTV;UQOTJ(y-_N(zgscQVZHF_s_qQZ`EH~ zR>RitRJY&3N8$nLN zIiA}VZ%WLv67O2Ygej@09pBLA`Q-NYBFw&NOd{Os;m0kBCk1bSp_Ly*UOAQiQorJJ zrz4Erd=RMvVl2h}0Hs~4#11HWni1RiNiiSZtM}s+R8TU>hK<Rrhm?j&1V((xN1~Z?KR4a7@pP3QQOKoJ(N?z2g;XAq&5PSxOB^B19yCFZ zE+lvCJzfJxDjydgzuw9Pvx~~ksS6ky zOi&=oz|baxZth(}J!_yzTt$>NuxW9|{ zam5WnZpGYbmdWhxbswLk2!*5OA?KGJ#^lC04t#nQC2eMwIQuPUj>l0RTh6jXL&Fx~ z+>kp$gP9v9Z6{pb48&PY_nZ>+1v;oBpPL($E5aN9=i|ed1rqq=-;Z!PwPT6D-8cL- zkEc@epD)}x_Wf@t!vFp)Y}yN&uwWiAF?A>X=S3-Yc>h;8qIz22V`xr8*{ zz~O!h-qJ4seS|V>G_Z^YOu|UhEAs=BTSGEa0^*>+sS>s zc`M)^qK6BXU_uarlXBKR=oWsWPu=o!`R8VuiDwtMHAWUf_t^%&aM$}zBXB2YvlwQ{ zgJzsaG%w)Pr!^VO#N`pR1MGVgkoWWV=0DenNNaZEgTd^xB<|-Ep6YXgsr&L_cLg2* z6V`lm2l|XQP(1=rLu>r*HB60Ew6CxltAgJ}SMOs`qembxPYBo7Hy0jI(*V|z-OT6> zL;F12pkB@)W~T{8VG+a+r@b>=+ z2Se2Y6!bB0|JtEH%4?X0%L{aOLe86#(6P(|fiyOhj87Wys7|Wtx8-B$nlwA&z{OP# zlEkbCx?_B>aqS&tWx*$~Q`o556pX&3@|1X^2Z)r))=`rxH`nhxU z%iUm}QiwnIatQ8m2B-?J6E#v+)1`}h?Shdd#NcY zG3tX^KukLP@317G7)Zx5F+!85GJ}xn%%3Fu3kG#}VE5ToVKd5>W7lrC(R|3=!NU%` zbb5{1V7WKVhc}dj(>$}G{z?3bvF_@I5c8Fb&#DXlRQ(R3z=KhCrI-j0b)LcMCqBjh zg-M{}oOX6J7q)VdHa-Ou_mcwcDwTEiqzjco9Y%+h!EmdI%4DbYG)0}I%v#y%^<(aS z+qLNFsiu7#H@Jj!J)?8kiJR5qIn&wC0EQzniesG z9MnL9&lfmTuQ$F)S}r0g1z40{kA=<_4v5FQJWyzkDU~LLNy7_I57z0C(8Uh*q^Oz7 z?VkcM{jNl_dw0d0s_NUev#WHtI;sSyzw@JuYV=@C+b24di!V;Lb-4%V{#*VzbfCON)La>Ga+r@Yy&skU zxnF1A(iPeK+&T`#BGnKs)uKC2=&>5pFzh$M4C+OMUKm82WZZd#P@J&yI;>=7pKn3S zN$iE%ZaR=1g20yee#kzUEPHktE#y|~+HWQAIuSjP;ShQ?NXw85xDH+;#gs_3d2|^) z?*@hz3lVeyT#(3@oBiE)>KduD#B}=n_$B~d0E($YJCc2%yyZCfSzFV6?F(kikBjR= z02NZ&h?vS!UAv7*hpm^A-2JC_Bn6fd3D6tab8z=oes&OY+oak;oCA9kd0H7c&YkLW z-mxnPICI?UZP`@jmr=}I*Hdx0IW<+W`nf6?ymJ~bpCGcXIX@CB`Hm|CBUibM0%a2@ zJY?m_JhF|Z8-^dMeVP7dcy)_RKW>qr{8ZlQ^fK2SiRsHDNo>L3y_Ro}t<@TL|GIsL zQnLG}$j$0`lbQhgWSk0lPGIk3)u1yqDJ9G?-y_{+M7GEa><+}$itMFlZTYxe(DQPu zi3diXth5~Zb!jG3Uy;718nmXc@***RMd#J+=o5RYuuB7V&_T0yqiMmLMw06fz*nV=rc0_R7f&aOkciE%3)4iS`5+{WyYPG zclmQ0s>{H%p9nyzD>pFOK$~!*QTG|88;GFkFzsg#ffe2kiZ2UUsyfAJVZlf+8&Z)m zJkO1m=&Jsij!`=2G;Zr3OvoxK^ZGiY{#MB>#MJT}zCH>9+|5JU1=eg&Rt7va?~Gqh zdYoGB&u_gY(2-~K=?@$nmYg|w%fw|X*>Q zz-O!nt%rG)Lw_F@*J-bejx9x2hf-lES>aOV$H-ORx)9Z2_jfj(<Q7mcPup+$w*R$~M zw91xD*%W)%!la>H@9syERg5~5e9KLms?s_bejSabC;=Sbm(qhe-$#W<9M@wIW$$2h z6+XAoOLgr4-?5wove^gtn5cFc%b#N9;}E?StpB?==}>O9{9Piqe)5yqig_)eb70kg z>thyZ0RSv}MoEemB2MGMUFVZ_ipE3;oaoeSTYXRCD&zzmxMP1^m`k=0Skg}*Q8aO0 zl#nIFrc>^^X+vO;-?X!5_aB=o0jW1hTI7)L#QtDiYS}$%yry@7dIS9K!{MQ51JZsc z&hx3hwUNB}viqFvx0xR&V)u65m1(sVTjGLS&~=bz#~KmEp!l8Nu{u5Sv+QTQwO!Hc zTtY_%H#=s^3+`jo$=v<&l<9n;nUC?^?eh7uu~m2Cb-^OvQyH4$CK;lQgX-CXi?nL9 zzI1>$0-5-2U?)NB!oW<(54D#4xYZhJ_!*S0y)dskt)!bKxU?J(K-^ zUHD=~ovD8=yfy}PtUv2-w#xX=n&sV?Pl#xv$*Uvu>821HdeHbRyOj1<+$t^)mI`9Y z#%exk7!VEq5RNS09~Hin#Yv;T2Ql-#yvr9RhIMS;?GLJeI|u|iV4ex0ip7w zH4JXsSzqGSx<4XnEL^9kfK=ET2@&b>D3$Qeydbd;Q|B@>&w2_+(E?N!F>r6{lOo|{ zHWP{WwtbM|abm{aq-%AMwsDX~(MQJ>nW33oDd3TGmycG4Mmt%H#+O*NgQ?$*Z+uWc z>28qK-7i5=f2`&#$s)r;4TY!(4yDG{_XR_Y$w$ObWU8j!E>{{=jO|KuEK<%B1snRY zdR_WONGL~>ajjH$d>(t1u<__Q_hH&k5-S}>9c=>tz(Q>aTCs?#mM^bd*HL7{xPqC3 zVjPDa8Mx=}T`Sk&%UP74KsGYo@4)eQ5iv=eunOw_9yzc|m+Y*W^xH7mu4$RqN4&ie zv>>_W_P(|veXdF-6Ma$vXVY2Fj>`s0uAtVZtK5+hMIxx9%~;ip%!|k$Sk3x-(V`>R zVBO3U{HrnIGT+d;Hdv?rh&ZugQmk_Ff0dHWJnj?SRle;p+-!p;_Tb<=tx5ncq9Q?~ zsa+6?2&DkN3|8fs@18IhiZ<`*Wk$p2@rD=o7~-tP8J*KwKvwj#Y{?=l($eNtXXO(` zdTo|ETAiETJpc*ocgxH>X z7j2iN*7>tHt8u~hq&a?rtxjh5g}!}fvVW~(dwL;HEcB&T2jvQOnVEFKV){_9V?d$ zUp>oy%hq9#RXpWVziB!2-N{bFsxqK_zztKj<5seRM$)|g-jL}?QI@%QU@XJnN7bIb z%8Ugkk1Y+qJU4p4Vo7=Jr8r+Zi7sAll!LG*1?$yg(6ERdgiFLeE=;>_uBDa46MegZ zbqZJJ?0rqHNb{I(0d_%+wo6OVdEKKY8hA|n%hz-HP3Bl_Bhq1Q~t7>iIgpYx!pr|M*AkrC+Rgmi;a(ycTq0)m7zk^&oP5T!e$yFofONJ}@&z0mW{J9Eu^-|RoUu5%3bUVE+Q zdG22}T`@4CEHOxrc3p1Bokljja+&vdCEA~f--~kMsLInHm2(A@&*&p7y2Z{@j<*{= z!;8#+7IeAmZ=)6RtmuH;BaC7_zl#6fi5}M z#domW&JB~K5qq6(rdA2Bj|Q_eIN2%9t-eWv!7Z^hj$gyG)Od8pPUn}eq5EfzGtApo ze3}sAVfey9rm%XRmDoJ$LTv~WU$0e*wE7f*P>2(@Tnv%jc0&91B%fi9ooqk|+x;ll zWsdP=ywl6wdEKS!;4ch`f}m@|_oaMs-ScG2)=RfikVVD*d!QXx6HS*U{z9AzW7nae z=JaIA-F#fKc zSO4-f)Wbz7OwKO_z9_)-u$rPHuQ$pq@j+q86kKYHS(~Ms!956(VDxsuUGed*o3H3h zE)^`W7^MfoM`7HW?P1~Dsk#pt^WrfU9zA*wesbj3h766n9WbSH^h--sg;?@A27Kv@ zV=g@CoZn8sxWv5hySH-%26BmG^_bAKt|ik-(%z}4f*7iiDG_{8!H zg^dBEKOTA#$W9<- z68nOYfi-yNOsCGTgZn&ffDmHB8#x@JL)#U^X{?fbsS^ka|H+wvIPPLe91f~F9p^Kd zxRrp$X5=;KeiL`b_VqpSreWIlD1ceogpUGS-dCAH6_18X@ak1F1{qzh+`9t(1&I=@ zm!%I1602&Ct9xn@=fx4($VI*AT+64RPx|LK>fEF_FUQ7Xg&9PGf+c6l?;!7Gp$A=< zae%K0uBV-a`@^N@K;3p}v-*xk1=SPL!vQ$}Y(noJkdO7TsT_GF-(@O(m%y56r;Ksr-4fmvh+CA)b z|2^<+JrKU3I!!rA)QO|5>9M$kZxto@h(xc^!y$4Xu!4--5I}aa!!c3@>UfX|{SH$E zxy&l-(y;%sf8J=$!)z@2k5v5+&(VZ@qWh&8VksCDzTTb-FLk)#eB6yb(8rEe{SrWf zv}wH-0b?z&J;p^0y@|#Bgx=<^&~80jBIB$5k$f|oNhV$(%Oags8z+d0Vh(piS8q6& zp|CrBvp`36?ArBY%TMd(DGo%+U_?|d1E4PI4RNYC=hw&%;;g(&(>T^Aa+LG@@w)%m z+c}@lBY-Y!_mWHptnjgItQKMfhgMLom`tn|2*5+|S6iMRuY1sq?)|FtT>)v22sOl- zX<+mHvY_r2uClwLQrI2(aco;ktQk~HpPqUVZnULA^k&9dF{$Isb@q1v{%-YUX$%~O z^QE)|Ro-*KsQ>h6fW_`y`zQ7kO@P#9H51PhGR04b$`R~boR%L0^vr~ZU()ix6Mg0S z)BT9~dY9VQ!9Z;CTK?w$4`!PKCFac6{)K##-#y`;{SPwyR8kkge3ShK^=y8rW^xOi z0*j&CUx(?gU*Dr&86RRZnThzOwk{b^>)xEGl#)EFC#*9vUArW zQaef3+-PcvfeQD=EK65v*9n-1) zy~_6Lbpyr!Bd9ET&Y&5FdE@{73D6z@IAj8vr|b$YnqS&>IA~p=#w$`M~r%Mr!WVZ5+_wI|M=?!a>+| zyudt~=t zvuK(sgT=xz_X|vqr_#iQ-Pdq_ZUMg~6EIO>H1RI-p7YI1=$rv`5lNuy zT(_wJHUi@PtM^;*WcUxh3pzVdP$E!8XubS|P;;KV)(|)ewO787yQGDt2<4>3M92;Z zZFoAb^i5wvsaORt%nf&{W?Ew@_%fb8{8ttTmqHAbF8(R;Za;USezW(KLQt*0K}KeI z-h$c>K;5*z;=5`PjQB%@PU7?4Ur<+ky{JoJa@V`d?5K0##IccKw0lB}9gp9^@d-4wF4q5sz zcE!HQeRHEgm5E0^kOx)4O+z=DcRppF@HXZXjb~s%P-uDGvn85Xx@y-=h6qQx1+DZF zz6@k(7@cR{?z2>X+tc%N)@nYDcn;u9qBqfcN$|kVbsK=_K@2i;`~h-FH*SGB(jS>B zQk62o*Pvn{T^9c7K1=8)u8!n)E+|HQ-&&XzO0m8o^IhCg?v*2os^AC+3zf;;cN!0Z zC&mNv1k4KY9S=5Z&WIgE;1OcJdUF4#cHC&A^AT44)H}0Ck&*2jzp+>^LaBfY)B$Y| zNEsq(-(Om?T-vaWkHqqyRrvav(-)5^y`LAjkW(O80Ghz#o`PmJ$$GlJ9s+M#lX1_d z=%HLMz9BZ#14S1g#jx!X0VQ4!ii*BXP}KQXwH5oyLbSd=ta+(cw=;kq-cs(H5q)#-$`!^_HXBz5BEnx69aO~+|mXWDFw7v)&n1A(i+Vv%M`C1;2LA} zTWAoDY*|yl))maEU7NLw7fn>yUYHRcU4}Mn6h|c3-i!0{y8Ex5;4~ZotJQW**cIrk zc_fQMagPm@KGSe@>mjq&9}LlIM-NUl27&0WWw91Nl~d)a8)JD3yC6n+8qPz?lZ~sp z{4;ZqUYvffvq=N)(9jaqJ-lR?Uy0$XdXRF19D8F)01Tk^LY}@?c>zn?ShiYwhXq;% znNQ@GGJW$-1$URex`1w?mnPDl+^e$MN-q+)JX_9y-{31tB`%qWR%!tiMxVcbGL!*| z?W~NprJ*vH-;2;N3DNM^)}6sm!y7#cxxKg(v&0*_Nycr1DrwRwbI1kND_H&IPRKYj zV4hFIog)|aO8p9|VEEC{!=wjM!)CAAJVko>+w|;&xLDT4Mq1C-p=c^$#8}x2g}mV5KrHA;QEb$gx|} zYaKCQie}4fE`%rw;t(2HfgM7Q7ayO3+QUAn65{1-=S6r9t^r30f*CttPqv1^V15sT zlBXCj=h#bx*;)hTbhLtT%Asd(qe97IZou3`p3q(d6yVv?3#oH&FVE>KQj*JTUrwH| zEoc|`@WXg0BO0e%oaJI+SqR6)u<&rX${kpSGJIF%D)HNaURA=F#Fga(G0oQi%ftLy z8&%Sij>PB!u5jxo8ggphmuF-J_I_YXprQ+rJ#`B{>rJ>{DAP0wR~)tCkck)v{T3^@ z;`&z*C(48Fuy5<0>ck_dE3~9V)~v!Jt~h;HYUI=8sruSzth!!!QTly&x8nb+AV|4b zTDBCVXd{QSZToMzhhFi_2d;eHJy8urmn>#0oVde+ZzygT^Ml)J`VKq=p;c}EAdK{7 z$o`m9vELliJ=frL*N-q2 z3?7#ex;SM$S=#UkUE+UeQAukrbIM)vZFUOJfp~T^2yV@0kgL)HX!}%4AtYo(;2rNu zQSD*)FL;lN#@x`C$u2T;D$DHAc0aNQ`9w(_YvA&&o*4O1n_C}kgIv1>+~~Bx z5OWCQCVQ8O!c%hzqc&@dxGkDnhW$MMp0yPA(@IZt^ym+HD=csU zLwKk1{%uPB3>x!G!OE%!7+DE5K6yCHqz)5j!U8+*-prc(DhOtX$F>%4fv8Fxk9h*q zqI4zHt=o*d?xd}Tw`v~06?9~Os?G&##V5JDZGndI+)U0r`;N3x90U){A`w6D5Z!kFlp}99ldCPnZPWOqSaMHz@nCD}*T8fvGU0*Y7wvu(cZc$#` z?E~kBv=2veom+N5m@Y_%?M~2{+5FBUwOkY~WX!vEX&dAZQR6ofz*)WXLp(E2sPHTB zp&48k1jFp3!lBsq?Z6@yjl=jnN-)lCnwnBGf~)d;1K}-+ppw<0gzhvTU}hB^coyxW zFzu()Lok_MNO%_%hA3^2h#|(2+X^8!mNpk)^`RHv&ACg;kv@?QYDoIYf zkNz*Ur2hMrN_e(E5yG7&2k!70L<|D5c%V^Fmr| z?5=fJR15$oY0AV!j(HPl85oPNVWZAaw!2n#rR3UU#miIAe=-%$69x<{o})QvH{L(T zJk|9a(byY`-#s8;@3OjKls8s=g{H(FgP70Z>mE}V(8nQWI$S~hi_|y^^-A~_?>qO? zKvH8U?ojk;AJm<_j|kgv;g@Y|nr z46Fl>3I&!rfVlcZ?t_FFhZ%J_p$mpB*oAQow$}#=%LqS)2OI(9VFVX0c0jFJ9$lS?N>D+Yvk)U zKf5kZd@_m)LXIa1m!_!=+M@bmd;>zb^mMK5qN{aG)u4{?(~r8kPYRc;dS0JtkA0t~ z&FLryD9q;rvU*(K-nU4?-a5<-sgjXaS;|LKkH@agTpi+lmDkGe;4{Ou`Q7ED#hRUu z=Trbm(wNf!5@S^%?*<9b!9==bqpO%#i1gbfX6(q$ZtGdKC@8*9(jW+E(S=OMBqzFN zz%%=HbU&3JZqZm$i!(G-;Eyb^$9_|p;|o={>-i^39+9i~`1r62Zzhz9Iljxi+ci22 zy;w1n?q@b~Z-+OWd>4r>faY4cMX(svSJ*=Syd>PEW6eZd2{hW|AMyMK-VyU)fAOcu zbfBPA7tqzj(Y!O+M6G@uU=3NOK&*#+bq%5f7Z$Yv{v(3;A4`xE%_+s{k`z6xt)pQ6 zZB6cP&-tSBp}o%6+B+4g9D6{p^OZJri2c5jlDphJ#PUbt-&y4-ep9>MGReo@o zsJ~_GRg_58_eYu;i;Nk@f#)um)nk;o@}HguV_oMsj>y68m3|+yn~2HkUK~zbUeevG zj#X3C{Pt7WFte&?McwnlQ^&tU+K9OwjRqbN0+9&sBK6pW!T)eFzPQo})7wVl)Fs}MRw{xRZiCDdQ+cL+zOo8er#hmyn5x%0 zwk%~trk<{nlO4c6^K6C!MbrOb7f$2@n)KJz>&SD+<5GWI4aaNN5zpdFE+t*k;WMl9 zxaj;!@{r6f@G%2NXh?Xkz&6vx234KGj=}NW372=vg_ZUiM)6dS3zz!1af+o`V$l@I zZ^FWVeKSr@-a1*Ux_Cl1!1HTC3vl7B;azu!4c3}2o-CMUO!j8(oFFZ7$45Il;QaS9 zS$@xzbmKM)IX$?P_FY{Xig6pr+9S4E2}e;(Q{H++IM|&Sw;C>JFT8z*bq&+c)yO)y z(5^)Z_L6mNzh~~ZpBP_eu94&P)p{3BLLhY>-!7Ci z)MF<&k!cw8Y7*T}ue&P-+Z1M+5*{Z{zh}0Q-fmlW^2k7clE!KBs~ig+4ykAiIcsH> za6o5~*u`?{#d&or<9>Gqw~?5?9S98VS_Q)kJHCQd|kZ4 zjZ^tV>ICR};au?k(KECLkzo#Y!X_2}3UAJ|3#9#Jq^vdBH`U-CLI`9!v7sc{)Q$_w zQM?YdzxE=9J=XJ?w_HO!CAo?&&&x-Sn$$mazrFS3g@LC~H;C%e)zuR0i2|6`$<&n- zo(Q4k4eP!QxW7<)p;UqB!LX^|x?B#_t4Mye=z%a2OTr6=UZp_YNI1Uqlcl!xYumWFJfw6*yGFqT@9fvk05qEbz?<+hMlb& z=385Op1(+B#&~rKsF~6)h?tVLpP%Hj4ZhDhUE-S|VhTG|Zk9Sx#Y}zyB6nLXz#w@_0^2 zwm(+Xnee1KVv}0)3LEUMN5CHh%h#kC`q09J^7|5H%A@ zU(R1~DL!PTZAcV#6tdGIN|;$dkKmChrT~5fAwIhDrki?SA&>kiIFp&6Ej&6gsF@?lS75$;vb{3OusD#TqE|LFX@CU-RtVS=8Uap4 zpQ3%JiocHF-a$L)rwazOPb-;tDmwUU2LSZ^_hrCA0V-9IvagANCd}ER`_OYG!V(O| zQBm?dZL#}+NzFjemfUzDq{bpx^}^e@es1XwfYLH@nR7<~&QQkPw~{dzm<&@(2UQ&FR?8|F%y3DVP-g!Kts1elx*~QDeNDGLG(9Om zF!vC+P!C+Bh_%xXCeGNM12}%(KZ_aO1!Zy+0JwXSkFL*kSTbrB$w_Mw)|cg&%mX-jKZxQmPAo`ZNwwj`%#lG$`9j)4JM3+hgp}@-hwzdCoM`x~p5!B*DkAaCnevn^awWYKogg$kX*a@?wMSZ;V_SHU&wu%l#B0pSiQfq&uAHRS@Y6gYWdm~1`%8G$> zy-x-%%ED-A;Zuk#v!%aYbB{$8&Q?l%Z|4#omd!?)2H&+H_c$_5d){SAKa2r+zUESUj0Yy0THsz7s0n&F(%WgbTbn(WUZ z*(GcJO&^-NhE#YOR3vAWF5c3y3YJN5!?){*pM2;0eR#S>qGVyVN6z@2DbqU)9ouJW zOCb|SXCv{`&0a+KyCzXos1d+ix|AC7tm)C=Er=`Yo9%!$$|9@{vNqLoWl zMGwH0+a!vwMTxi&;AsA=>5@KepMSN~`&wZfe!CUed&nTPF5x^|HarU=_R?EDR1unq z#}_J_?00`prfaOga@Tq-=;4{W2)_960*CO838q{GXXQp$!nQ5}VF(?I0f>mULW5^9 z8*F7RV9;1t&VycAPT`P8T(f!rDlsN^ZvvjMJ`*CF9^t@+o;@i_K)%*YDy!h9EG(B| z2oNnN)=gSnnb;g4Y0?R|{y?sN)$iHwy45&J^;UEe4#&}Yk-+fLN?VF&5= zT)f*Ro91$!$FZqtd(om)W~|r8l(s3^H1B|s>ep=@x-gZa85K3Mwly@RR#IEaOXT*e zr0Qmhj{TzN)WM!+Uyg1#?jJ%PXx^OWx?ahX-l@55C&w!j4FY}-I);W?ijZC7Mkfh7 zWcn{u@FbspGn0n#2liKcxs~rw<>)Lw(!zg-&*F@?9Qrn&C1Qi8z>tYyYw>2dj==7d z;{f*BC%Fw*n^zzdP&O}0)hd!JNd zNmX8M8^nGIiQY)T?Ya$pl6~d^`Q6C!s1l|HClVFCER3FizazI9e3}70wgvSiy!&tl3tXFN9&byZb(h*lnctO!wuzXH~Dyq{&~O zuXDQ;A!s+SJiskCrz#@<}#VZF%VY?&B9ulkLggBC%dyT^c|) zJthkoJBKOR;cP0Aui?~)Qt}Clu}GeA^`{zDsYu2o_sGAUpn!CY)N;JVODH$PJRokwW$ zvpYIWMUm?-ZB)}Gp}<)I83J3OKbjR}iuMF8iicnYg6|5Br_{!4uTz)^QaNJakeo)t zMIq+*5!vly86jcTp#4glu>cl=s4eKL!p%b|TV?0?Deg6v#|$N>Al1foRI)h^UJPfF zk15K||G}8W#uS`DPTe%;R;Chv?!PN3dTHw-I)y&AdBho8#=NL7wd=bbS@S?8OT91V zvUH)@HXBKgP28FdZ>)CUUVdfyVE9b?>V$o9D(+mK)d~(({(5xXB3pBZD}f}64|8(e z#i`sY@7GxE{10d_j{>R=FHN)fo5@lCUl4cwCk2;#kyatu+`~~lDsFA<%11?d)QLSU zXwD?x-pfO}>v?8ln>pe^&*d32#7A^2CF47MTSD|2ntu;yM-&>lFnBb((Zojc)5kCS zaGnHKgjVF_q7IrlIod?X6R>1AHfEaiWRm?tkNJ6T^KIj4&@$SWR43{}QrBm0G)Y-L zCfW1_gg$9W?CE;Pg=) zL02h9C6!H7#}a_M_?xHT?$lZO$botA(>mJc&Z>Mj&RGw-8e2BAvyF+>4o8^$4R)<8 zms@l!ULKfNX*UFpHWjw&trl??=0CTuq30@WoHU2jTINw9D|_rWSk~W!*x5(RF3)&rc-O+(Q;n_3;gIjF3i@fNkyMNwCF^@WPjTY&h!0Mqyub6rVjAxgfvnK9y9#F+h98SI*b&EMy zKGU~liqfMF9<0P`imMqAceCa3nHFp*6eJ5{^S21Q{3daFaB7Hc>qtd^X`OxcEJm{1 z;um?7jwhdZ1YJBLXHfNjo-2N^sHLB*BUJFm^VL1ozZZ0SUw(Oq6eAqDLQYBVcxVAI zk7~eEBE7GM?;F7on8HR9RdxYuh2pB}V^Act(yiM4>J)N2-ZR=tH#ntFpTRRXw;znj zLLAUze=d# zPLUeKFOrkEN-w>}(H`f$Z165$aCGLo)wRblcGhRm;XRu_M9;Z01Bl}8fXB51I=bNS&Wt zaSJ@pfn8=MT>e)0z9WX_SI_h=Q7-j1Q3e5lmZ2s|}PHdY0EacJ3 zeY_88O|6!fv>hff`ffTvu$AHa)M|__7d-c@-C9@(+J~=d{&osdPTRWNB4$YcJ# zDu_I2laSW0@{IN~z|ILZcdbiSfI324tm#qsNgYl$_sCkFIUWk~#&Yy|&W;n%D$Gd) zN1xy_r5Ka8O2lF0xqXeAn4a;%)%g7|DIt_eL)o8L-(SZbbhh@vRSs7%aYz-PO;E>s zdeCU^Uf~dW)ne?F$jcEYz>i3FOGNcDFXZX^ikZw%bT&!3SyYDnZ(reWTOHB=?JLAa zv&1bV9p>9AJm8gX*o-qOYh~d%-Lg1`r#26-x`lp_nTqLeKbl0@xq0-KT=?2EN*&9G z&!|Wkp`AlsZTxBS!3uyIO7kBMl0r>-pLZ2+f3*!pwyZhsPNvFi9S_e^=8LOEjOy-h zZjNu2Gs=o<_ZSbcWtHaLb`v8#c=0xm{*#<^7&?(S*?fQ(O`q|>dNDhHR}Hz-+k1QmuN`y=dsp!);|#*AsDHm3c}=buG* zv7?X_;l9VCOdR+SjvHy1fm|8uvpHac&!D}L{@l5>17Sqgum5i;ug zqAOl5|4fd0`TRicAmB?nEP?DNk838pcli~sl9O1yeil;<@dT;%35#A@5O1NRpwH-m zMmRa8&x1I52%1cS>fbfO%fyw%03{SPlzFiWZ%vcn;zF+1)2c~-Lx&{V?rVQAbmq*i z%|b}oGZByx8C?Ap7?{HJp8fLU4EKtm$SQ5CI*RO_GOEl8UWhiBQ zIhFz1&(j_9Sr%R`AKa0TTKE!}&lg@T?H%GWF?;fEdf+%umqccR@d9662xXZ$9?kg? zzh^oVT(xdO+Eq`pNEM?+?GsC~+j*2F6!_-r`!}O7QS65f(5HC(s zt*rI&gpsyQ$&pMU$=A#thS_a;A&NHidei~3wgLQgR2SNQtTO;1*O)DkAy zXED-wF7uxphzpf`N$_j4L? zZPlCKYa39RE|Cvy&xvt|&RtGZEqP5zR;oI*Zp=AB^}=tO`cc;dg-p~kL1Ph3B^mvV!;JIGFO zHk$Yak?)%gI>%I!z+N(8SQcHDP)1=ksa@R5(eBw_iVk5K1aghD>T#;~JPab_sJywo)RrG_~^ zy24j6l(v-)Pk)ZRiYGd^T@h|R^U3l#YUI{@&N^3*|DKo7b?+<0FSSoz{R=U#s~(;i zs#rWrr*=1x@FV06{Qn7b|EPEWzj7Q{G=B>pk`ERA!dJ`X*JjSP^XN@ieZqXt=+9pT zdGc&^xFsp?)|}D0&FXbFTW5=6l*ogjdkI+_u4d_GAK3BlG=HAjVGO408E7Q5jrxnt z4z9N;SZfFbkLgX%xaaUuqO-nO7==r&F0O>|=VXTLthAb5xM6U9&F1-u`}%5lrT*SX z+IoA@j(*pzTK$%#1{7Du)?b|W=Ga|lDvOXZ&gZclE2bF^9+?=)ot_5{uff2VQk_e$|6L#!_)4m;PMkKN_yP`c!Ej?K1T&A2;JU+!&vb9~5H=#c2o zmXIBtA3u@Fd;>iLR8&h>qb1yqxq* z1Vkm|eVGXe=;M-?%k+r556QYfI;D`jF0;X}LLkAVfo%D3^$OtbkS%ej#6BYvPIEA? zPz|C}H;eZdGLY0v$oG7%qt?0zaRNw&n$nHBA3svRLKv7PJon_QWg7vPJG z;$W?};B(jJ_#zYQds#uRDVPf4_z?A(19Ub*+#j3?6k9-hIE*b}1!FStfTpd#^+eSf z_8<2Ufg=Sp#npq-w(aBjNHMP2;jPtiovdLCfL`gb-IsqK{FOs8a#;X4_5gvpp)P3z zTjH9DTFT4SF>{FQ==$rmcOd0`*@`VOp+a;j5{6W?zrbY@Wb)01jvc?1oA*Okzd7lu1%dvGh-R(^M3@ zN-%nG9C|PC&okIabK8qiea%_FtNpF~!TQEy8$X)YJiKQV z%ed3#5kZ_59w_D!L7aLeRGSaQNZK_~MWj|jB#W{;Q>`~n1dwKpf1tL%pxP;;@&`;^ zy{T?l3>}OQ5YxMfYk2pe0pYuzoCM#y9`keOf3kweNV0V+eCre#Wm zM$JdD$uv#9F;8BtkxCx^-GGu0=ETvtt3-b*oMhacNlLb%DV#-FJi#!(_0wO{@K_hE zkr%)cENI*Nv6;Jdp7NVyf2Q@f>G%^$yb$Y?Mo!^_Ml2Tp(48-3bRB}7azq8hbXePq zeKiSFC=fUOCsvTxW%ny0<Y zIP>nOPJ$oNeMuyHqMIdBXMRC!WcC%x9?gI<`^1*cU@;@BMyFHm-O8n(edpaSe|(dv z19lFNNS&9s2?h4l=ys;r*E>IKpzUhFF*aRJ=tYi8 z{Y0*ZVET$)#XQn}d7X9^Y8E=8R;4L)k!H3dbkF;{WSy7v%(rXjn9?Qtc9YhJBW0;NYR!}L zR6JNAKNop{%F?uuq{4mx*pvlL2|OEvA6ev(AdrtLx?!WEZL;FZQy2zX8#rU z@Y}%@_oiFH%JkY6OzUY*!qnD3 zO=XI4%PN;T-&#Peqzw>Ik>m-EvDwCtW0sCyrQ8mrqa4t5_T-rj_6=fGdw!PJI{7gC z;JRZOkB&1U)PdKr9$JHAYNxTIk};yTLD-Jif0TB$LO^{B z;_17T&SkeFj}lsWY&`5%`{kB|6}UYMEuTMOwWBISV)^9eVDVu>@|sW8S=YD1J0Q$Z z4Ys-GUX)d!xf;Ke_d5!a@}sYo$WBSe?LyvX^i9dj!y1{YthV%gmEHd^;XdW|T1lyX z+wcmDs`vQYXEf5kDExBk%B+3K7ZSDP2~kl>m2j-&hi^JXqu;2g>1R-9@oJKldlox#9P3;G=)DrW3%Pf20uq!DRIAa!1Fu!Q`cUuL|(lYRSAVT+|= zY0^&uT5%QqS{RL>N~0andKH`gv3f^bVE-4zhQ?b6y%DnKzYV#vgm>4WFTM$3twH+x zbX5He!WOm$o}caja#0et6eF)+8YOmVzGU=xUH)w9h+>@OfmKZoN0rnyz#)^5)fYWs zzLe0^>{hXP9dcw)?cnY}E{wu6(@t6Bwx*exF&6ggp+SpGeMv6DvUHYPDSJ_PxOTuS zAx}l>{xH0JE7MQaSbQu}!RGF@rrjefbg3w2E5;4P9qsyO8Gc_DeBTOpZ2V9rN`__s z;cVzH7A+f@(1;3E2Irj@%_f3Lqr;=Nb=@=ZM5O)0d`zQ$8^P@pNHPCScgITpii6yVfi z2;*oQl_+paiY?hxQsIqYX1NP&M+8vUsz^&C#M%XAs^MZb)u=ur$T0(_Li)E$w|IB6 zAPchb91h=Sbz3zp%3MY_ESC3NPMfLfWXEJBMpGxZp;N@ZDN`jUZgXi!K}qfzx8gev zlV0&U-rjFAAP&JvuUP;JoE3J3gSob78lYZ6T=v#KB^)Q8ISs~h7v0y3c7r)OA7}ZN z6VE}5q{`tjcn0J-w4MeXF8(@^$eAQ-oUtZrEL%3BY#Hlgdv(mhwiC^QE@b2sPs#|X zVC}bLEoNwJ8~D(ATR_>3-}Oz*Xt^?;8>iM6w_9l2N^#|e^R?!@KHKur_v^4 zy(6t%a%s?C@JL3#iH~ZYbAJ+C8bT;8a9gqB^MNr8C#@eho)PxuK3CD3*ayvn6l7oZ zemCYaaKMi_(bKK$?3Ylh0 zbJ$7_?xrYFY<&#Hm?(Jy07u~jLO0E;xJ|wR^!FPInqWj{^ebBUQkuZIc6AIC+)3~R| z_N?`uok|<_EpG8>!IMJ;Bo57St4}4wURth> zc!rk#R=SEo-CrwW@_uc_Vu99zK?+JkZ9gMl&^5(ESkDvBQYCX6<1eOr7a%_|Y%b1O2J!TG6?vdakM|e*_B;2pK-n}K zgSxj0J{Q}O(Jhb)eAKWg_GB7=Pdmy388tTpj&W<6Q{?{emj3hTjU3#(aLBR+b_4Ed`$3dr-o0#_|0T`Pt@b`A!7io#D3MT*wgW`W%88CB%;$2n+u<-e-)geS}8NH=#}omYcuoS zkC0sqz8e-grS#B4Fa<7PT=?Zdx|CHocAD4>9bxe1Akr%c_|2B?WT|8@z!<)G@gn>K zb#Vd`=u)Q#egXP1klQP?&87TtYX$-HEddiF8v0H{&tkOa%su|D!%_N}50NmdZ$4|q z;yWXPt1AUIMgzc!7d*1RLGz~1kNWy_i(JUyd)l_Wfo?HkW z{^fZO&S9h|-Jj-t(bn>?ioN?+7XX({4$d6lTK*6%IiI0ZS<&18Sh#|*0L1RzSH0Iw zxVHtmxllk7pE4029>BrMx8&P{-Urn%6r`MiqnQ`97~u+g`M&20=g4P)ZF9S`#wgnuky6XMOgKT^*O;z@ zOn{8raUF&D!_^BdvTD}85$7p3hA~8Fz8o@`n_8y6I>8YL1GXl$OiXI{cXje40}*hl zwv(KcG{i;kicN8>z6oK&IB75@L>oo}ceUcQY+dhWC_gZw)ES>f=h1*GX-T5B4wfpW`Ld$G=1ooZLTo%wer_o;t!eo>w9B#^u zys;;@qnSg&HO^IR;TOtmv2y89#x!MdfXTxykUIq(5P!fYRJP=DAd}W<9R8!9nB2W} zg*^G3AlXjGTzAqAnaxS`IaKyz>9H7#?<=lexPy<2IvOmWy9;g)>e0LZcj%>3QtYrr zsWj6nNA`9Z!Fp}_7~m44oc?kJ3H;#=X}8kvm~qr8pQu0HOE;W6R3{K_zH_L z(SI@xm(N}@1ND1tj16X!cL%Uw@aT-YZ1_I~6}jGz_t)zo)!MI0Vx$Q6nm(sB{2owx zFnXhxzh=ET*KtvQ-*(s^NmIOa0nuBXrE$(*frBN%8xJwhY0HU6br&@W2u@2h!mH}u zT`zjg8s{)|iJh_wM6Lc0FDSK~kA}do{n#oYa5P@L$x*-2A!sQ>MZoWr_tX7TsrF+e4SRemydVUykA1Lsz7h_B~<#bL07FYk~=2N^50rM5EyD!{dGLQ zIXlQ@zYw}lO8c<4WDOriz?TVbg6awVKI2zMSEmbJTeO0dH)FmZR} zVoY!EE2#;6@HVIWSNU`Tq(ga>#f4#k-FoenT>!4&j(^WLm^3&p|1X^&+V^6){&5>N zCcPAs>R(m&=6aE;Vh=<&vtPbR`?>kThm~A>`iiFHTwIxrIGImVD8FyNEJ8x;Fh;lT zwp+CG@;IKoTPMggb4k2u3pzjs7B`Dt1$*1Cv)sc;S+%+HC=34)`hM);+G((5Gy~ET zJ=cC8Ne}d%+SGK~-!$HeM!ejxTc&iM`4~7{VD4-|bf6D!u0%`t(i11{~!}}t_!?7Fd(;7uxjzw|}62Bd;qy6tBo@UO9%?>HVqmPk(c80Pz!VT)6v(fHda zUB6eDpuFQ#Q3$AXc=U#qeGCaVH1r-9S$6sQ@InL@b5RwPM##QAOM|l|(zOC7q_Bt8 z&t)7jWoggRz+@b>@?a5V#Fg6i_~+*fBxmt0=wmZ?Ckw&noUYDG3b7KNYG*yA2RTH! zW>YR4KImo(wmJ}s_R&Q)!cXAd8nNiXdda0i5D(i)=11NyXGr2YqD65cW+nrgQ8%1OoBAv!O0`Tj@tP&&7R~CK`Va0 zGH%FXu$?19E)C>Xq}Pl*WT>g~Puh1qtlKk#Au=6}lik63Wl#`7q!HdlqM1Mo7PR@? z7i*=Abv%cBK;u$s*{ve0+341RsFAzJ>Ot9Wl6BqhA1G&AFYhgR%(ERgU9y?%5k?=k z+|Y0kl`@Jhr+pmjaIjpcw77=M^Z9r3eyzmIJ&I+wZ&oj~zgS%pD{D73HFpe=cq|5y z&74bC99=&ybzhaPVP)31hken9`k?Ep8^c(&X_&CVdHsj)G{VgBGK}-L2Hv8-!q;xl zjgm;GbGE9xh$K`coHt^|mivJ9!0y>aFY7fRl&D~_knWO3MWnl1R9Zl3>68)>1PN)R zrBk}Q5u}7O7rNiy_kL%bF}`#DInQv9vG>@*c-C6?y6-u!d4*PB&~M2|QTZ=FEL^od zd6X@Q_Dv%)aTe8|sV-YLzSvyA#G^~!A!mwOzm_>C7Q2}#S+j00#GUe)+`jj_6pwdM z;$!2GH~;^)pE<_y(;JwjcG7j^pnhn zd+Lqoh+%TiHkL>$?ybUCkQW#|_p0>WjM%bYoMna7Z{1Iiy^rGJK`$RSi91buL4Im! zcJuNdc_1YIQn!Yq@c}barR9Jy`Zl3yl8s0q`IrVXlX+Mlc#98ok$O~LAeaJf#iPk} z#T%RWrVZN>tt&G5^v-ePA83vuW?u;&BWH;MzGAJ0;=90Y$?g@L*{Kv|wwuM)vOr85 z+`QAVO?j=dxWTNok#XerHCZE}rS$jmJl=66-y1Z7K(wshT<-84O(x){lUqFZI9E&Q zprZ!)YZN<`!KW^7l3oyWQ8k;8)|!xMA`)uXt~beg=l(W!QZ_C$D5$Uzzr3JBDqY5VIVgNLps%cKoLt@Yz@=b83=9r0abyF|^EeEL zE{BCXnH-WoQ%`x91AU|E4lWR&v<7fYW62?IgyrHA;6W8mh7geL=S$%5|G)ZE?AHqEVpV z>|yINyw1}TNWS~&OqspF#iipl2hPGXq2ZKBwB8FzsSkrXotQ!=T$rZ-g;>B5c9)%^TnZT#y{e4y;FIT8#< z;)!qGG-k#}WLFc5Qku93Cs1E;^9j`c5qCajz%ks4Uy$uSEJ)ann5C=U+2A_38g^#(Q{ad>0XPWv4^!RX3(*Cjt|bens{a z-#Bz80|tNQ{YO-A;B*u&8EKksuj*_@jIy;c9UxoRK4qt#_2-(p8V^q~{L>=k&S$w) z4l6geGm7fh@4I1-bN*|kX}azcNMm19yi1v%()nI*BI)iUzo|L*8AF|T$z?aguUIOF zzBJg*-WOxHP%#JQZ{&TdH^j}f-f4Q^$8Fu6&OYYt?KuV*GixSpipdTnV-S4dlw*N< zcl(S1V&oJfy_UKxkkl^Edv!j)5&tQ@F3XYyOq80SR~MI&UN|nLwc)Hzr2)))sI%)l zp#U%hw%^LvxJ>F{!8f_ra!Aa$&yO0^hWlwR30NjBB_7Q#G`!p>!{?vgAx<>ctl6aD zI<7-6*cWA?ng0e}mno+sDM9G_v|k3$!E7gX_FI8R8thk7s`g2>x4-Gx#Y$LSfZRYo>i)W2=Doq{+JDZ@oU)p;iTjs$@O2Tvdyrau^-jTz`e3@Ntc< zaTT}KZ-=@)=PQ^YcK>^{JRnVoSE#ID>VBvEtF4YrcAn&DE7cawYg?VM9r_UwLA-{C zGFdcFE4FT8Dcs+}S15ihdcpL!U~E__D#>i|^g3rqT-5)VY$V<{SK#RS?IZm4n-336*&fj5POdp>f436M#3C z9G|!0J0@o~AWs;(26DwbJ{vYGyH2xKV2$@4Uxy!h>Y;esrq=sk(3dt_x}i-sOw( z=Y8xr_c0Xjuab^Wep-E=&rH}3`&FT3YjKsm+raY64=d+wRINaRkM?FQcel=8LCda2 z`PFN+%ZJ~BRxjSto5)>m8=2G#5AWoJ@Eip5oFIEO;#_>Q;VNb%EvrBIgzW2Z!(tX^ zibUIFM*_5q6Zx;}?khRN-&BshZ(+*x{wCAgE!C@dPR<=16ARun4%`n|jGus9U+qcA z=Dn$I0%8T_HH99H!Oq*ZPPy)W-FNQ}yMag6lV%l_p9SJ}k3NoG zwP|of6e2lN^j8^fqB@tbnpS~!KON)BH}d5W=`V^bgft6J+!(S@B!bz$a9PYZLG!UP2uHx3y6iKu3HWQSu(^^bxScwd2uNPy7-($mA|psZx>PWlG)N7@ zs|g6wvoC0DoPZp={G(C>{potlR7zvp-*`lRodTThhnzN^)Kd03Eee zY*kMKGEeg3tBlxdKE>fbCE{5;FIft*CSHg&^pozg9wVjk+$8aj@E!IvOOPag6aK2K z5(p)x4@_UD?Y+RW;`;ekY?4vHh7*2XEpxDbp@zfb@P`Opjq{{cwqJ! z$Pd|x_tafe+-{s|Ezd9L1XlW}OGzFhc8d;3Du+W-y{9{nHPpEGG3h9`2)4a}tDv@S z^aefH;NonxW)kASvR5rUl9o!mdO2a;(U#%E-;T9|YYO_44RoZ`E%F>MhGfa*Q`B>K z)j2KAo`geh!r3g!TrffHP1UMlUFD{sp)9tEyPU9sHrBE^J2zCmMf=zHG21fP4BN6M z#RY4t2zGF_!p8xW*RpAJO-N*S*i>);%|DsFtst1=bh>nGx^e2V`l>m+4@i#s0x09k z<)t}vMd=5Px7hAsu*Me`_H8%ee7k|dmDo>lNgPx6vC?GVc!)hW1nu!&VHNb&e_OsC zS7$XZO`BcVfuQmchsi;B6Z|AOBvFPZ2ivxgORDxmgx2rZWwDK|;cao>Wyc)EtV}so zEPz908#PNqlwfcw8qvAwsaB#ia5H3G+dWFIoANOZ!^moELXk98t3=r~i#z8kb+=v0 z6SS<_8~j8LI=2W{XN3oIS3__8LbSYez8`IF_fqDvrtS^N3=&@S458ivL$RFa30Zi} zPWD_$UjCT zd<~U$$A35c*@*hC7q!c?IVzW8(=WAbg+->a^vfsv`nGr7uC|ihxbtHNFFMXm_N}m! z?pg(YG3=PO5an?Q?{z<@%ri0&!R^;^a8QGpGvkUIfEZLjEh@5KR_2sLt{3?LuO%*1 zzO{|ODol&{_g&T!{m6k`SD8c71%~-DS+4`><%(r8m&209xjGUVX?Z(&j+xn6HJ?#L zeGWq~Taf6)+Tp^hqK^=^XyNYX__v4o1e5)%-acs}CRCV@paYpz8s@{!kMEgxotopO z(XTQSQ;;`T-u`S98hMpWtMQs)2 zf3}{k2U-h&mD2xPy3yg6^K>KOf06jlpn5q3(4Ff3ef9q(5Jw8!HNn9Tj9yy7kTp|p zL=iILkjaVbp(w!r;r2EjkoRl|?n65O1WP04b(?n*L5~*+d$=^*;tuK?q&&7_O>c4m!Jf12N-Q&Q`=x{{*T*b%8VA0lAI68PuUJ&!Y2XDWGW<> z3h>r;i14@v{+Ve_EG z(c(}pX}|;>3-eMr0+xa!4ut3f&CcOEJb0&N$LVQ6mmQA^A6{yAgA2 zEftaO2W;_^W}?llPzX8O`X3s*f5?4uomH0cMz6te&-1A7jxRwx$C0HERH*7P8D3|nrvHWh)?%@~ zK|Cjczs3Qq4+qOz{!TC~{Np$&GxdBj3u3)({#WU?DPJjD~v0tkgJ z49fn(&Csx@x;{w^QCz+F8l^ynYh9S;ca^*w*Y-LHiIrgX3O;_2#`Xr@%EVFzP)cg% zA%@XhqPR#Bv@>+99oa2NocG#Td0)KrC)fi1ljogUTJsnNPU3Lxy@98dYhvyOuHRw()zP*R| zw2o#fIiy0c|FuI+T=WN2i_OA$h zF6Rsq!awyfx>o6B%QiJkqV_VIS=CkI;_9NoAa(cuMAkH9DW$2J#eye-ob7_Fvqd8? z>E>ZZg}4bK@_BkBPxy!o3n+E1;DX11xCCULq{QuCvpA9n--k$;HNZmE^Lh~_PAd$2 zAe=R?80eJDKu%*3#XSMMpce+_c63MttqN21!BacB3tE;aZ32g|*gCFx0Jg2<($YpU zybscH@GeqO4H77L*yd+^-G9)h?o+7ftxLRz&8>x~%kzIXG-+(eCvM2*+*x4%oZ&o6 zPp!R1&NiQSXj>m2Ifyd(;8C{n!|`Wnqwf(wQMuGoSMB;MC%a^4+3i7>V zsZwXgeG{D~?(0bM44owzk|Q(c?k@^f3aUfO-w42ZBexo@nVBbx8*3jlwK?`8{9`$) z*#&){tVvcE4Mtxu$t zUeGudxuD($L#p~zSYYB8r!zvIML zGsTd1vkpJi%kZE|nK4_Qtf?^#_Qm)lIZ|p>(3IIQ{P@M$E1Sl#2Pn8-&L^#~cG|&> zV(vqnCEMcN2eBF^&pfW-Uv1hshD}OMhX0KmfhAT2nEK^LoyTFuHt{O;ydSGzl;5S$ znn=0Wsb}KLZw-)Wtcuj~963!h@w13ou&0Jk3l2PU<&&$2&;c4QTiki}xFIzxPnP6x zGS5eBzbmX%aD>ig;py@%EhcK3F?X!w5FEM($lR5a@E9BfI?B^7E%o|O%H=zdCeK`9{3v)Zb%`@Ln&fq^Y~W>P zr`j)5Ts_2BnPWepo|OVi`&frqll-;M%joE2AHs@R*knKNz?I6Jr!q@XBoHuaQ6T}q zc&>=W3lvm*YZZ(Yhg+cL2!~Nzj>xK6v`I^=hzxD-ueG z;6-GvOBAr6M)6@jWG3(9cjg2(wF7uPW?=6)@m3RzaoMRHP%;I?;!b1*d}{+e%(GD5_Er=Erkm z%1V#^t0uvg`B~kfjhUR!^=$2TpTICrbslfRGZ3e#15<+L?7-!tuomCnUGAi|jf?pk z`CF6%{=4K6Ycy%(6(VcvTss_V3^@AXa!-dmZ{JuTGVhOQ%xe4pDQ;q0qLW$W>4%6E@#FN5PChO#Z*+=jeh@l8zG5)IUFVxg& zJ6gr61+Q?Wq*tkl)gniAog%sq#wUPx-czKc&{NL@%-5GN$aMb6B#EGw!7q_tGb&|C zB-ZMBLc*{_X(nt|XI$3dC&{dO<*5)Di4QzqI<(&j)o&&)8<+o6JN@*Hv{DKb`lLLu z+N-glt*U_PltYESd8xQnT~n(hi|)tFX?XUmQ24FuzMi7FRPOfQnrZSmn3(Jr)!oWG z4j&VW-7-+U5VZ;x8c3jLFy3PNH*;2i< zR}p9tOh_=Cj$H@m%2%e!D$cS-e7Z0|HIjEiw4E^-nnXU+F`vUBR|0LODxF8Ox6gkff3($M9`nI*yN$?)Cc-)`8ZO((?0s%4_!Ak_ZPiv z=YDGPgy)rw9n870?fO&%;8`0*wP)QAZC~QaH5~e39>#gMRL6FGPdVke8xberxKhWw z`A3rP^X<{OHSdzY-ln_2au*+=8X%U>sQS&pKVf{40X|VVk-gxn-OomNliWZ)#kT&X zr48XV^2jUt?%O`51FyJ&4$V0iN1;Tq3l@uQV8S@iAy{!O6_YHgWHKU+4Q+g?8xLo@ zR-0lPM%Rz}mOKghPX|D6s*0k7a0EHNECR3N(IlfY&p%CD_4hT#=RigJE`0#6g8r$Z zyLlgCQ`2-U7kHLA-NIY~m^1!?w^g4#?shVpaQKDWAs*kC4$n5d&cY#Z_x;%&+H|6w;Fph5eCys1))zs&9of;C6!#kw+$thL9D+HEpcCYuiKkn5da z@%f^b_-3an?{-g)(Ej~o+CB4t4^jW52#LCA%(zx_@xyL$CI zU^2{(#b^`aY#Oov$AnyWV9)TUO zN0EY7F&zrPUhpGC;yA&uNw32SV5TFPi0d6OtfC&2*)U2_g=z&TzldQxzO%hFZBzsDS6doFfdj zglrZ!v(o=c{KdU>A`cL0hF+B`;x10B{xJqa2zYN;Wc(UPR1Xr>^{h7it}>n&G`wn) zToxntOlN*K$jQAdiB2XNG&{Xe-;#yUnl~fvFG%l�b!-e>CpA&f~WKksrFZohA~i z7Q|E;zzz0As+M~uQ{S3`NeqFqzy|V37++^08YeQ3pGqazDPQ9LthlsRYbU`nbnv10 zvZ5ELP7TGp8u?fF&m0mV<|)*2U_8iijRC$vd6(G{$JCD@*Sh)(**EKeWOVSZN_L~#BkVr_6D8t5_XM>9# z*Il%ecg~7^UCrzYyBqil*Y*60h%WXQi@5xoJO=7vst!PLeE5jA!_w9P>)@`%0t zdF=2X6g zo%SJU3&f*WjnO9Bivib#w}*^HZ^BTaTz~td!MAYc&pX6cg*C9Vj>JGCm>p70aN^@? zmEtk!Xn4E?&`CSTfwaQD+=pZmu|b+Ng*a9s;t^;j(xF3Gh!E<=#^yp)=aCR7t?Ywz z)W0pEhwm>YA!NoGZ~mk=ww2b1tyTPZta56@(eu2cbwRqtSU_4z|0SPseu-)~G)){ZB!I9x zL@f7jj)qe65s2glg6@KJ+)IZP-$t8|6r^m<%NfzCq`)Cbss6P()YSr(fi}?m*=h zqgt{B1IQ6)*9qDvsXNvNPa*zx>=U7P9F+lNGn;DB zUWZQ+CZt?*QxjxGaHYXpX*zOswdaRbMf-Uc?^rw$a1nV+1xUCoIS|d=xxL(_)6f!+ z|1oiUX7S5cNW3Uj)9{lm?i7016Jmtf{ECrSmFZbRyRy--NZB%nN`i~Qy zwWtMfce{;YgGFS3cFXC?^w{wW$5V!)w~`QA*+%uTWeL{c6NMT`>+W_2yeRm-#YlYn z9fWH&dP~q;FQ z1aZ;>dk|G#`}L6ljnB`6F`5t40mTuASx0|4p8f2rP43O7<1lq(0XbvNU=Vi-R>Pl! z5Y+aWv*Dq%8_m#{$aYbg=C%SC`Ta4Dwm#rQCmegpQ|MW?X`LkY?GC_k z@PE(S=*mEDSO;}N(w!52{Tr~*dJfrC=SiksUL){($Asks&IwFxY2K4{&7pD6mj2_= zRtIp!z(bCOAHk$N%4%YadX>Wfy+Gki2qRr(f?dayLChsaney_sCaI~ zwt`xVaMsfxgl$1pxhz?NSR6M8cMk}GD`)q?b69S*iL>7-?c&8J`+--+hAD34Neend zKD_EFx>{jsc=a{YL+fJ~aPOe=EDIt^K%}_=c+oGY z*4uZ+^Qcu!x!EeG&7j-&j-co6SRgP87=U$oSl`fxJO?#&@1naA{nD2*56MIrNf>nA zYlHa9VeB&bofz>0B-aws7Ca$@O$DN4b9bIXkj-=dU4!1lU!sld2gBAyRr0UfjIQNl zb<-M*%{@tABU0SNcpqm{(j%V&O2z-{uh2Puv~JOqEb*bB)IZwgDas{XvDgH4o-04R~mNb zfu=LN?&qto-;qa>gu78Tdv#Yk74hM0Gys1p(~(wG5EC8^4 zxPA(IR~&_uu5}&CLh0pueTrXF_&zr-vl7uJx!I69Q^c}0-ya34v=?lOK+4~Ac>D4(|Fq%GdnKhp8h`$@QNK}`R_NZ?$)9q9G|=pZolQ-SJS~YWrq!NDJYY`>$ij( zi&&CiXN8jJuD&WfcnldRD+T$*_OcIGQ-he4T~KBj0pqoMZv2ck5>>rgmT6LZ?U1{C zmR$p0gbphyiW304?`Kkq&i8}f9bO#ykXFe<{xSE`QL{{K)TJm^e4!l{GWinAaV-!+ zr0AVq$dYVJ6!;ozVQO+QyDIOyACE|9{H7G)Hn4iUn{W0(<|EK%and}u&c(v zn|xfcc!g`tWn_ID2`-EH@o9$MX|CL&$Fa_qzFg^i zp?#^%xH+Q4vRK@Pj=Jxk`uSr;%3Ddiso5WGTxC;5sCeEjxRqD6+Gsa%cQjbGJtH0U zeUeo=cu`N@`aGk-5oE)~ZJ(iDdX)DzPaz%OP0yNG;z5vfZe_8a;|ym)k@_!pA8Geh zVHGOg#VbNxL+9)6ULQo%H8F$5=|Tjbv4tXVTKA$VkYJmXl!tat0%-=FFFnr6kB)-S zmt4#z%wNeaOvDoBm!Q_?mFA30-=!&A)u1XvZ$caYwa}Hs3|Ega`t+Yqo7QQsFp^>8 z)$l0~px3Ag#Jxcsp`v*5HAk48NF4|Ii6%sUmL z6p+Lv=^n3MOl1TLmK9$T-MDpfbD9c^lzEh>p2(;WTIS^lPFPs`l|*!tVAI7TAb4SX zZ0mmWdCm#gtjnvhX^xSG^NyKYu_Un7cI+?BJ>fEB(^8&Yk1>Ao#@!#$QRl@keK=gs zOlpIA-+5zJ!mRhP{462lm)Jt|Re@k#7~dnYRF%P%!~!@AZS@E?6z#jN)7n%ct`MoR zI*0pEFHx1hw*zi3=}wOXc{ZlAJst+y_)BDL3{^-}u*l5k5d zZQWQ09WLU>`wqzTF%-0RvRd($Rvh-F%~E9hsj{G|Y#!k4ranB6Z0N)1viWAS3*_Z& z={tP;UiSW8)L43 zFwN!U<||)n8STSIWC3MRL8}om9rT#e5F4|;z;r1#|IDCU@v~ChW7rQ#j2*?2pN%Cg zrmDv#vP@<`T1A5u&G9+dn9^qaHX_fBuzGAOl2||SR-{cA2!t|ge_5+k7cYBPtR?=$ z&6=Iia?9#g7PoLlm_X7GB=Pfiqw}-<*}9j~)ZcC;DKaV`MP5M3t!wf7ExE?nuM0D} z*Uh1WT!_D%oq$>=GJk9>aw{n%`It&;P7s1q{zSv?iV8RSMCMDzK^u{~?!H#otV)>v zjn%}aqN=BRoQ%e0IEamix#>aBAkw#Nn!F3=);erG3X*1xNP}^cpwr0{vXCFp1M=}c z8ZM_bbLf2JoVD=NwXv0_esh=eKN{hC!m?8{4BIOV38M7>jIBNW=keH<9%x-wW_VSH zaCC+#D}l!k5lYr}Z)}XZ_fU03yD4*@wT9(1!os{n$c~0bnx#|!Fpu*T2X(rsgVs_{ zyVy9T;+IDE08So-qLQJ5W}Qz-Ril60-ptEeea<_2&|~hY3)%)Z&W% zPjAlz9g2;F-a{QF9`jA40}pTFJvMGd=ML3o#y^0zaKJghpN8&D{rao9 z8UGVM18hd7ZD8W^X^=mD!~KRRFfb2Jj9dcT+j$6*<4%)GYnBjSu=SKgr#YEzVgt0* zN_ao~ow6{B=g!~Vx*X@vZJx*u_?<~qt(wON(?dt&=_ga2E!^u$EA<@$bQi6qMTmkg zEcVpX_i6;pF|QG*jv%R!SW<4iqNL--pzw5U=?6;PE?usYjo<8Lt0*RLrGn0&`Hv>l zMCk+Rt_1)vD^jfV0J-;)6}yW>ORHCA@E3E$@z{Mh3Slb9!jdzK)LNzp(W|{bZAem3 zwI7SnhamF`Uhx>>Nya;te9%ZJiHFnDPj;hFjX8tfG-9Vatobxr8BOp03p=W0`mAu9 ze^j(w{nH2(4@phTrPY;@<|6~=J#0;{F3r-~07TYt4PY}lLeyH~-CSUg>_91)yBV>= zB2F~%>;#JD?Co|IfXBnhW|n+F`8skQ&kDZnL=2%U@Cb`T7I_euD0Qik@WR3` z*;ypBxfl{UAi3Vcw~Tq0uasBVI;r(ac@DNchfmr7Q1uR*-y7Hi$%r6oh?}Hy}WS7^lXjrnYpcaNyv! z!wt`Hc-Lw77-!KX1i44|vSnR-+y~SiwZif745ppW{kP=-t8O0 z7XGKT7*>ORXMR9lmCrH(K$N1p3{V3@9G8`P5=@8Mz)>N!q8-enwZInS&c8kfGD+l% zl`gwETksP;Z$57v)k#$*eDJX({u;o1dlEdT+z`4CtzKoBsb+w1Gi!D705zt~dt}3a zJinEB@|GJdeE!;yzB(}c!ZFEX|2-V)+! zH~`L><4^~44>ipRMA|u?{5jNNH#EE$C1IAKBxGFDr8duckq48E!-ucSyYJ@}K_<#b z`nq-r-jFGfrXaByYF9O9hY&a~pZ4D*UFx&E^l8Hc=<|?vci16tqd%qqW zIHy7LCJq9n{$D^w8M>#G`kEEe3unP>iXGOGpk1q&caRXYmBb6G_7}NGvT8Xla#26` ze*$9m@1Qlz-9+Sx1kwnBqc%90C-TaZ7$btREKb1GGpf;;v=9j+(9fd~nuvFh%^hp+ zf?kws(ctb+f=pfetbuTs29=4aE;2T}$W=>6>Sa|vkDmrDaZ|tz8r7JGG@TWzPQ+FT z#aHkqYdeBQXnL9mu65PQh4w)GYiH90-n?TNuaFQ1hf#`xh41hCG(Z>wIhOy0cg_An zj30MgSQ3g~DB4(y(vUBuzcU1;0iBQrloCb&{f@^=o9@iDn#Nt^asnSKVEzz+q_`67 z>uEORchft0g`Hezjyp!q5M@76SncwCs^$WNa;O-ZK)=)h09!N@C*nGPZcKl4tN|o71KJJd;2%S7eLLn+~AepP*MV>~WHfZ*q&f!&1;c&rnH~250ux%7S z(`Mh`?BPp;RufHt*b|DKT-{fjypi4GPTRF{`JR=FjKo`1Jl3D@A_fJn^?`#H#`7;S zhw30WC0)z%fZ}aFZrQR*9(yHz*@d@%1$fgjR>GK9`0<)mOwuuv8|!a5jZq-RJbf=R zI||WE8!kh|V&;4BH8jE6H9jNK zfNRV(&3n)fruHi?w3u$6$E(EtwGh5WB3e7ujb$m{+x8o zOqx*C-*u4DUyd02-MiCrEz)W*=*AjsK3s3CArB?5BJtn?vnJ#g9G3?vF{=TZbAli1 zA!zv$Om4C&Fn^?&b)Va9QRBILzuBAiy{v0rIrZ$%&8h2dL^(u>L~pf;C38-*fW50r zoBYFdORrfA7W-ylLkk}aymWZuo*RpxuI_=y;zYp>t?OjJHMbIZB{vf${cDq_7P2VNNO$^Z02GpPB#o_;>nDN)`v?(Gw?cX z>i*sb$$WQ-M<#PBZWVd}ozr<{DSqJ&wliH5`g85y{#<(+a_z?BsLrpl4Pi#KSg(TX z=>%U{878po-`*o}aNFu@AlAa<6c0)85Nvu}7cBCxA$_(M8m~{>TVQ_0s7zq$)$}>9 zru*E|Vgwe}`k3?m3Xu%7CW7x^S;i9ylry22k|c7sHP(`Xo)yNjJ)9=KBZO^|OIDm- z+{A#naG&ubH*y*y@b4i64SwgDunQMA#?HDl>TQ$FVtGCJBHAprPj7{T*+5a-$n&*J zW3s-y8}=d8naxEHom@Ue_5HBYi$rU+abwU{WPN!^_}LELWMq6(zWgEXdpU@W3oTE* z=X%u_x!Wb1^9kZVNEA~>ZvLC_2?^7NfLR5#P3^S8hG}rN9FbA6y_=?EA9qgqAd;S< zq#tk4xC65WF2EBrn_PZ?$-5F%8wMceT)r|o2%O^0<+xwn9N6mE=d+<8H0#_&R>QF!_wX&ARwgAlKwjr92$UDvnZ{wl+ zg+7S6V9yK_0ltCaY7?P%3prs>_e*z`uZ|YydCAZ!s}3Vx0jHawiyE-M_pbM%NaGVY zSLoJYG|nYT+1HAuQQF5*bUSf>J1C6gbGz-h!w?Y?;5w-fOt3w!c<`y|yE4W=j9`vE zrB?c!`zmE+e68WU%Rsi``(ZV`U(;vdFSa;reH@2~mZ3ehgcPLy7^sYhVq2C42U~?I zn#F9-w>bI1w06%#OzQI8cuUtZfspu!%>%i)B+0Qg(Sm(_Dh>5g29(Uh`c>PWP7_k3 z0Ah>9>e*qmw#%q^mAof9HKQ0z{uAi6?eLEklZ_yMV`B`H-VxwN{mwKg6R+PBn+|@Y zg+h!ob4*l5(4KKyX6vXb(CMDD0m(!T?D@j%V)|J>YY$YXoAQLq_Qb2KyOoOo64>b$ z#d%Lbd9KZJN34|Q0l9-Tn(1H{y?STyrK3QmK2K{{Z{_Ku9>;)!DO#0_wFh5B!H7vo zq3GzzyKc4FFv^;@{r%}S2~8L^piH~< zwMRPpr?qnRY>bfo(%Y5%`1pu1zlvk#kzF||q7)s3!z*pZCI%$%-tO@mTqfWVsbP(2Mzm{*l9alCC*;TD*7aHAT?H1dW-)O-$FxY?<>_K~iHs4bjs^~S3H5p(OD%h3eLkz? zo^+)E%hr$K5SX{dOQWi2Vb`!Ts7tELY!=TV07qYDH*z zMoi`+`Z$QWt&?5TZts^?HKIo~p5hG6G`x(?8-uZ56jdW>G?*s~rRr9Bd zxpFg3ZY#$j865NU$1yJmX*yipnA7J3`#X$!60Is{9Ny2|wL;hf83dZgXfcz0j5;h< zKZ@qZ{uwXxKLt$h8Bj2Ce6+!fnhNl%g9C_c_ZPG;e?UD6C2l{5CqcnM z^FPx_mjks%?qt*GS$7ADm1M(%ZfEwfv(sNfdtTN(fiz1n_fXIKwH0y8t7qU6!Kw2o z@n9&49Avhr>S7Ts#(>BZ#2KhU-3 z6wZBt_#z=(wNes3E}KD3A@1PP@ZwL+1kCeWcdEe;JpPFXA%`dIpLC(qd9GPkK3T3@ zBfz>=V>Kzb7uUi*?280jAbF{r8YPjB-Z=sHA!kCzPud?|33-Ifx+l&z_G~&YbRR!a ze)nM(_w7!A02Em!(Z}7VID)%fQSu%rrc9(s;HZ^{tUDti8;$6eG4E)Ixhy|M;h?;F zG3x|1n}x5KFGlj*j#xT>b{v^yRA}+!r!%FA8QmZZ6cRa&;Iu!e+iz z=Wb50BcMg=ll%5cY3Mj`AWh6{Y~wQ)3Q1^jG_2Adj__W0Pej`HeWbwqgl!pmhi0B{ z=aQCriZZqfF!1>O+`S3tHSA~B=1=YFO*Bnyh-(y683`EWXOiQ%kO5O~IAOzS8Cybq zFuCQ3^#w~covCd4rpqD(_bT_kdtUO(+(GQHXX{-C*zQ&}957}1J#>6 zkNEhrnUzv6(@)gbYRHtO?5#c@+1ztutZL+9uYWMVgo zNw_=-ZpX#aef-j@+xn7U8?W@U;I5hH@%S_+dNo76+V1RpmD7Z}W!<=#lRqq4g|Z#Y zt;rD-;<}P+Bt?_^SJ;0BwB@1y(c>HpMVSpvRvUv(7h%CFJpsN}6s*6T{H%z7bgfx| zILaz?yvE-8o;_0sN}PqUrNb)Ef{fCGFiBWW19A7aeMKTJ#oXP5r&8x}u6Yq#R`Vs? z#b){E07lEn6^ZyD-^V_ABiBIEv33c=;K4jFD-yVFvm)OJ`MeuKq>+FA9loPhIDE%{ z#Tt~-LH}p)#s69S;(s9?|3CeRiO5)XgYALXe{hxv*7WkWQm8W}Wo6&&qn$Bp!N?;F znxa-<+sz@fB2aWoLp}JtT+Br5MCk|jFHs^sdw(o1vkHbumy!4sVWV3TTy2%KRxRB_ z;;mm*7Ta=eWqv2p8UT(Ui2EXQJEl{rFD9PJZMjDoj+dtte7j~h-%u!O*s@jn>}V%p<|*^}vbnBA{C0tE5`Z9j;HSSs>@Lndj=-?$ zXjt<}Oz62`1&Kx%&|4_MdMbRiphgcc9VWzJ8D>bTP&Uzk0Dvu;>fE#nM)>Cm^skkr zPZG%uYxDNzv-O$7MtL2=)gy6QNApM|{aROVJ?iAvm#ADzI4dglbk1T3_$r&D&cr0K zxF0>*rcW!UccAC^EiULGbrOgBw%Pl$g-go(+N{~0qA0D;JEhoX6k1Nb?zimls63M# z5?8JgMkCtoJAJSsc1Qk;+y-rEXe^BvIi{A%3E81dZJzR3w*GwTD6dqhdgOffXkLb} zUu#h!r}ZDuXIcKu^~atHH&%uUm?6U*v7v)0OLs*FF6lf}n%U}Ri28+SMi#v3V3;m} z�CD0c=Z|fH(4J@_Goy-QpK_-tldeiT*}pO==lby&HguM8nuF*IN3*_Sd=3ex_}^ zhj&|cwo9c&?1u}_+xn`li2HCiazxosQp&|`mBS?~nJ8YJG@icUsPk>Zys1pp$z3=W#Z+=Xa5X#da-*qqjG==LPUd z`f`>j2^I*+c&_N{Qmz>y2p?2dqP;rprDbK@<=~~zL2HEAmgK{LIVZ3bO!Bg&GhicW z12*b_(ag7ikItVF$mZyKJdcW6rBYjv?x8PMtf^$f!d{nJtneVcmQ;|LXEf`pnzvQY zHMl#6uG44>y2{{_3Q&1{6iOGtor@$P^AIyN5~9SMB%~2?>A|J$G^E;hSQmdp) z+>@MLquReX{14Oeo}83jq!pqZIN$0b*fq$`6ovo`n=5K(3P+AY2zq1!a@qYw#ZT~z zv$`^(^-O&g+X5p?*q^r@9faAsWGBGGEGgqo5 zF!!Z?k)Wo~%&6u2-nR12j%+2eE4d zK=z#Hz6?}aB%4L8MHj$>m0i$Oosao4Zlw5-M0J50s}dM&y>NE#)%|Ml6AgKpe*%9; zx!l%p0PhR%c2-KaT479%ft(v%xevbC2jEioySuXl4>}x7eZ>ng{CK7fy%H@9#L8Vj zJCn!1{p|)Ms+w{_mJ}r&Kg=>skC4EzGX<_&Ex7b zKs5wq|5zV4E+hFS6RwVEB=uVY49V|>B}JyXw#*m1HJeeC(?rRaj~+`bPgWIDWk(6R ziG`4cM#q@DP+27|1-)gb_l%adLnv8zJycbPybTtBf_lsd!G}gDx_`7$a z)WY>TWF)g(n+&`Sjthnvls{R&+g&h1C*4GO8qzwVw)!2Q`SYcX)2lPDjY#FJT(`~u zr=dl_88Etd6nqB75pOxbpoSpg>;N7}IGpe7Qn)L1+*(!gLC8AB+rq!-atSr0zUfrw- zoySF*3e|;ad;HGgv-VidPhf@QN%TONyEr?M;92!5OuTorj}_8>P9FrJg~P%zYJl%=2x&@}r-UismyW zf-tGdzr36Xh!)TfeXF0pOpBvKod2C=POSbaMg%>D)7xj*40byQ=E+iA{Cmso8NW46EHsJP^D&B}j7blT}(db==D&JK27 zH`psO02(`CJz5QhA2IE4PpBQEpSMN1^B9r?1ql{MU(Q09Gy&aROFl-o?Ur_b2qHoN-#KX8(XOZElbzs ztcvEdQi@14?(akT-?ooAtE#IgOA7EYAIbewG)Hluz_?1PTUKaQArmF99;K6S#&)mw z{mGj&GYRF<%+vJ!O?R;yR?P0g^WKKT{z+L4+1T{U?RTPkd<;EmK;g$iysBar?^4KY!jHq(|&p z0O!4u_Ck~mSZVq@vHk`DNdJ#5ZUDxP=!+g(kHc9I%j-aA*kD_81s7W&ov!(jyCnTp zqqJ3Gjt@^SkX?#eQ$A7};h4YGHgqan!CMsC#`6QCCo+05nPE`Kel6y#NHHjcoKIeT zuszE<1uM}0uHbC{ug}?{NsRWJCuhCvrFu)wn4zDG4d%6u7@Zt)9`TiidG{52PJ1mc z%B-k_AGOw8+7_Zu{IKj5l_67e%nVFSja%eBu}L9ehPTqmqr4=8gmlD5_l;6S9_h*R z6lwhIDm2*8wA9mR4(+j_r`J_4dmHxeMc=;C`aqgzl4aBkhJXE_a}JqT&rzjyxXXf2 zHM~%okBQePk2<&}wCSPXiL=b9dnbt_pJ0S+2$GbIFFIwUfvUCYylbVOd*L)qvt}e ze|i)j?QY(aX{?y5nu(D25Zm3)^m51;eiG0ytIG}_Vh$+m#SM0seZX7h4a!l>?H!p}vUAf_C9fyhqF z9`D~?dQz&i*D^tw zGt*C^{apW&<=6H5;8Kl|r&Av0M8K$DUCEo)#kW~0ibNZix1{Ex*|mzJVCqW4@gjnP zahVB&RFB?`({*Y(XYScm^+7Mr6bh@#M!r7NTf2IxiJa`V@rIdRlQtxgDU-|1N%C~> zXT~f?3W2JgI}}0evMw0wx#gx+GDC87TuC5t#=bOV>gw9fmcwpxS3skQzDfIt{Ac5b zD*JcQ$_T{A>xiYT!abMNWirt8+1?_-Rkhzte7beuEahR1p0wO%O)y3`?a|XC`yVIWv~hLcrC;P;l#?{}AFax^;wX&(e}B(Gf-{_{uD9(Ux> z5hh~0eq42P`*+d(`y9d9(vcg4MSWHF-6&B8r_d&xa4n6L&_llwTzz)x2K^M-6C*{^ z0}{6Q2G0A#v_FB~Q0%h%JW-`$_jMSn#iEriLT@@4ll+R(v+dHtNXKlRm znda7y&BMI38-=dT;+MNBPW!`~NFpw9jmXZ`6X)apaSQS$2>7b^A;Sf3* zyVuuMq0_@D`=l~W)b$I{T2uku#}Y3q!z_H)U2uAu!fS?sjLV<1gpWQ$!$pw8LdS`w zg@=ULPM@l62Oph2_)&4`bGmpE?Bj~SrInI|ct+s43wfw8^k1u-Q}OIhj%#p z@6oznMm1kW`*La|*M6HM=c;gQKEC8~zoPhf?vx+fV0rl6mq}u`a(tJ?axALM`!$Em zzuDg3npb<_c1QNo!$TTt+itz;!f$%0kE6n~OejjfZTXRFD>o|^+FQ}Fj!vKxNML2@ z9f+NA%v;I0D)(m1GyK=yrhMj+*~On;T^O$f^RVyzbbGoiDH`#@@_aYA z2X`rV%6M_^s?XABwaFkuL51$^lo9>9{c5+qJ|1vCZHnUF%^-F6mOftJ`Te}X9-DK@m02rITxNpXP(@wnRLh#+d3OE7 zaas2$+Xot?k$reAz$aM(!sm^;C#uqosZG*O9L5iK-m6Vdtp?Fm%_%>Qy2UAb0&w(z2$M$heI6mHcOTNzDo@vwyrAf!!z%NiR+anCqX0X!U|xy z#@xSFAXtYYW^Qvc#p{=#_-y=*agjy}znVEW@~FV}{1^eO zFYzV8g{X%Kwk^mx)y#!}wE~0}&H<1~ma@(x-n3u9M!^Q28~7!O)IK8-gH&2+-TXy( zB^Z<>`JWy?Tn7C|d~!EH7li=3Z3EcP8TkXEj-p@=rV1d&O>$RgObGX6ug4N7kVvef z?RCGYU*?2&s2%ryOiU-%VIeTs`pEq1otiuV_?zLApmm(_7bPA%ST26E2wx%}$mw@g zdvNBk)>Nn3!V)@+;2X&UK2!jdTh7STQ0Jx_Z|6zQCO! zdW}wmqMzeJ0mcBJ50_!yo<@K~e&vDo%H_To*!#Z(XBQVv(i??3K`<%kDp~@=juaD9 z#%t*?UDmmM`(gpc_0bxKB9KU=y&%4O-;D7pPwg1UhF?I1+*7m!N~H`y>EMMe_=Z5( z*21n0c?nxj+KXNoel684WX$L@a^7ted1Iw;Ukvo0*&so1U5@VX{f`?$mNfKoTzs!E z7kf+4wHmNf$VQwr(l^j}b|`NdwJucN>+bwc7|a+t4P*gCek=ysM<~*MOuin6aO}_B zfgyB%*Bz$(9811HrlMmoc!Aw@G4awd!XYY21X zI@QeSfvJ}Ta+&Ku^;?27pAW~h6@Q7M^}Jz+s@y@4UOn6zjc$Z4L7rZJK!katmkS|P zU4-YO>un1XqU6L?gs>N{^k8+*UDwjNtMdRcY41&L1v>Q-wDoyFTE~^>?|sn;NhpgT z?X*mlx$i<3b<}z6vx0fZhh5;u)p1U40+Vm)X}EeGDpes$ z8^Otmf{}8hyy%ZP?0c7FbD|YPb?RFlPqAls1}9crk7BW^xmFq zSsRDvHwox2?ctGGx^36r+?AwPNc{xIu=Mqo$sA3*Q-`^AJUG1RMPIzO2(azVTPc{q zHSIxV=I;qS)GTy}tc{THRmyn`c8WCZ{0i_VB3_KG2tq_oV^e(Y&(332Gz0o4I{XWm zMsQIyGA{Gjw)&+S1-9vIsOy~Ju zbqn+{CSnhN8GXaW_!El~jkaa7ak412IaAlSE|@d_dFDJ!rtMHz=Eo5Cvu$Fctln?v3_Ah-|07uU97t9 zfGX8+7yN7bLFc;&qUGsE{7DD#?ZB+HaojX67{5><;uYhR!xq_SO`iUN&k0wkx)B$d zaam_rpgKPnKAJ&u!1b_w#Bw341VqgHe{|>c-`g?}Y9&HIN#reC&k%`Ok<8V_ZDIFP zO{KK)Ob$Q2g2S_|LW#m7uUc5@?OfuW#fj4s;nyb38GY>HTJBRMzl^^dCY@Vc#EeOX z0MoL{IY_mdtl1s+`F+Fs83UcMDa#W$UkN7DNWcNt5ww&0VZ?F^tnlKX8?jCz=I`V8 zf>QSI7=UlX?0(N))oWq2`DBO3zn!3L=)7YzmN3i}rrO<*d@S&WAwLEmA2m4%i(J6E zoUbHrV5Bzy-EqCj-RHgw0BC^5Y$h*RaF$`OKE*vwRs-#09a9JeIi@uihajcfYJWLc zl@S_)$+4Q+s=mw&G5bpnQ{ibD(+iB_QmI&pZxN!R8&uqvoI}>;AD`!F6PVV(*ug@Q z07R>0e+JQ&Oc|-&NZT#f$!rr^m5nFbd^+P>kvljsR3}8^>>ZH5t(m@z+5MoL&;iCB zea*u%&F6RUrXLo_P4pCTH_F}#`SG=gdR$hS;WE`?tXauKz9x#(pe#%5*+r4B*tA2Q z1Hz^)XqhXx#I!2F#+;`N`WT~UY~+71H%9e)q`J5-i0`V^xQWkN_423T_|0BnQ^&|Z z2m^H8ijUf(U_DNmehN4Ayw``YA&m6Ysw%%_~ z2ZUDEp5i0Cft_~@2ABIM{Esw`=hT5wB?7D0l>)X(;Kb6i?u(blh0`uzZ#``);u&To z$(Duzkx!G~F%XUpWQ>YI9bDNX$ScoJNy`~G4I=Wf-TXHGS*I3tvoY~$rZ#JIW7BgX z^_cEasx1#^NTzLacpg!I+i1gEK((Ou!AffY#)mRUTxdKFj-&2+3rJ?#f~v@7@HsZ0 z7U-7A1$ovV0-<*iR&9N9bLFeSNjaPRM2&`3Nx104QsX7rL0vr}6s`6=BKlZ+9NGIBW4@eT#O*sW*qTp%e$s_h`c=B1eu{9M_B#k#qi0s^jayI%w_bJoX zOHLsZG^_Q=Ff5Ph_7)mC6N(95=5aciGHZLGz+H52+4Q*Opjr71 z2t!33v(fuubtrd~@SH; z;LvPXawJ2Rmgk9c6Z&N&&t}1s%M-0tCeZZU<+Xbcg+9o~Y{@ML3qJwJWQg3Zz@-x@Z4b_@*d8MsD3nM~ofROY;Vmh4SSafwtSrUmvd!oN8hsM9Q5c zMm#OJbx|F1p)(F(we`oGT6VX5c1T<(1K;#p=C-CJWU@-dZ5gpCZqi%`us=LL>JbTg>{1{lI@g z^cs=<$qmR7PI%1IDLOH!ku2iOjCEJC>M9{F}0$B*nIRm^pG`Aer&D+1>-5d;qnOt?&?jIgUuR=^q}eN z7Q}bk#xm(&lJ;C@{Oxj|6L_a{b3evS+4#~lBO1(a)7^K4^St#~TV#qCMO--%D3Ulv ze0%k>KS)kt3zC>6H=3}|b6m#Z2?E2B)~w1;WQ2X^bsS3#%G(xXR4xVn`1Td(Bwu|!0Aca2;3@?iDrnOhPf+IQbSx#|N~*t1ONL zi$jy+e50S|q1~D%cFYm9DeoX=b^PtU9BWG_wGM5(>;26VvmR2S3x81JSgAL|+k!%q zHHK6AQO{Ask*my_t2!+ea>Fsg$fpOVs7wrDTCHZCY{#r%+p~w9s>kZ%s4xB@Ia0(i z_hxb=$J+~{x^v6OIV_$OIQwz(bjdXXWFv%CuOr^AM8CVplAF9&M3899PR=nZe}a@4 zcvU6mjbM+It$m@$I|#SI#wMP|9*#%9(g$a$g!Lw6iUVkYMPW?agM*^=MFRC%XGyKNn5=$>%814knEhH7WxHygm7ECT#%;wD*6b;;)iiB$s2et2~j>bZE~JMuZ1<# zUYdvW3*tXWYdJ`V!&V-l9_WaYtW$#tMht}VwA|Td*233?0y?4g(554cU0moh2xUZK z+gVAmP>yp00~^xNAmoJ?fHc0idN%Ydx%xKYEr5AqoV zi;K)(kMgyC_dRba((}vG4AbJhbHRa&c$HHUa(DdkAAQyMs3lSpJNL)wEyN=QZk0vr zI}eM0?Sfvrx50q9;!3UO;$ZJ!D@P9 zsa%`Za-r-%DaT$X{{6L<-eF^E7E(7VI=*MYzs=PyHx8cY$!orZVE}CiNzsz&j|K46 znkN5_nNEFJB}ktcY*>b&hwD{N$N`_u$ndBGtSGe z1W`}MY=}N%jCQ0Hqwb(=iAhgqm2h$epD^!ZMm+RZMlwuK5kcNNn7w8_!X|BR${5I@<-5P7C)_X2(~? zlSGZij#*D8=d|D@fA#wta%q46>+k-b^iszG+rP&*@YC!6cm9O=@toW--7ScAS4Ys= zdmrN!RdpE(Prw%OxulN=U`>#pqYI_xlZqhIyn=#CKN$v$0bs9Q1{wpWwNRmej#7nH z!b5i5@Iz+zLfj&GNg0wdq9Xa9Ds;=T%Q_}`#5;`ea}M?<_yPJHR`~EE6#P*OH`uEv zfFJ40__wOm3wMAyY6Ik9{c>}~OR9cN2lJ?l5}v$%5Kjc)5#Un7(e#opz>p}5bsn+9 zJOqu90YiSsr(&>ShEz>%_@clV(*aghA{sV` zr+}my!n=UHTP5IlhYFw<6?hl0hcdE;{ZCP~Cm%FyZV-jEWhMrF?7Y|v^trdlD~oQu zp|52JS2B3(6e&M3@q5ZosIyrgkar&31d8WLoQfv;ct1dU&H!A!zMWvzm+`r13HU+J zP+ocYA;R`xv@xsCxIA3W^7ZwdB)vhy29K*Gd2s|CJlvCSlc=Z_z!1bLTvB&X)Oi}~ z<;$1wK9Jv@2%@sKq9qXB$I}g|U{6!|0TXL}$gMM$K^y26Ged3w*eP66dp@bp=zlQ! z>c$l>{8e-47`H)s32#Bkb2kktwD$mt(Fi;OPp#e}VSW?+|Hd^#$$D!+4XF!0H=f6Q zF|dP{ca3L)PfS08bbU8{$A6Of4<3vBBlI!60#e&IHlIPHP~?_VBkU%br@J@{APsQk zG-;CPifTPoS0MG71eSY#L58=QDmP+>jTmLdTn`+k1X${OOiI}ArEjlMz)6iD>3D(& z2n~M4_EyJrMoOXGG=Rv{$fW9#W{T#4rB8N0Pk(PeR3vAgpurzq#~r*6Bogm4#O-aX z{vG?g;HBZ#7#p&flaQavN|Qcr_R^Ie)ZALz**-i${nb3|%~!s3$WcuV`{#@(S-GP- zT|FT&=bRFFYF?zo$h_e<75qCwQM9#MYX^PW45j5Z02;a&{GA`xnHzlW%lh@eDYAuW z>vB{-YY4YY&XW8s$2ivK+{|BhXM7+d%x2pmja-f4By{k5ne(AB$e$!uOo3sY#>_yN z_NPfD`g+=MK+c}LvnK0^c)B-VoCBt1P0YibLC+EFhy-r?G=GNvI-!eM{t6$SBJ&P* zIi_?WhZkZiPkM&>YdL8#?xizZ%9ZRjR`FDR&|_oD}ceKJ*0`f0rt7Yrmex>;O7PxqM*(* zEPd2-`>j)Uyg_0yi|xJ7FTTFIo{N)NJ5VRYVw8|O$H~P>b+O=);GQ*4(3|4zpqSSOkwM@JQBqmAaDIq1ztUK8{? z1=8PEiL_U%&; z?o`^t{rRU3Bq4LYm-+8>h3ZM;BFN!4@VmIt8*;r@IIvgbJlN3aU6GVDR{bgS5fkT} zPTgYeif@SQv`lMvp$?+0`vw?0MZ6GT51|(26jRQr7?!dB#D_l?? zp)mSJ?;G>i+5z{brQt`KB7Q`Z+YRfhW|#=mE&i?S-7X>IxB^UAGZJEsmD?_u1^oR& zAB?nbkK-zcj2BY%;G@57Xt`g+Z$N|NGFZk~^v&$8Zv9ZQMbw8jv9>0GEnwYS1uB0l zKk(*NBTs`Ted=3Z5Z=76z=QTMCizF}yS3mU#KbUe8a2ZbE0N<8sSLu%eZ2R|41Nj; zoHud+?=@77C@=;}dLTm5Wu*z>crm_A)@l#q3i2lBB9muY_@spuNV(fboGx=K`@`y~HY>9kYMil2Nr^~?(OT%+)F}*s+`uu7 zQ}qwNJ40)K`LRN6uFCTnmC;*`5ux0$g~d6rkk^Y`WPP9ng{kPzDqD&I#(~ji1}iKB zD@3W_I(SLlwk zXZ>whM<`$q8h|%HFYbE#`g3XRAAz^5G}m>>u2`@KXc`&bX-K9Ll#B{cN^3)I`M?% zSJY99r1u^`RjEcEkTw>s$6s-5S()qf$ysnYLxGXjcyZXD|A&%Dec6Q6kwx<#xjVE^ z6zsJBMAk@={}ftpP>QA31iVHF#wxMEHqnCUjO*6&&(!MC%D*UEebVQOP#Vp=Zm9mK zhCSXd`U&37>Wl;GY<)+)rG3t;1Ir{xK=D)FQs zm7(1Zwws44Zle&ELgEe$>BGd8!2*(>0F^XaS|qg_zt>fzV!U~XSD^9!Sx?om)~DM! zwUTkmc6k_ZE>g-*6;{H7d#c!r1eGFZ-z_c+4y-aKWE2yhsDE^DqiwHu*C<(8=qU0s z?*SjR4o6mSEpXh8C~yhEbL2^jj*tzG$s&%x42-e^NV4&fH@HAZ-23iBR~_A3y)g-O z`bLqy&-S9M^q+OiTlck)r$nKxn&^276t#tE0y@tAAkA=Fd0mSAaK$b(dt+KP}x#!`t2nUlkX_yT%`giudW?D1I~mcO2q>kbw$o0f7+;=3&4OIHxG zsQ(2@E~&PGJB=UgM;WvX)vIdQb^W6CS<|d3OOM&jrOzwmyiiu^mG%?EwX)pxZ)L%r=O8F)i6oMPa@%CzE zAE&LSk^9#hLy(%8@q*?ROOdNX$vR1vO*6U|f>aVI!X?fjD|KLG!^m(1@7w1cH0|Le z1yG5eJ-Fth{a>+5m6Zu9&-c^7WKD=9W3`tU zL(*Eo%8h~0JUdpQIvR$T#m!@k^W@X3NJOk!JYP{BA?X#r(A-*2vX34SZ9%$;!Y5jn8d&3F01rfR0G~qYRQP_G&Rwtv9Z_-9U8D(%xncQ=7s=z8x6NF<1 z!#1fd*uy_AKpM_xuK?aTR1o)@hF@a;r?Vjc6G(=g+pZ=RUmcFdUyAQ6%K`LFw+$R*7Xxep8rL}81BeQa?WHt%V= z&W%R{IHT{Hp`056eKO*E70>4HLvH8CTH(N$@dKzMOHo%!b;xs|6WY{`1IXgCYG+;) zw+z=#HarRODK#dwC714x&P?>RWRD^z1WWxjSWjoMK6nbVz!^=eOvpFOj5zLBsbUw~ zG0z!&1ZBDWt%67!Dn?|>oWxV|m0HzZ`3%e!0|wAh--v(We7kG^`)83HLut(1bVpCr zQaT%9veHue;TG7oY~I{URzl<@nKNL8q5refjEC&Lom^7yUeZvw8T+-@h$!rA_}1o3v#%X~&*o=u4Q>k+~?2AkJZ@izD6p(%-R2@4vu#IQfm zvx}Z8kuUn2_&1W#f82O;CUNl~n1EC4^5^kkU*L0c{H$ z0vL@KpI1ALWT-&#r-heC=qTq$^$9;w1_Wd?Mp9^i({>%$kT35k<}h50LDtrPYP4)u z9>%9qZtfRJ8qmu7!-TV&`cUb1ET5s>@~n00@vM}s^9MJMMaUAbpQOk9`LJ;`?p#hcta7g*x5)sw030QsKBWk-FTe=8urz`Qe1WQfdR5|*y#&$bz(kTP z_S~5M(?AFSvKQ_6EZElf;feuCBByi{K&Km0e+;YdCx9;GN-?N8eGx0xi;%eP4kk11 zVYtw61)Wx!wc{iZM(gVArPazQM#9>1q@mop8)XtMQ?90 zlL-)4Ztcx48yNzMb>r4PdE~AoB<0+MW)TnpXo-xWFB$FxU*N0XP2rWfxsMTw*Ec9k zJ~tB{zXdy-J5cxPTKlPD83)1>V*s$gjkPq9zmHZlHU3>=3Jv>IdSl6bNj!JC@X=el~%l=S1}cz}v)9s(#5U@ zs-;ICi&l}76e*s-go-Q zy|G0IZ2cE{$CxY_d|R2N(2YO1W%Mun&M3s6SR!V~tqiMFA(EVmD@=g0CmtLLC=1T8 zYj0o@iBLvZl)yEQ8g!B^sRdlr`8dR%aC+a2?G9p)L-`S1D6&Pv)29*-75U%rat9Gt zk#Us`8B921EXK?}I#q~{^Z(yLoc~|E%io~%xbK#xHvm-}b~j!B1T8HsrM+3@C0uQPE&=T3UmWga)6kjxzPorrVxNpfUp5P&IcOk z05A@LXaFe+DufrfvVgJ05m{%dfn?)(A1)ODbrJz^0kO+P!WQ6*LnrJ8YIa>fT;P|; za35|W@~gM20H+2XIsZ2B_H+QLecoY|;kRoj1|4ZMjewFW!aF4j!EsBBd(j4O0vT#r zX#^cH-+}6fnhPZA1cJRSOjdv}ndW$gMLUtuLZ1gWbcu08A^=w1MKbzesEttb3-SfL zHZ8%hhN>VRbK%ba#JKE*>dhA9fv1T5m9Da19zoDv=4xn7seOmKE?V(i~wgoilXb6|Tzf+UB~M1et$ zv4cAv6W&R{swWG~o}vK%?>KEkyM$|1L+c; zA!%ngcaOqy^rVUpvj^F^XAbfs6eb8K^H)G_U-S&H>a*d}d;uQkSIT*F7tsx6xb>^v zd}+dI+jfcPS}S($*2?tVR3*lVz}*Ih$(15h$y@;RKl?!`IAUUpXek82-*cIjCq1y7 z!_%`|9Kp-4zKs^{bwy;#@(!F`1))Ozh8rB2<9yV7dL-?hK*MFyl!iInygOn?+inW9 zmnxsV2MDg~7-4qNQ#2?S28$9Z{B%Xa7;qYg6?rvkh-|gFvCxmhNf>&?T7on`O!~@8 z|FqP2Bma)fc%ON#xav(1?@#XdBEM_B2Zl7$CUbUYgEX-wG z@NU4d`+czO|CE9~PHy_J81|P;5|wDRMwqoUT0FLOBm>fKr+8ND#!ZMLNPGv;idA3= zpFw$_94}`CP~uOCS5XT*kcvJ|^9ztnrQSmTsF@g?I$p#Kp<3g16;_$4*+w5#u~P;A zT$^%gKZjkS(Yh+UEvwNr>oOg?*hXb*^3snebZL$?W#kr%uu;qIhhZy!xbY6XusWWGXprnlk9ui$UE&4c?7b=_-E1gIm;8^?n$W=_@0`%@@SvJNpmKpIr9 z$$d~H>mh~{G_HK_(mYvU6&$%`Yl6u%$65zp5|D+cUI18d0hl%7 zX)7B6x&v6FS~?$LqjRX5DwC6>v%Q3`VPLb9-N)PrpXP;#HK<>mg8lq98H_2A!P?8q7d9e=ZEBU#+MG@r{V&!}@a`fPh;dki)9J2_n7n9LA8d%N- zt3NvthO0*#G7xp>v|PV%uPqdR=#7cAg@pn^lgc}$HC0%-#v&ZBlt(CXU{@LdmY4#t z&!;faE5DZ*w)0tO%6*DNcEp@m!noZVtIX#k$C@s#__lKw7zju`7!#?VdW0JGIrqDc zgYoTEG10|Uya%LPB!f4cO|74UFOzfF2?UxHUFktb#e2E}_Uy{5_v~Svgzr8t449&R zHN(aPsVoWlys#wXN#chNhoQ=&TU30eaWJhNVTjv;Y1ff?4WEOZUV*A9LW)~q!Ukw&UL7h+trKf}@St<{sBKml9Kyy8Fb?bBj!=-8!=XDEMO3jrfYeY`xFxU6zkI0l&pjeLatr<>NcGX~ zSAdq!$Tpcsv?A*R-m7H9bqIYKnb+kNbp!d>vo+`l7q2R|k>ej4Q<#8Blkf7Ip|0`# z(ea%jhK^tXBCH^s5ZN1SWL&6<EHL0aARahh)myst;auaUv*S!sl#{IO~BebkqX z{Vx^w)H8~LsU3wrFi86weTpR1>sDoiyDIq=iLHr1=d4RSEJu82!)X^&r4rl#7!h+D z5K7t)^JculgKngCaB3q!!xS<^5CsOZH7wW-6}Ecm$@EC;&ldJOShsxCNqJO!^ z7Fhe)NlH6iETP76qPGI-hl)WWK1z+z8wDUGaf2Ae(xKy6G56)d;vV$Dw=3V@^fe3y z!LOX@!);aGkx|=fcW?)r)jPm>CJYYC)htg+XU3sDyf};nrS=0Z0kXmFNMWcy^86BZ zuaW9%#TWa1p5`A9O|I7gj=n-TMgX$4h-Xt+l!-I22_!qzsgUN1=sLU&T(((`IUvU{ zVL%Oss?|Y{yy<9~``l}59{VTnd)6|6tuxMzylc)6?B#VBWw2Op-(3kG8-D@{JcPb~;`_^*T8H{xN8Fj_Q(YR5ciR3lXQMf?%I- zoF2~~wx0qQYur5c$Jv^PbTk*w(A0@A+pv z^=Bhx;1)K-?Z@^Ixn@WeOnREaLbp=?xxnj2hf z1uZ(yjeqQPg9LHKvo<1A%J}a#0y=szh>4F+CaTeUqgO!u7rPg`!FcEQL?)QmyFz0C zQj`pYqXRgA4!Nsrz%;mEK+e3QV zko*KKk3E##%7|Jl0rC;yl^|ovg#}@-vQMg*b>0Q;-g>CGw4PT#n|m8Ur}I(7{NP14V(|{!T^Are|1(6`SKx51iT2;;tz*k z2`^;`$ep!mgxgH@PAoNN9ou3%Qa1n@2s$-VC=1UTJH=%k5_8mF8-s)l6|ju5;a>hr z5r+Ra8|tjumwUy;H}P-v9b7;rHP)UU;SPhR_X@07{!d*ZncvxG0yU|e=&ypGK8uh` zTyf0Bk^Fvp7^Ky@-X}mvL_}2I-k7{$wbBDh@VHYpOzWXF15yM%Fxqg*uR~`kew}`Y6GLc+_Trh7kYn4 z8iAnb6jr~$#Ox9umHpd5|4tb4=E288Rs2BPvK>1I?vG8YApC|Y3=h%wy)pS~9#QFp zz#eKyYg=M%NGJacOd~{70GhXhM40+%Vdo(IC_HuW?5=vijb);RJ#DPD@Hv&eA-%q( zyAgV&49fUQ73Hj+`8;s_MchGza@FU${iRm2oXW+pS~$ zb9?1`>`bd5=z|NCrw{dUH|`>w@tEInWD#2k{4RA-$o|6yy)NHPjmv(M62It#FpL?) z289x!U&Vxh?SFS}_pvc+g6!Y{f6uX56kN(3ILM#y1Q1Z#pO+}a_Ha`n$9(ia>^vWr z-fLo_Juizx#PCWRf!5+@m6fTWReuTgU(OQeX(QCbhb@o_;ufoLy+=?XJH(Pr>ri-j z$r`FYwYi)EoQ^Wqxk&bm$$RRpF_y~Tg>>r}UgZ)}9A?{4dGG!DY$2o(Dw7)Ng#Hv4 zqx|V_AW0w;x`LwfD8pMYf;!3;JM4dL5l=*Cyl9mA#B%<`NptKdJK`V_4}vQ`L!AA) zPl}J=x*5XCrNq;Ff4s2{WU8X>otUMORQ~{?1BeH#FX&|B-1#6P(tTdeh)$;a8l#SA zx0vhvlezno`=`pNTT|sm2?d`NN!SlXfCWC9SFCdfAxg^Fv72|<3Yyf4bF8shXz{bKTgvAatKWgTN2rGEh5rlmh zHL`Je@Em@Fu<0AzVwUq>Bo_rEx*yw>Ww8!e`~!B1EiPlM;s2VD`ts#V2{gyI(xd51 zd-D^-A3jKUOk7_tgFAg zmqEx|&%Y_NP}=$m`Szm`*3wmg6MutN{s#9Z@O#IP`~RW(ECz|0LJHNNH1uVKVZW>e zNw-CvV(8@--Y9|wW&o>?IpE|ECzYg|8(E)!;jwrw;L3~N_~O89>2I!&_u}v)AZ+AA zCi6EK^64YTd1C&9gig|1u-5n_uW^fr=q5N<84Lt*5>TW$E_%+$uoHUY-IUEOGhLsT zmXUB@K2MczL$Yi>=j)n7GK}5(8l3S}#{dNi$Nf^cn5)W_<_Ol<4b>K1#0jpIFxYJR z4ci+>Bx;Q3*AWu)K`#73`3{4PM(&#L-~hJM?fe{Bcn#c!UyWHK!?rXRPMY?o2@_#K zNfKWXD!g@u^%E}KdE4g$dghzia$)=R`p!*D%NUr3Lu;^x)Q&@B&kAU#mNndDjVT=# zQcJnvakZhmdi!}mD#WH*lyDhV81OXh=fo?78;DG}Z99Xuvb@q3(pROrU^MX7u@Ts! z?)PSq&sV0}_!X`+dXS&{*mFz!XeY&`%tDnmbh7HErQ4uXXS<;(>_2K3J|GPHn3 zQXkLCGkl@pKQMwdzzF&Q3wYi^^s5#@4`KU<(>}|j?cuk$h#_)S?_(5T|L#fli(?Fl zVx~zFLnz4WGfyc_pG)^PPRBUo^Tek(WeC^Y?jjC0;7?G4n|%{e0GQ~BuvATB6R;_Sr}-^;r7Sj1Z-!)d5z#Ly zOe{D5cR&QP{2m^|tsw&`Q>EhRN9}A<|6=I;J`dygJzvw7=LGIHB7G>nDBafVY3;W) z0e~97wm5MhBt+Ri@E&Y0_Q%Nzu>Cj}r-2UaD=EbeKgK;wIO zs-g$VQ{yJgJMuphZPDf+MRNSk`jlmxmkz z!YXljlWpjjtwGAo%?v~AP{sY{z4?=VCK*!8#vsiEG5uQ%)TF@leFAaU*{nq&rQA?8 zC_!hG4@*EQqP|~S1=Mut$E=bvRq_E&775lfaO+@-hAG$)E!;qJt{-D!q!4cRi3{et z#`QKrL0IiBsXlOXi(5X{p)*eIC&5m>8Y9$(Gjnx}1*bcC&O8K!Mr6yr{FC}r`IGt# z^$yPbITk25HT8Q*Hpe=E+S>FF)P=DBDet03O59=rs$i`R#DfR?HwAepF;oz(rXD5r zFQ|RH1zz+I1XY$pELn;4Gn;`N?1B?abf5mG1d}wdHr<*V%X;>h;9P@BN+{H;bbfjD zzuM}gt9XXVs6!T@N{#_n-!y)AxN&)l@z?Glx4{0QWEa?BJ}exr?#rl)TU}gcMs{uFM!6sI zqh+}IeD@m@uQ|%QN)ay)*qH0r-$zRE>rJpxh}Fa`d(3X1ke4&u2M9k)z!mP-L4+8P zo@&|%CB1}RYeuilnb!H0FHBUbz_RZUAVjZ~`@EJPNXMsX)#WwJkRBKuuEFZ+RXizA zKnv?1L9(3fcaL|!{SgEA(so=)^#GjI(q&iP_` zralTHqwhy%B|}L-=X9NHl97qoD#A-_laY4f{#JY|)?y6Nwl_9;L$5}A?#Fr37I%P9 z|8$at*l5@)Du3W^8Mb6h5CIsA=Xap%MIlpuXvE#NndX?+7rCS@SVw%&=Gvr9}fxeJAsnD{~?JdGyd&F4@=<+BJ|-C*1*6F0v8QEgo#Kb zDdu;%1FdyX54)$aB{c-foh^-Y8Fk}77GL%$mVGNG6{y&CPeIOPyFylc_T zmPyVhLD`p;S$-ss(N2pJ83^Mz)+z8XQ=J0u`W7Lz{k^l|I@?DEi9*wc+_TH)u~e*A5cA2aMa)|~Ia}3~F*^83 z(d*#>im=g`YBQcN73}rSEZDM#8Xh_}DF@D7A7?b>@Q4QqMCcj4Qy<@E`9BU*e&!Sw z%P*k$Na#q?e!6tZ^2h;*=&KjhKCPFq9- zhS*P<5w~cQkFi?sA}%d^GWkNX0f*}SDFv$hZTa*OWZ!e{8#b^2bVY5tlQ=(yjtH#l znOWr0wcU{Qb81n(ph=SrS=v1ETmvFUNUnW3c=VZ~>;mm5Ij&1Zwru;h$LSA3(0r-I zP&w+DF?~~FoU~L8yZSpl_$4uzYFfRiBeFkp9Jsm;ZuzhBK7NMLK_AEXEAL9EFhD6Q za-KHrrX3XLBqQL|LAHCY;j$nyOrZ?S}I! zr2o)zhn*g#E*aaPpu~26>e&|vW`oQQKPtjjG#n8o%rhET#sf>G+*U>{<<9mnvAu-} z-1l*K$NkUUoBSYc#TV=LO#+DU9?2Sg%Ob<#aZ}EhUc(IgY@vQe_S**^%Ol|;uPGXj z&pM8HxjSHoU_)BOS|qD<_#s_fm?UdWxXg1j%C^U;<>W6y%B2)U@MsGZ_CHYcm9Dw^ z!kW9xDNHS5{$mJ|k^INaqQNxatnvW<$S3`ZoZMI^_av^xu?a$+#ui7Ta)}Q(K>-6C zP*k#JYJ2D&d#z;U5^kg5X?AbY4mNc3R5yVYb9_nQ2NW+OgrUcQdg$tB%EUqd$~mTd z2@BGO9cT5B)yi91Uzv(+Tb?Wg<(?JrN4cXO({mmKRDs6U!^2)jzVPXUj=I&*)5SV1 zpPieXBK9uWOy6%u>?Kf1SDZ|;KHXr}}qxk@cW59vjF0u6N+=qvYctlb9& ziHb3qBsfo)Bi@yBIpGw3z`VW#{YUlfDw|d@IJQ?HK@whpvTiwQksq)vf8qgFXi0oe zgJOVqURW#vx_2(CPh0Zd+{b5KE<~&etcP$Xx4nXZv9p%5qmtqFKRgvL=)QjY zFTQo2DFGjzA`sQU(ozCM_d76%XPMxUK|QL$aA#fSc7!-}Gtek~IE0-}Bo^+u+>gK# zKlq_YVQdUHI?VCX}Lpz*R=1L;;QZ$n`vqnbdD(W;GgR`#xZs;f+^0#ZWn@57ntU zxa>>~xsf_~0|MeqD3NZ%n7;+LkDgFXB{7~+%;c;}E`H*Kg@;HYZavPR+k6j=H?Xce zeM1cbP9T;iS{}^|`|RBM}ecjHms; zn8*sT5g8fxTA)L?5u(vGGglL#j`|94AF`>gT>bG|`~N3xWrYFv(1i0#cd z?oS~kQV2F^{2xpb*`ospjJpmG0?;}DdsLD>-llL=b`*mdOV*V)jq%`fRLE+DKq4?P z=R>@4009O-8fgR$p^gFs7|Lv!Q;1wsMpE#|U0ajwfr%vOv1$O{3Y0(Bq0zO4Of?W) zI*e3hLpzlOY!1XY3=rNguqes^`3S&aFt-+5$pdTwu*^QGBd&B&*GGWla4%^Jjf&$n3UnH$V|AKoL<=v)~?9Y(jf$+a+Ii&x=<3X3dN1H<^{1*f)!+^{! z+ugDr!>lfvyJ408lJhg(-dgZd83gK;=(R9tR<8ry446)@ZoXDSVA&xzWP%Ox-EhzH zZe2Yy2kYSB_=|aE`ppTB_ug(9Mx_wan*3!9218PiH=54>Khsox8KRO~gU>{heF76t zUl3dUFBBE)|D9ygv~v`gay-cgY!7b#pJokap|1c^=0(ISg*#a^ z0cRx?5nOm&CT5T_QuVVPsp7Z+FdhPT9suN@0j&RyhDfoW?>W-?oHj>;$sY97IyF() zm6cntdK}h6-IE|Ff*6XyIBNiIRSk%uyaJVW>`dNsE<;^oGTNWNF{V0w311SHh)etK zuOC=n#9PInBB1k|6h_!G;N11`05aE7(0y`_{MqXYExT$@{*~b3ga}`(3|lP~w}Z%{KGJyM0nC?W80mJ78K z)1tV;`u)dNWJWNSa7iAtmZyE-=gnQ--{T$da$fw;GQ5afGgD5DP3gHtWuIjV7X^c5 z{H42G+HJ`&9jr~h(s|?!%0B=LUBJ@BE|7P0L+e)SSK^N!KB|B92A}lww-TvaY`%^5 z`}J%Re>_m8e#gZ2$ESJ^@sbOnIomT9<=1ki-iB}asd^dFqTtqLPmU+>gbXjln+Ce< zX+5+k!T8OpT9IG;2K=UM!mB{%y>j3Crw0x(NE!lSFt1Z8`}zIA>hULA?DI_N~h zE3nSlh+8!4wC$;K&IJX|-#?i&@Ne~Ky?LM@XAd+~Co!fKt7A?Yz8f!Tb?)WE(?u73 zh~`bxr<6hS>To)6IU}2bZjB!8Ye+f(Ug>Ecu-E^nOC4ESP5uqdo`*r)V@KyNdm8Ry zg;=qyRE+Zp*cLfihAmIFY^m%^P2s^U9sJXkHx&M@0yWp)>om4>5hVww{hZoU{xze} ztMPLueUHxxID0>=gy6DhqTk4lM-oJeTjr0v$#*s?yy|0+{b^fK{#&*=HY0ebU?i8N z_0ed5BF>-sNzziBUHg73Ho2FJP6w+e(K#~|YZJ_!ro+U@*i{k-x`viiqVd03X~$lCu~ zzSvLkJl9~i@LbO5hK}LD)A#jLRKph%tH@K(W2yCZ5aQRY4`|%c!V*PYN1*gPee(iV zRs`=A@EB)S08{JTR7eF>?VZL@#GB_T!t|kormb9?My?@9_4QPS6?fzsQTeWZ-NFYc zL!KAqwuaQGS2}$&LaX&8@t{13`uDc*DF}Lc4fi^YFJ06TMb&mf+~^mqS&Daf+A#ueFKMQw z`G5v_UrNKqv0S{Fk2WluOd={xyo=(nAY1&^3O-vi*k$<$oAaFFv*gJIfJVKke)Z__?m!cU@U4V^g(w^??KO@2Z&+}K5MWz2&w9Lezrx_r^{=4qHk8ZXs$`XtEN zr`|tf!`UodGJj%1?*1LOwt1+QaC7X3;_Bb4^8+`OFNpswnRHBKJKJznJvIEr_I?7s(eDggkY74(`ml zEN})#yFe1RzD`$VDhEz)>vD>l1HjwxH@;8TmYgwVa}8**uq)Y`Fg=jhsw8;Qi< zQjSGkwrhzko!n)PGZY*-$-oZ{wKr*K^0$>A22*`SR9((jb~PF%dF|%&BR6(t+bVL{ z;w|}HGo0D66sm+9YL&OGENLw-rM^=?+6sK$l{4Rnx~c~_PyQV8G*=w!i3XE4S9f2Q z!C8fh+z}zo@UNxaE0gShL)uU4QG>abg$jgoG17H9s|c5EyrQ0ZPytS%({-0I18_WX zc?nh&Q9?POQ~zE(_mVxl2>|GGr+gH5Z+G>~RPPaH5clRRttTu29fFV=xy-)mzvt zlPHxPs$-aU+p}*sI_AebQJfm)BjBQF73~LR-a74LkDG&7{9h`;mQ=CMs=|NXj^*3l zALXlkQdO1<;z1!x`RSMiGJGY{C zGNhX5aVBZC*{*}515gaIj`S7l>hTm)S5kKH%eYnhd$$le<>bGGnqPgZEj^B86HVms zxi%E}gMVov6^}SVC z{i)YE@1{(+^_pHXwLS9LhCTnh0zKwce8VMy=Qeg$y?qM(l;F=9)i?W6Ve@c=Z@FIl zrnB~gYs@Tf&(?dIi;eXx7Hg+%+v?qvtTF~7siV6F54=+n-1U1IN=&>#!ZX=O(XtZJ z#Pmn}#zMhyuVxXc@%>;F%8v6ddlRt6E^+X=I%ig5oBG|-omDd}tM`KC8eDZ+*QGu9 z$TqoVY|qr^N}YeA+OeKpS3#$9zd}@pQ;Y7W<|ljaf4wRakft7l*~@gv9?eyi)5nth z)Ps>Y;>Kd4MvXeih5Fyu| zj2^IcO@_wZPhm!{d|?xaf6Y*&?H~@gb?ny)z@9G|dvXoC!o3=uQfag~>kd2+(@m1! zqaA$tm&H^6ZABhZXVo`|MxGev9RKAMvPVvPso;pIVTH8in_YTi@|z8;7H8U8r$)?J z$yos@6s12;QiGjlar)b`8-rv!H^yG3!Q(o@aD+LP<5I-wj7utQ@v&a8;RXr z(HEG5HQMd`5%R%xdjh^772};H8c7dUlucgiRBUlPOn5tFZfI! z`;3^s4(MXh%ZBw^tbHYY6}tPHF7Dbg&Nt%9C4>5+N7lWXtd1HHZFOg#J8o9LntnZ1 z=0*`({QdO8@84c%oA7`$&X0!JkaMElh2aS*<#xGW;kwja^5((H@?#jHm&h%%7PDXv z_M=g@Kc1XcaCo)JV30?_vQ;h&a&BLfFR^orWSgJkZlAjbF^%9(dxpchCaMur@++fy z<%?ShM1odY?w~;VVlz8Iaur&fIXY&FhH?zaMW8n$~MWcJ94&y_0#naJz!&1b29+rM6g|_FeY*#k%v_gVndS z4r~?i;9DNzeZ%XH-rIWhl@rw-_3WQVuE=&7u)BSc!2y3@^sNot>2kNY0*j6owxXV; z8HZ;0*BH|by^CafGKWp)y8neu&kk3l%$ViT7@m*{F!buSo!`06y_%iIMa?%kmt24^ zcHFX@HPSzPc*E^|%-789I9yCKaziaCHp@7Gl`U4oa>$(uD64Ta9EAbS3$i4BmKhIK z&UZT%cRMJauG4~tS-E>yzkDjVP{FUQoIkOJ4~YmlzwTec3FAa z-XkL9AoRlg=g&C5wH}0s6rUn8TTNxnJ59dV+@cKPt4%lUzfN zoGc3U!65t_L;7&H_N>VMM;qgme7UGV$R93KQ`KAPL~o5k=g@8cFf6(mK`fUDF9t%Z zqYvfNiAHi8l%S(L<;VG!gaW8B!4TT$VQBNqN8x<)UTDfTDo9P+J7@f*-8^u#TQ2p- z;|7O26}1i$REviKR~IwiG>l7Lp>AtkQU*}Pf;bq#m?@|BENWl*@%;j1956Z#MVYLR z5BP!k;VZY^%=wypt3de=T8?k!j^7|E@M>Hm%iwx8F_AYtme^@!{rU0Jfu93|8`yEn z@=fU-p~p;(9Z1f2ziv%Q!%Ao|zcc~{dB1XaEre`vv$_v96rXsxPEYqJJdhNl*t29f{{eDSgChcE z|C8$){D1N-hx1HtJnG#6x)sqjfRDENFZ(@@_aUOFD3uI2^9fS8754l@+Xt8!a)W@f znJ)@|i4R}2vj$L-7gW1Bcd*#njCmnEb|U!W^1;I6kZe0#w8FDlnGb@YBB`- z18@*Zg9M&H+`y5>kQvY%wM!`rJmwG2I0)YE)*-^~{P}Inm%?7wl?Cw)cw2-Oqj-ud zxNiR2DD+OyYU+T>52BZg%C^mi67A6Dq*bpx6G|e+g|pa<*sAGPhAIP)m#YQoaJMx3 zqPBUT)NCrBqdQ!S9vcRTYed%wty!NTq#X?aX z)X!2Yjg)UCY-ji&60xcUH%LC$AD>+a%0E^j% zI=8CCoR*iviy4|ScK=lmRxt?ewyj*&-wv5P1@}Fb&}Pekmn#kBgCwpEFQfDWh==f= z9uO^C$|e@$cRCOJWTQvkUY&2U@D#5Qs#ebx;Z;ap6}!}iAfhYQGds2r-Z}JZZ5mGn zP7P4yn>ISH&bIRK{H1D(8h3!f(l=v=^7J2A3dBA0K4E=%OzBsVs1ERUitEBw{XgL}6{NEH^lozr}Pb9>3 z%Oa)k!(F>D8|^Qm(}Wn}&D1%`3pHADk!AZNbP8DVE_B1gVp+c@UYmd0qECskAnTIx zqwz18Mj4_)yaD6B#9hw0Qaiy=ZLkaTY~Ie@d}DVS1@a&ANaocq?p|V^Ye5Sc!t9Sz z_BRTlq}&N@X~=FnBPeW$Qt3gYB!Pyuoa!*{tABdfOe-l;(m;=huqDm-30EPA*Sgj+ zhSmBJIy2p*E!-`iRi_VDNWPJ-65k{eX2cfK=XuZJ!BZ8Pr;m5}?)G~}scno6H zKP<{FKU@6UqRiU2VmE**H{HS`CSu?MuSaH1(kPx7%lP?t;Yi2#DmFs0xo43rp6jhs z?SwbQvEsMXEcpD=4Lb<=UZoe9lrGNFeMjrJeZERTHEwEw3^JQHH-qZdIWxIv}Ui+SGO~58}=83_@HzhG}4l z(pzE2kM-J61MQKMIsLJ|M^ynP2&*M8;E8KOWgz>JQGTnjQY%L2&acGOxlg4h5>+Ns ziCHD@Q^D=$*MvL_7VpqXa#;2Ib1RlRMDz^??w zZD)fH=dr;3q%9;H&r8W-2D>Xwa?(pm;;$h@40Ghh8*Q$g7H`G<_gEIhVQ|$%&!(tM zB5CDME=|2qt|iCOo?GEd0Wo||ONqDOZ{?A+>bLOZ^1pPEyanJ>oU<}a2yEMKkv_co z0S9y5LYbPwyieu3a_iQ<(k3}9rwV%*zsEkdvJr%;IRmV%W_0ztF#OEEbcMfIqXan?~!Q$fTwIRHDEHcdJ!zwr!wQ>KMLtA+)c{{OCIlLzQ{qki9 zcfoHQJA6#lqAGDZA+L>jVPsusi?mC;nvyGp1EXo!daq{}B9ZG8jAWZiS6XKU+x?ZSIl}x++c% zs|=3*?V3Qlvsz;3s{~Le97?G+pdmcLW`R#z%PwO()Vii9XH)sCvm2^c3Ni4j6E6-O zZEN5iO2clmQ%ED!B7SXok8z2c!ywLT?)?^T4@h^A6O`DT67G}baqfd$>}CuawIOZi zwiz#QdTr)9wZbJagxK+pW(X7&vS&#_r}~%nM;}5JpflMHTr_m6TzW2yl`4|IEB?AV z-lpyZI}^OLh$at>Hpf2k#<88Df@ zJetvchiOH|Ae~lHPem6bjdC1jG(KkC5_|YDLi%u~+D0aU%qy*So5LV~hb7}LX}`)3 zj)Gnr*?zhBRT{P9-95p-6TWG?tj`mL%d%nVa|KPmb}CCO%)y|c-&I%vJT&>JE2PsS zaO(cMhv&ciyVfmlZm*YT|A#%#!*o zvo;)umg}FI$G3aAMJ{s6r^$!lcFWo8Q9Zp z8IFP=njHY8xMLX(uS6M+7UxyY8uot5u{9O36X)xo|I#bE@DS0VAC&@FUC2vqo=FV#HkM&wk?@9*vSd zg{!+jQhB*2kG>_iz~&97lf1)b?agM13a;TY>MC>fP^P|6*p?7$US^Iaj0~+*=LOOg z_Y(6y!m@!wdx03=W z@R=b>70|0V3U0ei$)kuZlwDI!bXQI7VRi+zwXtJ`hO0zd=b1 zkOyVCI~X^_I@GC}&lS7A4XhqXwGUDT7$c}i`NEb-`h(%OA3tRlrcq<!f|}(8nx31E|5O_KUo`c^7=-wt$D9WJYhA!gE$#Us*R%f&xuwD03F{ej$VKk_3 zN1Bcz<)3SvZ?vZT+6-&#UWuJ1^Yw_|4J<}!r!W4)-i3&W`{*wGlQh#ri$|`1Dm;0B zBSRtN<_$j~ptKpWFxSQeRS|9^6m6Sq=YTbG*Gyo`L)Ir=y}wGwBL}@Uu9EvLWmKj|`ky7;|49G4 zUsI^Gr+MJRm8OB_W+tsZy$C}HCkC4DUoaXTgHiRSM5*g70h8$+7*s!?>X< z9n+F4Bu#FQ|3Dg=Bu}H8Mj>!wPD#(wl`vC2ciEd1%WhYJzh#mh9JI{s=zDkXyS|hs zCJKR67l#OY+J1Hjo*Q#y@h#GFKHw+53 z>5V^nwI|Lqcnf2(a`t1Qz#tM%=k0?WI{d*$JTl2fC|=A6f5iXG(um=_o&5=Yi?Gy-8u>ITfW;`0&C?y>SO@2ry3ga`zM* zgGtP`Smp5g-Kl~1kx0;>x$w1ejIGRD5)VQUK3tnVcH5l>qx+ArUIra89yQmB)k%VtQu_u}Dgyrwpr4Z^=z zgv&OXX&06zBXMcyLVTQZo{OzXK;^#gVH^A4uOg=bOXuOvcPF~aN)gp7a1u2KUTy83 zo2~Q4T{q9aegU_BKX%T0=yLA}$G!w&Tju>^a%2Z5AMt?058BmdsirY~4A@k=29%@X zvQ(pXJkJktAy+86UG&)}R-?s@@mfAej}}QvUJx&$^?6nV;aX#aN$S~m+d^0K3|K)L zCyV6@PN8hqpBBaz~R!8<>Whmb# z{QwztICAM5oG$03>nOODr}U_Wr&Fw0{vmPLGX2V!0_^xlEJywl)1;N(bBdQsJ4;XD z;rwz2oXj5&@*vg}I|FpVE%q_tM@$_CWSY~k@uB?IY_8eLmjgX~O9^kj`?lg2*Jl@3 zQ60I-aYdYAVSG{N7WCvW$Q{P7*xq1TU-Oc3cTwLwyLO4uAsnnnOm2R~iDZaMYEQ#u zVizL*@B`;T0}A!7-;9h@0@(H}Xzk(j3j~^|dxAagy0AJfY$l0rB+-MbwfQ!^nD<2v z@Jfl(vzKf~Ot7rvjF`X0eU3UYcT;sWRNt9{hvR;3O^zC`0W8j(MaHpGC_8b61kD`8 z>t46)xNa!g}M+4?0TZ)z6sHQ1wKEA z%oRT`w#XU)$TDST*!1~BhDT;~mXZ!-jMAoY)71kq4Ao3rHxVZf8?=tCVbuZR_d{apTsqs66H|2f6y5Z-4FZrf`c0*z=}n2dl*082 zl+u&e_d>d7*l_5Up`Jmhj&@QHVvKSFzkpj`GWIHg@OyyCZ9I1LQj-33dEEk^+{H^a z(qJXv*il(yR?hef#>XDreoUUziI^iw1(|HR&H58mtXA_f7~A@_7*Wp1@m))pyCchcTQOz$;VTS?8)~)OEcYFiUf@v%a<8Z>>sRJvq?UX**+NKt-(m)Py9Svq#9?b21( zo37tlSbuZ7nD)JV%xb#dR8g$1FMxz^eAD&QKDbM1u&D^1c_)h)69TUjsVtIumG{&M99+EcjkugRNdV=76V-SGT4FS0t>H zeaZAzzjcYdp8K4;^(B78r~M)pM31Oay|*>^b)cW4L~b-IqwU6myVM6vI?=_^u(ZVr z2_0CZv_~c$jE+4`w(Gv)P8pFdy=Lz}%yJDarn-Gb|Nb%}=qLFS*5r zsx@1!i=479P5bXyl=PU04{Oe~ z=$%^U>QUlwGs5W0SQ~}a*B}p{7kV`8J#!zC`P2nHR(S<~3W#IQc}NoNq*+j$Yc>DO zx{D^o&){8GP_WGYP>kx`Gzj%J8p=-ueP1#XU#j9me`~M7q043VSMT#}dwI<$_}${1 z&sHDV-tW7PTU7oj6WC#%6k{@9Mcsmek50t~BGKtyAiv#?%L_;@ORsYqd#Nm1TKou3Kh` zvR9CuRFs|PjRrm>doQb<`J6+SbSh08M{vpW4Fw&kzZU3Vlkp8#GDxy_qGj6h{s{6S zgA`9M1^BlOf^5833);Hzywmq&T)rHj5ul+F)7Dm3F$&e5nO!aQd$EENn~oFDdf9Rj z$i$y)Sle_kP;f=N=8wuacW*de>rbQgM%D!xW>$>0Z=m@8fxx1;4P-g;mONGeZt$(lkKM3?|u^LGzQY z+A}I=y`9@auiD!P?NQho_afr^DP{fPEI5S!2>=ng;(dRmw8ULn%7*wl_}L3=;(qVXaG1{zu$Eh z7w&57Z9vPCp!}CF%57hGhF-#led+2q^Q*t-y`|Ymdq^}ZFkHMlR7LEbvcR%O$DJvd z^c;f#qh$RfnKcUb`U9svMjoStHmZf0>n`gOQQYgV4|l7Rh>=;x%>zU)<5$r|Oh-(P zA3weqz)DP2CDB2D!#H6*@e!z=(#mz{)wqTF1(K+{M;pU$n?O*OEquz9&pftx-Lcg@ z8%%G5;4;%Ofx6+z#HYcrHQHl;2Iv=9^~Rgwz1XmE|GnT*=_ZyBIeHP7)S31PS;A7p z1S+p^+cpx(-dGBX^$t!iQ~JGiFWsQ+YT6*06CP1J^$nE(L+b(I0no_Caaj;q)YM#! z?rXz7(HcjVE74WYF{_w-=!GHT4o>&K>)mP~!Q~#Zjvs8fLd<^N2|pM=jfg;Mmj*0}0>#9bJQAK}bC z*i_~XWWw_^Z0@3kJ)+m`8T6l4c+1do_TAOV*9i-`#Xk&X5?i6>Lmh<RNm$Q8uPmTI(Xa^hF=iD7N7gE@!B27JfS!x@Vpzp z0TW#xa;C%uHrV^&@?~_1LiD+}z>33NwYSr&?qBvOwe#z1j=4qvJ;;4nXU1^RMc$R_ zBGw#AbQ{*s%b}}jA7`Y?GlqLqbzP>Zyd@9SmisX6$mi}2c2w*#FCfj8xVd!?j(rVX zn!Tz(Wu^RBnRvXzO*S!Ympumeu$mg$+g=}fqfdmt(#8kl&%>!=9NF7FA{@@`KP!fr+OhaI0wkzD@0{@5(fi@10{nQZX=WV^l#Kv8HE_mCslVmcQr zkkDOMY8hJQxh(Jo1>HSAliZ(vAf5q5>+a)r5lZVjfBC0htPZ&zezx1(g3)0erw+d# z0<(DLyZ8i;Ks!7gyX zaY{A@hvLf&{RiG-XX#^?Fb?VQVsT*t-<~FjPJ6rm0DX!*ybx3{0_X3Sq-VV)N$j1Z zD3|z>M&zE}=?0UyyY*>9d;eKkIyO^5_L_J*(jD_~7nWjpl&`7CjuJN?vYZ=^WrYhK zj6=A!UtH)uDYTIEta;wJ-gD+3Lc_F}t5+K~)rUSq`1w%B9(xl;a_4U0=_a-`va=XQ zj&8}(V;frcw#xEjLb%e`4sZnxhJyILyA?Z^qpJw-vUfA*X0encjwsRqRC*m_PDsJz z#P8%+7f)y;Nat&Oj<9?05leCeSL5+=Z^s==s#nE!w>gPu^?e2G7$5div&=k6x+UIBi2&*b{%~yZyb8@p_reaYo!o z&MJ?O2~jf#9y(rk2K<<7mYkz(E_TUlI5fBq-_yAKGgB?o*lt+L#KlAzHxfkv9`Vu8 zYsVUHPKdseg8tw=xiN2uv;CoV<@26mHbT@dTfttle~2ZTE4w53yDOE+^~7);*_kl~z`?n$1g;i7me}4NB;!Snjdjn_6;={4b8Brm@uzs+2b(p3Po|)|87< zq!nN+8_cmpOhhlesd=8Vsnk9pt(*pjdh5*(moIhPQkY1@qMzOsUj}MhH_P<8Ldl}w z;`VlF*i&m^Ow_me3J{>YPV7HV#~Ewqch(lmKZ}O%obz@kV}uA+%c!g?>>UDDzHy-U z({{Q~TBRTWMZb-gH`N!(Q`lla0Db>>OsK?C_DYe3AbC|V{+86r=z(Y&9vxZZ_JtVLQ(^k%p6o70G=eyP^k za%4Y*SJh6%ijiLy{rP3?{|1jf=XNM_2j0!(P&OslAj9_Fb98&6-O8$|k1C0FW%zrw z>_od7f7vcos}H9#{{`K$FZ{m=&g8T%Xd(0h(lSt~z3EEu>iWQE00zQ!Xf6>#)%j50 zC0>vq_;xJsaQFe`hVLs;VtN4>hoZ90eNnNAWr0%56hI`m%b%c8Sr_ugV&W5y{+2DT zP2uPEjbLA6k7j>HKr);%hl>}XGNs^4cVGjDKHvT5PaNQ&u8{cWF)(kMVE_ndoEZNR za}#(W8Nqrk$+ffR-B!HEZ2Xi@ZIYz5q@W}Lw}uDq)$iPT!#v{}@RJBd7Q`G`xC{c; z9|>=!CRA2j11F{QTkU$q8}+dp5-z1H*{@4BOvIYO_n}VIhlA>xlY8SYx6eymy&{Cl~#I>8#XF8>Hj z<)j4R;PP*oXH#5k>{GD39@rkZDi_-7v^U38dk(HX=cN)5QLV z5jjzLmYiq7unL1uEb}Fqsumw!hX21I)e?`V&W%?CS4#tr^K0asx|5KGDaaS;KA9WK zH@oZ4*ns@u@e^jMd7bR{I+BazF58(a6|zls7VLTA`#eC}{@KgH*dhW6_USR0l^I=i z8Cs|&u3d^1LyZA^J-*2kAVqDZLf?wrGS~;ewLVd$iT#!W0QHdjz4_PK642NF`Y~K7 zepC;{bET2^$xoOCeRW;6UD4MV{vd7fOvTL*L|!AnP3OCXeQH7AbiIJ8l7fn{m%don zvfA=f_t37AF?e9ePjDf04Xab{Fa)k6YjuRclO+%0OfZjg`SfSDpPErSm? z1+@(M_ZVHPNxop;&SjVQ_MEQu_?-(;!xxPB2FKioOnHwdQYsM?s4Tm7ePokYp={|k zGu{c!es|5(p9{F5fpbpkxmOmp8I0H($@7Lus!Jn0grddiBAbot)}}y%U`wz5&E)KK znU?oual$#R{x%m8a#q5A$-Tg2+`LzCJK7^IkBB0+y`Yp#PJVB-zdj%vPlLiC)cAW*9zaE@=bUHrW>ekECS&5(U2^Nt1B_};E)g?sdVBZC z!n#D?nbB7&`}bcN$7XXgf2Cjw+mF3%mkgagJsv>fUjHw_BfKzr_$w+zSMaSy`e5ka zd{czwUEK$W;5HC4V_>LOZ?IUiLFXWG9>|CMYKkwCfXWG<&d3*kn={~(scG6(*xzhK zw$_&1+_|jG=7-gY0F%~3XzAYB9KSfKhu*@lhKVB&SYNt#M&1o0+Dq|DH1LpARvtI0 z$^JsCR4}KrgcL7tM46&EtaaZUs`a~Qz;lq+c{9TJHBaQRM}Od8Y8K}5G})KOg$G$E zQdEOHL~=5#=jO$-@_1<=^>Nk}n;j8kP6t=z)9ICMH0Zkjry|Dp1{=wNnXKIZ)?)Gc zz4dSNk4Dta_mildVr=3GQrTkrwsps@UHc4VZlr@Ao$T1G`FiRc>tAJv;nz+6ZBW9jVqG0>4s zwF8%D4^mE}a{Y0DY8py(ij_;`<%8$G_sM@KGj~yynVTsWdt~5i(dmKFQ8rjPH>Aqc zRr!lZ6eW$`u+TF33GTJ+c(K)~w(2(<@P~mm4QzO~!GQcWE^YNRG!J}7%TfrucW|yy z+@<*XFA?VOY>CiyHfj_lg|cCp-Z;-%GopwDiMO3A*@{;nf4X}1CH(n3&8>&@llu9n zuQEVU!}XKhus;6f*7D(2hcY?x;IaiajD{P{T!+3gHNvfxC*JmvFI19Qw(6Flsc9`* zt-OH{dI zV9@cQGNC3)wB=t>m!JUYq5jH*h4J(X5T*Jz^kJ;M-}$5((qYf4cP@N&yA)1zsmcSVDd}QPx2)6X`>7ZUx2emnLFZ!RpufcnE=T;xdsHLB3lGX&zvK|0ye2n$NbwYGCX>UX55 zA)74LWLT{9nr+T^4^&lW1WtClr`~=@O)vrAaAw=E`fIY2rld6*+3oTTxAm$G&5W^5tB^Rt6v-@nQ?mB{*VMpC+ehhS)GfLgYH{i`z_x=fr9yP%0J#Os4 zL{=)umqR%8m@i-d(Jswv74O$ChOJ`@2B;3pH#W)XLYaBosL6zuY$&P9aV~zQnqPV^)Hg{SGbpO6)n%2$DM{gF0 zDpyNiI%`i>Z_;2NL!jYA;H{Zsob!2KV^=!$NKiX_DAe9&P3+t%J)9-;_r~Fihbsg@>J30u&%yfq?&Ty=#b>`S|4o2mnUBFu^m@PRz%^ zt#j=I1o!OVyaFDM!$pk}XVY8@ze`Ue2!rs>!P2&hw?ym>htvrUm04UCc7AN^_88lQe#j0*wXY zK_70*3+oo%pX66iNi*T!T@0`x9TnT@cX=3ZC~=?HZcZe*$lVwX$*7>4`2AvF7ofF(rR!iYDJ-nyB=>4RegWx z6ITiBiY9Gqx_oAzU;R>VpZtu;Dw9Gq;sYNXiPgE{Ou?DPyGe+wQPVs!KZvj7LW$D<9onzoAkCuXcex5!|9-q{q3pD2bH@Y|K@svH+<1XH< zZqcFM17khKmp?FJI{K4x5ot{DKC9ZGRv*ZwG^vajztEz-4DdauPM*vc+xRNAM`Sg`m*f@!nf4l;%DxGZm_X?fnhC zQaKVpiLm?RSFn@9kgUqY{63z!`|~6u4%%?R`dF~F)2>{VPyvhjVh_-LX*#RB^M|&P z7v--{T&bJ-n#UzO%wpq_#I_)x5>}s*M$sarO@NzqkL_}@5sC~^CntnqX(CPLk<|vD z_uUH)3=0}9k!tbYegT!0p6!~>!`9?%R?m@fdb+=&X(|-#y}32L$xtt_N3*>9PKyE*rh7;4r5|#|NZScg}j3lVlBTrb@@NdjbfcTb(6W<3| ze2;AD>NmP}qbV=(>!qFIJ!Uu94>W}j9oZEYArqGh^$e9*I;-TnT1-zlAn=_Z)!wLz zo~A0XJi*n6a}R&fU+soHnvHXO$?Xck_hn$MlsCOzb~5yu_jHI}qHGF@V(d_0c1s-+ z%BN6T0>7(QOLN9+wWi27D!ijFvCgs3;{2`ILysg?bZ9=HEyhKYW>`8Ur04cjf_Ug=W!=GAmKDl90O<(i22_Xcy9nDD~B0{J36ly&jE_O zH0KE@xIk>@ZHsKBPjzU)EAu*P<24}(>aT(tsD(R}5%RiY^7MS0>f_1}IN9Ycrj>oe z!+XuIZx_gLh}IxDw{%EOM15-7F0Qv+eC=9?p^F++95&i0T7KLlB=Ad`wy=%qg!|D4 zKhH14CZ70Kzoe#q840U3wVRB{w`brzIj?edwwL)kPsl0WJkPx~FRmWWNMsHPX+}f7 zYD_O`p3bcay?{fHrkJ;5{x-?XZQ~VM5NfP(G{B;O!W<)Ja;Z@>3WIKOEri5(A205- z(9DIsa1*#JF~U}6vdu?fxAsu5pzB%B^ZBvcEcTE3{2IMBYG;|YeGOF?N!YTlwxa{_ z3MVNFW__zJDzTTl0qFlB!q{!A&?#*tMf+*l2VKQ+jvZ(`Y3T-3`+xnuHuUWvZsw&e zHvC1q;(Fn>j(i`cEf>YV@)$4wKG_>FIt#`CTnTMC&G@DDau#MR%$(M7GNarR707?k z6UOyZ^OAlScZj@Ezq@FWty}Mhw-yh2(z7XpN-qM7P|P-F+fp8wM~VoM63YIBTC-rZ zZQI<#;`WMH&$%ZWlFL=iwrUe5XJ2S)baC%0rh&03*YDbO!J%#g8`bVj%jO0$WQv{v0}d^O$|tn!U%`>3gkD}E1ERoP^t(rh`Y{5uHRC^8L}r#>jR1jg_Q+4e%^(71 zKmDVR*fhaaxQ)6bYkkMz^o63+I=goD&z!<(>%*jU3$)%>C^KFzX&~mWvj;O}Uv5WV zHRYLX1)9p>I<|_j5%jIEi_jBIt=#Pb(z+d<`W;E*?DM?}&eh-P!EyzMS!(p8-LDF^D*KYP%5*b6uxH2-k{T+ZiJbvK(r zQCfx!zg$GM-EmB5ez=YAuRC9{X3x#&`_KVV^E|NzX!LB>2>soNV!|PiPbzBb2c1;= z`#3`9HbV0a6+bdVpGKp8{GJd{i37j1>H+0yue8nwVs2DYBfP}qYc}tkX-dRje zRt%6W?y*t9DKmuUNk&k^`MSe@ZUQHYw(ZN(=p`fuMcU1YNY$Uos4TcGm0U`&0 zrZHIYOWVZl(szkc>7M?R&DUT4Q%koW^fIGV_4#`9CeCfd`TS3HnEx5=Nq}>*OX!6D zE12W|My&W>KSh0M-Pvh{oXsa+QJKFaJ{?FU2#P7hVUKD^XDtPTW0E2{0D1LZ&eKyU zBPjsA;LNH35EVk!7BZ*>ssYk)JlN+kYYoqxDjCrLd<$CO3)J4)IHU<|Dr+wQ&RP<2 zcOV%XGmlU<69OA_j_CWd@FT|X8h~_lt|=uEn=*_NpmUt+3F4=aQPHo<%EVes35F#A zWxwIeFHjo|z}gs@E?APX<1pBoF{dK}K4KUQd=@vQFgtm6H9N_ISt@3%ywB9(>?P)3 zNNThNHqaqie|2jyJ~HWv7W~91x|=g!&hZ0t-}8jmYj~NT0%C4c0tq=&m>O{gcN;^w zd|-$^g`pp6V|HrSBW}f9LcfTTdSMML^T3HFGo0$JZx^?y$PAO44Lh*alDv>DqU$|Z zR||`$>_0dzILLL-N3B5%=NT6c#E zmdt!-bv)sBu;daQ`k{$i(7%#|4^F~BZbAy%DoDP_&$eKFD%%Bit%|wV_!9Uz1&_9+ zJUQd_9fzWO=B2;Yi+rg@j15nK#_z`H*ga_Xrv*XF)#RbEI~@aYBxFN~_QkQl0%3>6 zco}F|isgFFNNsE=t}6rWdc`u11FP|d5}@K!0UO|cQLT=?Uz(*%4B-c_9|k|TiHxZ0 zlevhRcP@5zCp=aPe#fkI)NF(#GSHRdH%ngVq`LdIh2zl6Q>!>! z1<4eAB7cgr{ZHO-UfT5Rui@F&J*ugP5=X&I^Xzz2(GWuF>ka)C)%-p>cp4?Gd5?dp ze}UA&(e^B>lj9^^6@Y7)cN*P4b0*6-8t3{>PYnBbA60a6$#otBEMeKf>p>Oeh^M2X z?-;4H(W<}s^gtWP<5~G11s-s$h-&8|zvZ#yvDlILBPPZM5g};WAbU&i>Z6^2F~JF! z5>gr+fl`h2^PBvjeIxTjLLzy^J7DqzU|i@e$mhGJH2Z#`*}L1Zn2<2x!plj7aywK@ zvU8OE=s-pmTrJ7gaRz(!8j$&RST3~}@9E_5d3skY7N!C*U~4qEmmHBK@p|a?(&1-M zVr*BcLs;2DLTH_zid9L|S$UB4Ku28zR}hS`T?8xFp>zR=8L;QEdo zgfRczwp?Ycu!x3ym&664xHgRp<5P%TXa_X_WO>PTIl|gy5 zne0BDc`Xm}?m6NacB)x@Id@TA-U#D$$S;flw#CN#BYe-2m#BRa0>}l|Pj0~num@FR zMrNQupf$EQMb?TJ2ka!|XcBbJ=Sw?Cz5pZe^=FXsd-|*hD;=>ISyI-%XFC7wLM36y zV7r;4L|f(T5qT0Z3t385qQb>~Y}D@aMLM;v1X7i?;tUS7XuWq3mA|nV^KlD7OWrbM zv#Horaw8WCZw*v1l zQ4w91u!vVWv=Pe*6}np(fRwrx=^mA8-?v5*2}l1*h)lEWqBUxBJBfXrX*Gw$OMco@ zyR!<8HT#pqDc1MLeGfDRw=UcN>w@Yy3Axe=bu^(_CDR&jSCAX>o z7WP8R?n7D9g+Pzr%$GsYe(GdkRh4l+uZ!GvML(c7%`7q<<#s|N)=$*oexZY+Ar+2r z*GTg4>McwRpVj-qc9_}+Oa>XB2%#_bcy)8n1qCI$((%}$$BH@|MWylhNCc7$u+8K>^@RM#}rxeQ6oXE8;ssH@GL zqBAi1@|SjU!J5u>u*SXOY{?WQGr#I$Ij=u7&u&8ap=@?TL#y9zD<(jy2(Oh{fKELxKzns+-K*NLOdI5UdJQiqpsUdh37rieB z&Bad&^8&AB@3KXC-dg5$X0=1Wk;C@S2*h&F<@5g4y0+{$IEiJ0VFEDnTaW6ypYqz3 zbo*|gVaQYOTujX22r%pFO-DwS@$_{pnH;YQq|#Cx4tYm--W-!=dt3*v}g$068~yo=GE0;peehAlg(;QIhmXkyyR;=l#}cS=-aPgb_xR<;VNi} zZ7RdYiWMy~_(c{1Mfp2{Qi+{^x64aC)4PT1q+OpcJxWwwBNB5eueQ@+Mgm~stb2ZS zYXantPBYl17?NE0b-ym1w{t^YHfMz`$&6%Cve|;(VDM&}0|uC#?DOVqP!6UBZhj?v z#a2LF858l|rR!)~evYUf#h;y^*b9HN88*M84zyM*bi)l8Z5^ZOJa*~W1HYs)6fdh4 zydRcR<(7rdDZ4heA8UWG;gPY*--(ebsc$qePCpLWNaB_7cMqOe1q7()FDwb%FqaR> zxZGuy2r6%P-FF%==+t34t{4Xem)(abxZl?t6rW}XgL}RWI+uv2Pb6J z)rJCfOoz&X#!u4K{fXElouUga=7;=&N-73Tk$PBnd!i zK`FMK7)hYFfR>PjXHy_`&y`Go2q+3j{Cb63#ghP92VfSJ0qhCxEsAh?8N)QZ<;Z0- zs50*Y&y)8UTl0t8t;KfQycvo$a6s@g^)Zc|lt_ZQ?X<~2$HROOK#1Fytqp__ zG3sAMVW>habYVB$_gfN4u4*n9uNd9JQ1Pj;5}ECfMh3U_7hLl8a; zg7Df-6M|Ia90mAXG=)M%=M9-qpO{@Ig`7kvx~K(1B{!Gmz$51 z>7lFZBNq`K9{WG9;C6Jj;&E|2UI49}d30CL1%k-UaR2b$N#X6+J}?Sp#bI4=osn^G+P>XQ`BIsSBkD*`6k_ z@48c5EIiGAUW#x$Z{URt{<~-Rir1b$xx08IMtq~^35x}y#-pd9X?+P6v7_qj;>?dc zTuND*q@zB43LhVWOmp=egusivW<3o)x!L9k4fsv4g%pBHXwAUq>%QbAfS>}oL_7%6 zW=4W5^C{pE6gd3*^4)=YuT2(i?xK130fieKk^Wfbnz;zk`7oZwM|ECMAp5i8PHF<< z%`TJU`~3X;^BZ4UOX1zLUi;{r1(TEg1mBGh#L=;_^X{7v6epD!R7}PorrRUDbY=78 zWK;5lIX5@=N2uhXw6X7ZSsDr7YE(A?q=`SMEcGmmyS9CDX?{L-Rn&9ibvT`n>cGGN z3m@OTiE?Y^roC>*%g!AMf1zL<_O;(j^3nh^X(K~yI(@H z45}QWqod6yQ29DMdhg9;JKnp0oAhd#n|jnrW~SjqcgyZ(mHmEMuw;{17&T9Pnz)Z* zFcFz@a*yPR?;dLA*nM)e!e%&c-imn2bx;L<)@h+L&g{U%Z%Ye3m=l@e`=cW|C53Y- z&8LV{w}h#{i0UX}f;=lS$1iJb@WDA6ewj*#DcWtpiOT&gOjiWGs72pv=|$UQAx8%} zVuGM%C%-HE9@_UV;NGQH1D1JI$T*65BJwq`oeIqBSy68rD2h634p_T#A_m@?O7guI~%j9=CGd>=sh$isxD=teTEKL&@5{lpesXCb5^f zS9^HqYu*3mDJi|kP`&Vqz;HMX47tOlSNgI3xsm_g!jFKHodEc}e5+Dl%Tto>J9A}K>!Y^Na`t&L5Z9~7UVb({}0VhWb{xi&xV&)UYehjpUSQSs~a{s{l2lAU9 zL$AucHsN};uDN?O()&A{^t^6o@1GcFU_BTGZDP?k$ZGae`q7;vJoSB7bna-sYP7a} zc6+^kbN+i9qmZNqYH!M82BEHzwz_JE5chGfiNtK8$F0)IeEgBAqNAsTQ~w~_T1<9K zqEH|!+%K~o&a-UPZmpJ(to2yu*2*~H-rrd_DfK(r8ckl>r_wRJSE`mS^r3MyfMl*M zQfO!55?SB=?+e|w)-{w8e^^!bNAnD>eY-|E)!K?j>1 zG#>9`nsal~XfKOS?FM3U22$K|31SfUKGk@%jhc(_dEM#3``Z-VT?K_RsABuU^=>4R^Z;=ug!If%u11>}dDnrciQBMNkZP(3AqXUj z{%w5{3=+PcuU(dUt{-e}ZW45KbOcc_%RM8JiV7K273~%~-f23SQf5qX?qq{ouy_ux52}sp>FJrZb#-?O=4VWM&XIX7#OY*u ztWTRsDus@w`+Td3_7i!$IqkFF;WldIVTf{_kPrQ;CWE4|OYm27L+ALU7O9Io&DO9G zF@G&6n|#YYZ`-Ltt=wK@K*LBxh5C@5{K{?9Y(wnMNL0pvEBjm}$|1&QyV>ZzY%HM5yjBNuF3|zv6D({aR9tDzyx=n`xX1m$H^5Lgh1u?N{vk zo=cU`+7~;0G=*K)GjhX>aP0*gi7tP~&Ll*@tq+1$%#+SEW@|{-vWQAZOeo$5EK{jJ1=5+U+?6g>4c-{K{FYLt&#cj-s;+3`NyEObmq5WoPx65P z%BVMPGUVdeR|w;Q+^hjf>UZ2Nq`oQ`g2(xY&Nu1ziAgUr?M!)?AR>upo;}W1Nrp?< zAA@e?OV6x0t!qp3ST5p<^>lm1JFS_aie=52Oss~hwa?Bs!7s})<*dxQY8mO3>E0`B zn+irV0u{I3mX@dLBZck8cwu?{nF=w{E%T!;YdPKWV+C8&PMcy0;tHZXP7x6rMR~73?u^Sb`dP?*&Qoly8A(UKFPFG$n=jCg zd6zyS5ywD*pZA!TKvT-(k=qMqSJ#Ydwd`_ey1WoPKbL-dV=hy&h|{iX6T{){4};L( zrs`B6cH5^h=UR!Iim!>ZP)tZ1T`V57*q76d~!eOgBW5pG*R|ez9?|)b&))JlVn1bYMk7b5VpkWXErL9S$`5)|+H0N4PIf7b zSbj9`PH;hpy`TS6)uxc5E2r|pl4xGz>lnGk?P(rP*cQj_DQL)_?xZvv$YZ{c;W{J} z98&aTKug2&C9l}Y;U<-;i6+bL86nqCnwF=UBwP_Cst7H(=Igw*d_|NZ4{CUu5F_t; zk!=Vh4EvT;iEL&{5jVozmd;90$_MpD z=#lc2>fO7yiyCFq31~km7QbVUjKH_{99i$bmsGlZmX%CEL?rua1OM8~*wQo;eGbhy z3X#`hAlXy(<-SNT_U=$7L|+VVq zdHr2_k{gRula3@`Z;J3>__Nrp&pLXvAp&EBIf(Mx`)NMka1;_6)_a`nPZ zP(5o(g}Le!>RU>9Vah)p?rnCHG^$c6r-{{Mj>yhjHum4M+_cu0%)rn+8R1?QkVaoq z<`Nj8z!$fA-gqWtVB(@**{G0>II*JT>O@7pg{yoHRL(`)+?oIUW@Lz9;UGfLHlF7B z!1=ds0{cD*5@cifQWIEnGi4Xhl-8~X= z24O3?DU67&(0YI(w{s{2kLvm0);N_vVc@gDescOLwgy__=`6E*!CESEHBju!B${S3 z??uy8{hQ+K1kgK%Yy=egknDx=iJa{vR~zP}JNwY=4KNkY^-s{zzwB3k`!w4!HQ^Mb z?l$xjp78Pi6R>Rh;+3S?yY{AuFZ!Mvu3_hfphs!iAC@hRuwtqUMtsvkW^%#G`ua(z zZh<H#%;lC)$qhi6EDsDVMQlLO{BWj!Yif|!s@tZVyuU-uJJi2<|= zd~h1}OaV<6!|q$JWh34;fe$^ie?s#ybL1sPX}$7gmb;`4rw4Wk}q||*oPVo3xud_)nMxwdLeOxRtwQ)Zb;XKxZ0-x64c#t_MGwhicI#
soHy4O;whsEBHh5MSCECj^oVh;}wqlrg|*6p<>a2wH9iaSn=!Tu<7nv+9M)m6dcD~r+M5+m00ruPu}Nf8X$`X(E6J!CRe$?d@aSNN zXD!1Bq`$WevQOgH#sf%13&l+-1~;y9r7U}5+Rh-G`#N1*+f%*@PpL?Oz{1vJ890N9OEeYsD3 zh1WEYg@r{1JGP7W`+dNAJ2()&U1qM5_>)>#NHB>nDBuJ*Qnuq5)Iyz6%<}WIAA-%^ z!fKNg7&(;8&EM3-Wv5;#yx}Sk`I51(7raKQw4`XTe`QsAzO$H)4vY{VkJ922mp+SQ z<6gFfg~b!`=|Tgc&93_IpXsh2xS|16s9QMP?Dfd_1O{c~W1V0qgXv)W}53kg;qNG9!9-2DBlg=iQol zmeDazzxRD5WGsWb-FB+F5$k}`wQ2kGbZyjrD!u<1FTv0$KvZ4fwfEFPk7wTlPaHXd zY*-sZX2_v;PhvAqAtbZwEY`c@3NhN99EgTYmBEWu$%LNx%rI#7HFhYo#0L_T|Bw9E zf8D==B`yJtH8XCno7b|z6fh_XL4Zk0BjWl_z;W8}>({Rq-@kq`i)0jWz5A_t?i`K< z0W(NP#C4eoX4P}Cik|cKHRh#)1f}d^KGdD;!ds{sLRkkPGO6&nJLhNL^Twp7^BC2- zMuGVeySKahea;d+ko9A=thY1Z@{?`eE7S~w9o1E)r| za#R;jQ$4b6#v8*$19%GT8cIjM!sfcrlxxfxNz7<5b=B&a$KBG(^_aIoQa_`-@Jzr8 zexN#N<;@La^D#ndLsL03xkv{4>^Is)hHQ*}*eJ2@A1N37)y&K?Y6uq=77zz--duCZ z&rLn}!Sa6lJyVP>$D#3pFM@;X{>sqq(k$_ZCIgmZ|C@|QSEh2a+(a8=clEPOgkE$X zuQt>~rzOq1!^EF1mHi4ug!ow@mkr+t!on_bMVqyT#H|jhzj@2IxzwAmyX%>&l^>5x z6E^@5Nbj2yt4b0}%ndaOhm*&IBrI&tsYxKnPF-D{iCHfE)#Rk1f~snzhXovPgg<&j z*Ax2@SgflCukXQHRr0;0qoFJ5cP=oK{=vO5jPrBOto_#~+VT-QNo$o7&^-=|&an z9HHv_bWW z2h)dHw4X0qN5XnzxeO}X*Zp_uoLiND$F|%E|F207@HB(a(6~mXt%p;(Y1P>rClBA; zj1IW-ggV;`|tr@u74e1&%ukI5qlE&Dk1t2z ziJgbvvKwOpNtR>$+(_-R^Qzb8V#j8$q@#^#QNy-Aj?Yzo?X~*8Z9d+>!Rh^QpvNkx zWGJiF#H13R3rL*8V<3TfA1A)Jq#L2~Bewy9SH^dLO|{uzMNYQy&Np z>fzZQsL%IBzl|Xt2D=*UfGcp<>N>G|R$!z)X`OFXG)q?y-P1ls!K8j=bA-eQb~ zw5ydPF>RZth1A@?qlBAE+q)RW*%iSVvhamUS?z$@jEFDtdTW1ciCFy;aGR1=1?U)JRTJ_SobOD9GB%V6%)qYmo3smvNEco$DLw91 ziHc%4xB^t~5{8{;J*~ZyK$`h^cm~9G-|ASZjSC^@@Sn7s}X#>SWX+RaL!`Xr4f zJ+Q_7$k|Qg8*#n$7{b^`0{kzgRg>-{2Xlt8A~PN`G#L_{WWZtl|t}5@yv)e z_~J2T;s5Y%Ky!1Jno}Ss2c_}O}KSA@XO;7))3!YYd_=`OMHaE2Sb>kv=4R%23 z`t|FwfPlS$D?L}I8&GlEE%dfk>#!ZifGfvx(AeYa8$A($FH_2lxe<+@?J%bk9hNR# zteFz<6hzK1Eh&Ne(c*JBjitmfV4Az0QXAg{{C-RvhfXKp_HIz#P>qdI73uh1+2U1q zZeD5BggYiV9c5AJc!-fJJ35nIZb}p1EE-C|8{k|4hi}Y&Skz7;+dlhjmH2m=X$p*xNnxXfd_PwQUqpt+Ff6eN|aV3_c*8~H{yO!09iuBz25 zg98zY1(zKCkM=tTvXmBrh#6i{acJL7m+j5O0#gF-pwl$Ly(;(qX5cJHCkdTny z{Nw44?(Vqxc?;22kb`{Y%Li3szO;rWGhN91)U1EH{?V5f#YkjkR#pedEox&l!wN6| z%o6xY9L(bUlm&79YTCbZO3T*=H$0O4{DkD-*TR=vum#hNY7T|7dxzKxE2ZMfmqrd* zLX-c@MTP^tGlVuBUWFQ#BU@9G4rxmlWxu=KnQ5XEw9(Avr7Rm%-Y5Ck)}{pHu9od8 zpl^&62y15<$AA1NuR_`z$x9CJW;gXL1r#!RndhI|)*{SJ#M9ME(tXMuIMoaX<0L9q-QKddg^h0_ zaf~`=>vW~P!Pqg-i|zvE-pH0ZWpiMSI%)QTVwIbuDJ3`EmqP`nt@%jBb+=?nO7G-+ zW*APCTU}j^UQ0>20{Fx*0lP7E{YpDFkUolWddxtb$9i-U;<{3NqUFR!WBCwEnTBWSX<q_=CoDu(R5&~kdQt73+jFFQIG(ykoZzHyA~C>T)SZ0nMVB1JKn4SPU>xNzV-+He{c8_y$SvOH^0!If6H)%x?nTyy?<1yry#jXJtYYGsmey-kDIiz z-kUkuG` z(A2?wEt+y<*MgT|=Lwi$Ra5TC^d$(c5JJo5`y%7l>SC6G14VA=Q(d$8N^GrfyHkD_QkiuEL( zh2EY1yL|p=Qm_PSW(B!(2}`T{XQA&+#yQo)b4H)qRtN$df#JCRxT3*F8Y((KKYHdlt9cLik?^tZXD;m(81sZ17M zx^h7~Yp1rmbhX_~q*qvZ3Dh`d*+jaXwBpK3!og@U+$&2X%|&?j6MI}3DioyVorp|7 za`q_G`GE^UVW9;5t?i`d41-?%t)O8CKld0!ElC!tO02FQha&;U(b3r%opC2radWZz zIyblKB_3nLZ==)BU0jQ{X}&)cgZG^9J`&Q^$e~Iyh#IztoLqpC{lYoXvkZOTU z+@|RFKR{7f=Ir-teuhuproXj4+)TE((}Sl_;I>Mpvo18h8dH}xbF-{yebIeW>`O}d zMUYtUoP@o?1}Ai5P;%z%(<`RN4}TvLwG zaX2py*dcl*J8^681D+0jvt<$KxU zpVQeWn0Z5^lC!l0(x^B{B}yGCIxy>_a8*&fcfvie zxp03gO|e=xrvuiA3c`(RI`Z&y^dc6SgaRfwY~Cud%sNvh1MdNNC+8HN5&8>`qyo z+mQfG<@bCPPVN0 zT1@3Pc?&f`UgsX~8jF3}vciOyeQT5W+JasPkS1~YD33Fny;zk8b~i4ItzB&NB2cBGD1208X4rXVX@eEi!4C`tQNqdrGK^m)n{dJBeNx9BI#T@u znp}qH*H67p!>h{=_FHM5xB##LNl@3@Yy*-7Svl=8yxMNQ-zxmXCE&$43?g`>?G0Y; z=$Iku6E<}7i(`ciLt^G3=60gljV#uA?wSBBvQ5+oi& zZ$hJJphxEi8Kvfb6I2wn>>Pm3CpOEbz0D;ILGOckHONxpuSmJ^y}drV}Wj~C+=@Y5LilN zA5`$h;d1!nwBwHe9?8%=&Fy(GKM7tGI&TTGN53qN<9f?W^$du=(Cxq$O(yS~5D`QS zGL#HCj;>-ls}a-=Tv)vB{sB`-M#SvKUI2`SfJ8C*;W0D+@7W@5F=11dYM?&vJ_x zI}YioV)4(La2&EYLg&MN{qjO>W7p%8;Q)=)>gWUx8O3}UETLWP3$k#_ML&miI*TKhB!(TPokU~5!mz{_0pl3m} z1S>J7F|n8H&Whnay7hMh(1zJdykFSw=K;`r0?BQ`jZSVBtQ;IlA?N7XyOV_yfM-On z-qWe$fvl{o^U2YU(o#=qmT`mkqAj3^*nm65sjLHD2c)ezLQ4=nJD|B#70?&R*nZPod%FNi zWLfp54HOxPdVQ-|>J9zW)Ni(dVyMgR)B)On%v zY(Q?Q92{6$EKZJ(Zmfpq4Y;E<#{%&PSgr(+&xFKI@H+~IdtXLoeboBaf!^$`haC|vtGzm2TET4H)zL^|>g6vis-~D9L-IkuCy+!}g zAbiy_Mp-QEyqDp_3mY}Tgz^^iDO=7RSV6c?d-*V2v?_4ZMdrd0sSG)our=>Vs@f-3 zkIW8SMP0tYM3b>5rBnfcK+qVF4OapcH4|3_LsVl*n3y@=;wqOqOCwdcxTgByHjIykf z<-p?&c9@-)t(d&c_nnELH$49;qxA$_AjG{J2%WqG8Zj;3DClut`QI5ho25mYn%>P9 z5m1>FpOIPspU{j)OcK%FE{s`-M%yB{Us>mOyE{lnp;QP8aO5~~`2UO`%^W}DmgqKp zbivxe{6nVmKfkAEM?($D3kBTGy-G~}3(Ny|2EdsJ{$&4gJ>r)5t49KX2aT&I*F|S$z zzJ%8TXh>WDsQ*wRUY#trx-RKCU*4p0wSrl9e6Z5eGdVXl#r9=tqAW)VZ)3R z#^B7eKnTPcdLyc+Hfnz=DKeLoW`mZWQ&R&M@7QGLo45Qp+ou?|?~e1hWdgzvN7-wr zi4TX*8oG1~o~yb9*;Jlt#D+O6U+`RsfyhUY^YioVxIi#;Uma*{z-oDC+W){_2So&F zeYoJ++{z52>SucE%EB7!Kn$e5-;wo~-tf=T8pwU}YGLyt(Ygm?&(BcWKAp)gkCoXM zZ}F5s&4B6<4w&|pBmn;Zs$MP+;d7caim|uJ-o^=`F0NwJ;=Tv{E-#dh1Aus4I=sia zhu>=jf*r8B9`g>CTWh$Se4;i<99EXD^&8Q%iaYQF;=!x$b8Vq7f091UK?K)9J^3~F z-bo+<5$UTZr?mZlMO@+9AB|kmJ}2MP?Aphz9wR@JRm`V^fBu0=Pi5 z!Z`-9o7Bdh8JtG7nyMmb7HR`B5S*Xqn`JxBG%ot`FZ7q;pZrK@62SS+^LqfDj)R&1 zufFrYu4q2TzbsVfBNJe`NB&bi1o1rqyo;dwmrHud4U%^04p!WgtNO{He#G%HPV9C`Pe`Et{s7Rb3ewU+!tQ_k z@yEx=$Ok{2EWgxouq;08tj!)&7q=pXW_%xf8ypyzbO3uI-hDpsR8;&#O%p+)$@)XL zpt@Rjdv%=oM!Ik5$4{SR#RP5c?$5`lv4DC0rtLHN-$V znJuej##aHH{qi_T{vW=BZ~hYf&y>#-Hvc68E0eLXvUcLU*WW0_|6(aP8tzTw0fjL% z{TYP(f4@^f^Ukj@IFu5n-pgL^`Q5xKd0rUU7~))d#Ya6@3i`M*`1I8W8^3Yk)m@0c<#kTIfnh z4nvS#x!s2qzoyjts?f0rU~mB*8EPZfC`0#g%ThOtc2)AC0`Ni?A(I5VPTiG}2Ta}q zP`!9+3iZl9ud#ad0G5GE+-F;WI$?-h@&wr3=YgN30p}hrDsS6NfISQO5KNp*_r?kc z#bzi#mcW<=_Crv09*(0E3$h}emsj4mF~Hsm(z0x+;6=GC_g$^op0Kq9gUfH(2{iIK zz3<<@4}c(7mHfpTx1j!8~YCDT!f!e z&PhJ6Co*vx=$Gi3rY4li_i{i4Ci4dZcWm-Twa<hlM<{wmk2E1B+wOWNzI z%;0fqW&3}8tOwKs$w@qy0rK=1;6lhZ%`@GUP9?SPf~h?ZlwyG`lN+h7(LmQN@4EmM zDh)h}NlW7nI6%!L$Tf2;Gzn$K+)R-ybxxYaIHrK!wGhN zR2urMRlsN3qnH(r zNebObf=U3xGH8%a=4o+MC7*7V#=X8?g-sl8h61RnShLYW(#k+5@bHx{u#GAU;Yr*9 v=@!y{3kSje|GE|J-{!x+>|A?4enJr7uTS|tWNH!&8>AqsDpT}_>Er(c%v6;U literal 0 HcmV?d00001 diff --git a/idz4/img/task1_2.png b/idz4/img/task1_2.png new file mode 100644 index 0000000000000000000000000000000000000000..4ac228fdc8f129136e3975eb7b7328af6953d1f3 GIT binary patch literal 21391 zcmd431yEJr`!9S52^B;TL0Tjv1nEW)=@bN{MYhdj&ahtgA#08QMGP+8V%Qb?vRqt?bQBUQ#$3*xH#`S+X&)JY-^Fq%gL(x3=SD zX14fq4<;*HBW63R^967gOlt`>I~eSSF7zKM`%#t&45oM@`9%2Hs|3Uprv0;pqxLOY z{d?CWeTzlC+oY~UQdm9{MK!p|f!~T%Fss5Pbd%tV=@n5VjWy&P^)($+{CxkE(c7(8 zkS)DXZG@5DBU4KBQ&GL93OViD`H{}X6)ri%uZj8cH~$n==!4s+)XvUTFN774p`X{haiJg2 zaU!4}&EDWp-T9-X4tE#202OGTYd#92zG7;C9>lN0^ zjRz=qtSq+YI~;=WZ{3RF)VBU~rLr7L=x}Zj4@UI8@nj?1^L!_{qH1HRE&y-Jw(CJy zbTqA+nwsrmtWoFQhz@fipHpR>nsvZQv$#mJVZB^r)Da*bXW;@hYmKl8je znaLFUXz}c74MHU+b2nzsPDa-d~s@2vtHUYpPd%Oda~4;$Z&Cf z(6mtGd6swY@&3JFe#(opO;1^k8TSLNvdvZkorpKr2;xE_LPK?(@Q{4z=%rvdDFI>r zK|$Du&k>aDCUB}`chBR&0G?*nHy}D|eT&Q@=R+0BYQ88?HWw70s3gMD<(%_ky#rM54lEFPm z+$VXD!|hGMDVW1M}(nv3llXqWYPO z2G@hm2s)+tk*4zso=5dMd3#Rg8IeR---sUXazsZ(#o6`Xr6M0~wUaNb<`r>n`ZY2) zxa@^_p3adwcvN9cCcuMi$59!i8;+fvXVWHy^=gz z{qYx%m}=&6SKt`|H9y^dyr-4x}} zH^FJzS@4mPNU)>GZYENf-b|xA&E(l4S5qh$tgp}LHX07J@dS5W1$G-oemX2fs&>k9 zP3hO>_ayKP`nDX*c+S`(DILe;71nm5(w~uLWMss)FZT^G=_lE65s_7>+wJslNoUC= z>LbQ0w%drUVi3otTfv^}n*l>DHy$y9yAF0n;L*rD)Rk<{H5sWDQdClsRTgV0Qjy$q zs&zkc#M@{8!v3V4bHzDjDb{gl@Ze}6T8HzKc%Qrb1ERQ!yxey1M$zvq_Uw#}#N;k< zjA-gThFerk8MaL$MoUD%#J_lWjxE%civ;^-1|GJ$diGegO>%EKZMa~^ zc{0&yS`CksRIAKnkfuyaLE(kRVp*S{#z{;7Q*HL*a$0a1+Jp9v z)W)Z)tGRbPvNNQk6l(d9&RQjCAI1noTMS!u-kt?!O1!7c2R9J z7q`m>qaZw`LxT~`uBc~d^?HBAPr1Wp7}Ks))^qjID6)?62oyeWg7iZK0{(6Ba#X6cCkk(abPt}C9T{wzR~ZTY%W+O zD@b7fc~e>cirwnb&1~dvA(NAuJ8>1b*-Pen%bTKky7$Bav!}8mISQ&x2pXxSqa^I$ zmVrr~8?&E$;`fYDydK#%pm?Dz6OtmdGYL#S^>1kKPK(x=9}x$nmj|d&xNJ2U_7Dxe z$!TPvJYR0DMPo$#SRh5MHyOS9q)ydj)MbCnNETy@tS(KsOQaohMYJ@?3eLiuROmE4 zmyNtKT%eKY&buL2H%y24k{}Qv=Vs$$9YuOZ^&70;SPFw6N-BQuS#a) z(lg%oZ%vKI58L?LOu;)?`r;F^^HQRd{$Qr8L(tkQN(AS@HzoPlnJUMI!4%x<2zXAB zeBE^yzd4}`&Rr)%tRLVd$rhMS*ySHyg0q-cO}pgrcnWBdA*E1*>L3M4$MdWr_A3P; z@AQ-Q+~prdSXy6KV(_rorfqF)-6}bZjj2UO#J1b*o^B!vs-{_oLT)@defR?Z)5(dn zl$8GA&+mf4claFhF(s3b&ehchI^P7TZDR|&Y~=eVnpg2k! zDqPI$%e(vI4T1Jg*ZM}B2~GRS&_-?2qKu`;NHjI9k`J+Np9<{F!{tUl>TRZ=U8M>2*A|_TM+I*`5OH+M5YB$YySn_sogwk1Is;iPcQ*F$ z$i|DNlc~-0l5$(U46~(IhMqgmJlNeh_s@)FFyLyN^(bjZ4P<>gtD8bTS#p#E3Kgwv zbgz5Asp`Dg@sQEeZaF>Lk)7S!STxRkC#KfT#CZ1K%4Q=_JSdiMWU>{iL$tn+8~o5?_6?ZukY|JUe`pwMwO}IhmLJ` zjJ};?@9rII#3;{r${T;PVdJH)Zaf$sTjAgQsJ*`Sra?t4Uw80WaLvxN^@&l};OtZg zxVhoLnE|F($BpF9^PzCKy~~cpL}f?Q`5trffk@vC(z=W?4o<(i&Blq-#=V1$BN6Z3 zciB24BL%l$aVYrIu%B$ym4#SogNjhmbz{|A{vxbMYauT0hs_D1DxOK4cmGM2)-Wb& zXJ@C(MEQ8yoUy%3$ia?TybpruIk~%bfr@c7U&G;Wf94SWS~?c*hZ^mEvk((w|FyTq z_+ku{T$9#5&z?PtdHAt!ZVI7LcWqU#oG7bEDNlwsv7%CXMErPnP~OKy4$GF;p-QF4 z{s%_lZ4CmAA+H}Ridjvb1#n}SdV@;^<`bgya^y@rfo0LU!nO3dQG3$+iJj^rhXV&9 zd8Xqu?wu%T!n+aX82-x(bKP=>jb|g@6*4%=L|~S?uZHA9N+V# z$D%E=Ie0>yC5g`t6S$6aBTb-c&i>x#G1b z1giUM2$u{3XBS;pkbu$m8q`JM{!(@W@2Twfi_yv5`ZXig)J0r`3$e*h^2$J?P@idJe z4%x_@9q)xJ!0luSL=hD0Q$5gW zXK~`WtfH8-YM(eNz@@^Ldisaf5zhcXvTE3ix=zMFnm>$<`kBY)g-tKT^8_}G+e_Cc z-FhP;B4Q~0Y41I;SJ<|%8Vs5DO^Jw!F&@`FkVJNxO%N{THo{@-y@MKHhxXmNm)%eT zJDdl)+8?+18|LAd=t02lvyJ~8R5~}hpP1jV!o|b8=eoaMvT*cWQ28#uQEFORj~z#Q zsn8{0B*@9nk0AFr6z=TmvbbiF$m_t$cC}25I^k9C@|T+cc|}!MSEC&BT<#p5U04|9 z?Tx&nYNz#3i5XRdRHYmX)RbWf2_)8^r4#PI+%Imk~sAOj1oilwdrJ|ZhXm{zSk1$9DO$h_TXaE$I}4( z@o&%RZ_pLy6+%Z(&#DxsVP#@s;>d;d^AhI16KY+E-0lg^2y0p~Ix-Z`8N<$~v0I9J zW4E^tioUnIHLu$MO2*D0e}09pvwP&q8-u$SFcg??QGsZkL3e^1&m6P#e0`G#g%N-K zleXRtt`m*%=?2#xcL1i+m9pd(qvGOLcVe1O7ntFo#*>tiVl@+k;HKdx#bC8E!=W4@ zcMzg7Su0%jOv@TxZM`fjz-P3owK_jN@@Q(8N)}1((gP*2?SLpj>=_7(k#>CoBd6DW zX}xi0XKxfIOd1&S87-EExO*YNKF6PbxA;8CQEKo0vG2To?~U!!B*%kuzZ!r4t9In% zTg>@MH!6FkW`A208CR)pj6a@`WGt}w{Rviw)n`WlyQQb6f3Y8#C^HIn(i z`7+g6#>S>3XZh8)Z{H5j)U;~tF-J2&QK<&rUfF2gvts~@3wPWB7|SsqE&eFiJm}~S zpbSzn%EsTmmb3}!#OxL)bY14AQ^oNrE33A{!!$jQUY;eAn(uFk=U=0fJq*^UG>_GE z-y6ydh^M`8@WoQ++u>WW+gLz{&=k@nrr%1 z%MuH(*eZY};RM>RKK350tqC9A1#gz#0XiX!qCSJRU9!n?B{SMPa${uf!3w}5EXwi6 zZXiB_OQ|^6=Z9^NAmoBcJr2KDOt7$=GnVAtMJ72$T9m&p*bIYxm#wpsCr;8@Dif>9y3uD@0`P*G%=Mz|HwcRqap! z9KJp$~>D1>KKhTnqU35EH6~y$NbdEaMBz%*^sMGBFfO$)1ht;}z1_f`>17<^tKW zAHJdcHBAtr3#E>&xM~k;i|l2jsi=@(aUVP~eUI%H$_M4ltlx5L4N5?C(&8cl0P~`= zV}FLihg?>?B1s3n*u2^uGpIMFPx5E<477YCN8I2moj31bNO_5@_^G}$kH{Z7A3}sv zaYmI$!e9qd0O&a(qX&b)7B{v8qrD{AQd+gZq+1-uAx%T&zVaUf^1mjTe*~|06`*E6 z0t6B>G?g|zFEp5{XOZjTQT<+!LR_A&%(G_^GiMwe954M|qo8-XA5771ZEc0c#N01x zIRD9YfjDZGC*>&FO~4Mi6}9IZCv4($dm9&fWQHWvlA|Y$fMBDbQ{hH)qzaA2lby z$3NniJLpM%)a2;;N7PEr>T}+xS?a8s@z8KR1p^zR+wwMcb8WJwEFvnZQy86ee&;lt zMm9_@h^KAIIlr$7fWA8{FMUbeetycN9|B=Bmdz-r?_jxacxi34B<)DMuV*LjbYM=N zf6Mne0Qso3E!ccA+Rh93$?fcm94?QNry(*bdE}!Oc3D|jhQr$McKpn#nBc{!UGma% zFohFbR&z43Vq;@%2W7b=W6#e$pFVwh7a}j(%UPWczx#E8$fx9b8o=Bb0{)Mdm&nF* zE*e2`L$C?uhC6dX6AHlH>`=U;rlHB)ci=x>PJ@SCQmB?H+Du^yB&8a85w|4Q;H{JK zOW2PM3^Hnh0|Lx;59*Is^TLvo$#*9dL9Q2hd!2<~Q97C_5->120Aeq6v-Ra$_zlf> zgqyW!KHOg)yVp+Ylz>S>#9G*}uU>Py-6fmRIrj;jJOThQX^8((lH3s-4gvIo_}d%g zOi-ZHbR09V?VyhSI$mMsvku$r3=;4~#bq<=aYSJR}IMh`udHJT?YDODiwC+9? zBIDhY3M{kX{7}!cH60r64|muy_fN!wNKCxH&jmlS9N&i!q9YWOwT}-rt&qQg^E^m) z+kUUWK*mv%Me%yHW{f6hmc0kke?GV-4uTVbta9KcMyax>5*rY2{D#}2BL&39U zSrn0nyWZNg#)ly8X!9{i)g75+JZ7NtLBFx@dtwrxggzA#Dh{_4m zDnJ*SeSY^g6;GajV12N2fM+Q|X`({DMOjbt)%Q2HJscx3Md1EC)XI%RyJJ{H&Oz?s zJmxT!7+BSEhuE(>?8YHS$K)4>ewcT`+sPK03mD)yFHXxzZo7KGxh$RyjC>qoLX>6~ zDNSU|HAJX1^4r?kQFCw%J&OS&Nn4;^5vFr-JmN9&bY@d%rVe7USxvuXkGl^H48Y;P zo_&IyySIR5BmNM5P7W!T4D|3qQe_%f}7o`y9`d`>%Gt#Uhre zXpKj^C11sC1-L3dO{XabL4qT)WcU48`Ra)(tK>eLsbT+6G_-;gV-E4UG!riV;QV|> zJeu8Vw7fRnmGtmcbJyCnDkVIZ7QTfDC8}q?Za*{9H$A;yK*yni#^p^+`)2nN^V5xwrEN z^lg$6EvLjg(fUIbW~zAKh*Ia`h|)gJymmYpygIg$m263`NYvfwv%Wue>$24J{Q~k6 zInU92c#qeq5IfaMif7{2Pp-DeRz%hLKIZ}un={B!0C?8SV`XwIMu@-2dA>r0d~RGl zhs>z*cy{s`$ZPR7d_>yzjG=PK-(w{{mK3qzXo*YBpeMe2Z1iz3 znP)vZc9}h8c@4hw&C(u(b}oE!d18ASUUw~CVV_>^WfPzC!bm~6I#X>>0F~M+}#waV=+~hOcoJIdt2G&i$D>DWF(=0I04tn8VT)c>yNP+4{!s7|~Jul*0yO}Zkd z&1nm!U90*nF&>b^e2&L>2PZ&mHl}AIDz$gykl=Vhfzury7R6$2Fl@bUE)3@vQ+*LOfSj#WNUM9asiN18* zyY&*PRR?Ip)^ye@x?&5R_0W?$NYuBu4x-Za%IpK9oR&@H)Q<*!rcNPN*FG<|*=2t8 zr2V9ia*1XB(&NgeA?%3#4SrAGo?kg8_%jd1v%ge0*evTaB(JE8gG&TsjoH`jTic5R zyWqbN#I~oAZ-YQ-^%Hyh^4PYcc5=^rEphRz5Nzti)tb^$xXh>S-C1imPg*1umgMoK z$VK9EQ#8u2Gu_nce&+mHF?*#on<*tOBm`$W1kEWIbBibKZpY5%ywGJuqWOfGozH25 zk(Af|;WaeBI6)(A?WEnckzi5(@6~oaX=JP-pOt~+dSTG zzd5Z{>xiHSkon_G%Co0WbuG!Lsi_yWJ%dQ|R9$!Yo2C$6uGW8od+-9Ga3!;SD*wbH zoKst?-u8i*HY>r_pTvE4z;LG0Vggby;c&Pc*+hw+xLtmujeIz*d|}xIAXUS@e0gGn zj4;GN^|3?y^y5z&pn5BTj+xm>M*&_U1<7oT8kOr_9=%`Q;~9YLDu|!a-7UkmPe)BH zx-M7j;(eWnUE-ylo`uD=$=Clp&r!nGE~lNW0uh^GVEtAbF(kYKsFgD{18PEu7)VW} zOwJAKb;)W!eIFdm#l>)zF?tqY^HO6L`xkfddww*3Sdw|zXSJ5^1gcdUs-Ac*c?gDf zbarm@cud-~#}e%H@@;%?uw<_f@BT z`}RyyLgL|ps*Zcbic}UJzwt;-iC%kL$d^DT=)rtuy)Ur!1#hv@^Wt3a#Np~shQjL4 zZf9Tb1xo-yq5E+eZ~RoqU6FZ6rG0>a-bi;ht>V=`KsZI9>*I`HuD<%i-056R43gfE4*l=c^nyzlg-fja{N4dta z8!!mm;MkPgvg>XTsns_28+lG2Kd!OcAflIsK};jX_N^$DVNA(sUCCe+q4ayu?z&R@ z&p2MWsd~+UM+!xXCovJjC0Jxuc(dHFC&-ZP;3ka#kKD0?^nt6)!I};1ojsK2DP>Gw zCddH%O3S#izx#b`5$s({SVs(o?=kbe2f~Jd%MT_3It>v1)TJ-%byi}cBqWf%bfBp9 zPJzfDS1(P!;GKSjeAwvoHX0-^bgfNrl-z*Em1V#5Tdh7Tqz*b7c4k+PYN2aerZ90q`+F`uh430O@rnKbl#3Wnz*O zc!y04Dzq^%F>U8V#XAA*L1&p7nTBaM@)f@KM(|{3n4mM!ZbU&188-TM8XGp-pYlva zg$9zofvDBg-X2WO48mRn$imvgg<1@AZ6DY^tpFzlLDhXg^x%cnw}g?Q!zjKjBS1#N zmI6goB*g6i{b=dn5U|A*X<{G3fJ33{qaPXlh_-71rb<^dGdTJW9tQ>1KM5WDy7iq; zBH%MJUF?UHRbw}t0|=O-05a*C0$MC^$WtzZ?B> zgqem-K!vPko_jD-7tE9GPOL1c_VOo^vVmn80@mbweLB^CK@4Ns<(}ppQ9qBlOol$56SF*go+$>5V+y4y1!`I8Fo7Ed%7P zNik*>e$T`~S0-&3JFVeEfcMyp$A6mR`PW}gUNK5B<#nVDq_F0@!X^uyk${Ty8n@^hrA)+igN#bRHW9}n9&A|Olq_Tnf-CyCdbvhhcSrPZDw_2U zAMMOKI@sC;!aa7{AHnECgZtS+0doZ3QsKu^kWF!rQK_4CuSzql`BH5br-Lzs^_K!t zttDbT$Mol6AvCJSbb-mDR1i%H4RvhiI4UR-=ymrmvvmDttRi@NUUy>mPu|I zkMA#7!h?}uwDnQqJ_Tf|l*m(+6RMqxX}mB6a_F=s&>d3VNAl_#phgpt)&sY86J$)y zASM==I?Pd?XD$&W|7Ovv5icpTntXeld-%>As&1)oL%Xg0ad9bR5Ln!BW&R z-u|`0@eULDBWY16hc7I?p+Kq@$qmSgpoJ3g$7{ktzf*c86DrT&Gx}%UyAt5L{Ytys zjHsBf2Oq%6g?usnz&TPfAf@Kr!|%m7RIqaPUm2U^wl}I*lo*usKl`>k4uSQ}e|F-kBUSuJ{7ncVTK;Ht7$iH-) zHnwOlDa2REe)Z6s)L?PV`!j217&?skatLt(ZlMUZT-G{-x9QNln*aD!Old$1FZ9cB z3c$j&JUl#Mp`mvH6Upj%e##rHR_9o7x?j~436;50QeluOj?-dXU)uGx!nk&+_^`!{ zLF2IN6q?s!Gi9ss)mk%3_$W~X(74l8i?qYyLmMwQX>nUoYy|PW@zb# z=b=x6!?4Nl35kk&NTR?Dr1$8*pqenWWrKS2m zzPx7zQjJSfQEKYvNq#^Tb-ODoN7jsW?3_AQq4cUeS7c(ic2!ow-%43;-+4pz)~&cX z3%q*VTeEL2jQR;(4^%p^&afj@O69kkrqoU@x~;Iy7)JK^zL6B=`j^(lT8E^TPT`Ux zPGaY4R9g+|GIHssEB8N*<&x}<-I5_rH8nLocZ!;jXul8ONf9S10Cuvx0QA0p|DM&L z^VXe*FT5Bvs}(kC*O;7vwQL@U2sO-U61TobJRyHBQ)-x+jHY*qkm*`r_QC;i9j*CNp?hRZ-ne}|T-h}Nu$L*|ZrPS1~3!SXbjlvCmc6WEhu28oF`wsyQkbuR> zoYVWx$pl=!mKvNGX>8H{Q9m3ox4pM`y_23r)rqOLVki^l=YgZV9uU?DQd&EYCl1C% zU&>t*NzBEITUJRIM$b$Yk(X|`l?Qx?q+24_qp>`EH5W8)m)WO_Sa`itmZ2r(JtgaV z?F;X08C}eh(>gC0B^yKfpFpx0H@bjm;1Ch)k^(Iu>B09zWc)>0n4;768V78lC|)QT z;T*ebQ5y#_8%C_?hvA`76l`LdS8u!QVkJqUW5(PC5})j)HFd3X+PYW>p9DQnx+p5 z4_m<1bwD*aP=X`lEo&u%xPM^8@;Mc%X<%YF5&7FY@|`Jp2TA^D!4Q&uhF(b!*)@(Y zE#r`)r%rhn6PADz0l0SN*Nb7*tGRjISTGnnb1n*O_VaIB0s$1*-v8K^q8oi`*vNFB zk!=Eme-jW~aL_7mBcfRBwy9~IF19iM1}8Acpx`OTAda_K7@Dzm&3%8VfSJ84?kPYB z6tAGrTk{#-$$Phhk8uS=V;mB2jcUz~q+GP%&8yZVp#e4)Foj1zRa4MxPAO4T=i<+> z0~OHCSi%uB7#5WAzg)TQ9hyW!dsdrqB9I9xo!JlI7#u>7unC!7^hbz_WMTCc;zilJ z9{)7ABl+1@%?ZO`%)A+lG+TU)kjYIq^7q61r)W2?`C2E?3 zoEwXnUUOV3N3DxTg9SAcW+;r8ivI9CSJUq!yV-`Ff^@xGT**i(Fu0IUDK$wtf$ygu z_&WX9g-t*V1@U@d)UPFYxr;fP4d^%XoeZKs=0xG})oI{ZzVKL+Z6eqGaE*}tHXAiE z?1i2J?`n1$6&IH(Kos!X#$vvsRr02(sZ_a{V(F=m^-uQCsxpnI#y!2HWGyuN;hX3< zx4~_~V8lLflpFjM5HH>h2$Lk2RXP)(C|qNwtw(fqgcDd z+}i4J;7UFikM;o3SYs?aeTMtZF5)e;nynV-k9pc8@|WKnCe1heG%DH z>-o@Kdf~_{hD1hEZ#JG3b|>&C^**|ATNz06`|{=R{GD>13P%YY2EFkLLdYko$!lTE z^1j;}USm;XQEBw$HGS-)oFu+X)>ssxB)X@xzaqt1cLWAZ2*ar1Qg9wp)rkZ?aEV@E zkmeP}yopmTC5@t5a*C+ROI`S!lA*-A#%Ks(LO;35M?-c{@fM()c=JXvc=RC0t18fm z*G){htQD|Y&k7v@NRSQ^W6vZ>HKlPz`g#+`o2Eja^IA-Gk(h&$hd0z^_5w36k2J@S z0up&9qfX9cVn-OQ+=SC=JCTkuY4ebxs8J=0YwKtqOem<>xrGij+;iVEp5 zsB6`cJ@3ED`NDa>!n$9|a!B3suv9|oM|e8_T}j?AR1!s-6JL8r_37TrN5NCIC`rTO z_v^vAjHgpTCq!zS;4O^JlngEOhAguihH*|)MUT>6rwl!PLi1|#mFzs#CPK3)WoXo) z>{PitH8pM<8}RKI0{=}sL;%Te?FN%Sd)XM@SwlE7DD=(Rbi4 zgeg9yDTqr;#U~(mMdU;v{}yB`>lA2e(W`G!+P)gt7|%%}=e0?mEa4yTcHug!Ps_0D zZbTtZQ&ywfo(n#)(&fAZK>#~I0a+%jjs>x(e^}=oy>CwnYEW!YtdZo3X1Z7wc07#3 zEse7q7WULa_gRsW5WNP2p#o|MXWXG28L0l&B`+IBl5egS`V4mx;6DJI9SBfD%Ov2n z$a{J|Jdn$*sn()u=Rj&MBbxV7h6vrPE($-k?()W zdj0na<}spK)Q3|RhB%6q<2m6LCypi+&Sjv*K?ZzNAv~xI>}63;Qc%`uhM!GeBSBy0 zC44|BzDm&dXvS6x9aA0D%MgK8rCfgctk~ak^sbfXVMWC0&$NW;%x8_$noL@$^z%Ot z-Eph((w*zDamxW~jEHHiAHlhyl}(I_n!i!AnQbgbbvnKB&AecC5bxi^j-%Drt2f) z7g&Lj$VMAKe*07jKv2S$iuW_~0?+XYVK5DE6`PXv2aFNSj}C=`cn@E^pRQQ*yqlL% zi>*$tE@Ahn9F^d)=ZQmqMG$Sa7Jw!&Vs8~$<;Ytk_9466YmDzL zv#*Y6>XkF%7o^-QhxuX%chFrEMuyGmI|dHG-KX345qv*W7FKu(jp5h4Z{uuXNPREG zq56ysa*uE1;xg}ZmD`$Ey2jsx6#Brtg%nJ63)L`igFb^KSln+Nnoxf+oDtx@W<214 z^NtWT`h}qiIZ;Zlnx-^S_OA7enf9GuVnYH{SmYq{PqlYbi}E>U+vX^&%>4=mjz5>^%24 zRZ`hlkyVTHm5aVSp;x!Y@>YBYz#S3D_QqG+Dv)#wYkX9c+KkU|%TpcKL-fyLHLB2N zf?{H3^PW%Z1{V5Y+=bF=pqWT9r~@eUh1ZsnGjfX+1l6k*hnUJ~&Mzoj)sOfe`v zuf7<*CG++*4gk&AE!CW;P(|^WsGQd!ESb|HEUv6~oLqBKP>dmlqXJCIrywSwfW-dk zg(k7rJJK|KW6}qkb3Hf9D;;^Rgjfe3oSk8Za&PA5u6>OKxhq%Bi8gNjIxc=6!7e8OdSj%3z%}Bf(DL{mQb#$ADghJh@gk=^bv3Y+Bh;YQnE<9VLmsnFl>kT)f~GJ z(2~T%J~9ZQz)oMj5G2aWx7G1!??NF#pZ$^I@bi=GHT8vsi)&9^W)zxBQ48WyDRZQx zaI4%Y$A}`{Vw0L$VjZ2IY#OYOmTWJ^TXh1mk+ifD$t&Lc!MMfkL@hA??pTGf*~RYi z+%ZKEBQ#PU(elU0qW0#7Z{X7*UWPkpUd(M*el&E`f>;4i%anM+*?= z*Y#AKbSQf>Cp-HgS8!MuuAPpuvVo=J_8(eV3X7DZYA3n&P)NDb4~?N1cb6hOzR9yy z)1$#FV_{*ll}&RWsaqu~5{3~JN5*sVf=hwNJ-QY>Hs>?K?uX`&i*xrkB3G-q#S?(e zb{CXgW+wXq{{FdaVkWEKa<-w~FVirxM?ih=IZS`sc3(D*U6MvVNz>?JeXNZ7snIIP z&oG=&;DB9#ItYP22-?+bj6@}AU%gr{Y1bdhRi>fh82*R8c8C9!bu-t!TbPamsiLgL z{S;_wX-~NUPBp8%)sf+OQC&%IeX%uU+t;b0__X2TqL*i6H#A8LZf;4PFkknX)p@z6 zDBX4G*2)-hzw|$Wuw>^>flPu|VBwzh=|2FG_3Co%UM)|rxIH$b)8K?QELLKP0qR3M% ziUJa6oRlJP&aP55L#*pfaS~k-GoWQ8QyaZCX5FaR(|1h(Zpg$CCpE#ux)9~y zXa)iiY9(4mB!g6lex+6e4 z6Ua4?3lF^6kVF5;FX@K5Mf%nEFG`9zDBtU~144}`tGFC)WgxUtO)b#-=6b&U-IrJc zE(3Lc8V~1E3HJ1K&7Q=mIC6n<>xI-ld;P0vz;xcMVZUWiG4lwk8t{t!3e=J!VSB-> z$L)j#GOIQelYnJyUVxz1&qi6Gn)Q=Jnq7WKA(M%I;J5N=0H*-?*82TCQmeGd#{Y?3I7FeX@NPWBIeR--*WFfrU}A4TO^;m!9DP!vPiaS&>RyH0I%!^{pp zy~0Bc=;XMhFh8TB>3b%nhY*0J3yuyQF1YS~xy7ibaRIw30py1)m$-+`}L41W#-hzJh0DV%>g!;E$ z<6D%Vh*B(0>vq#pcy3q;Q7PPb!gQ#Aq1xE7-q;$MOUL!))*He(Z%h`9|JD8cEDAb5 zI_3R};=jY%b)hP2$RQua!}#}0C86yTg&PkwREc4->ikbn(F z)>L<;!v@J&Vggx%WW@Vw&xuw97qfB zWd`Im>kK#R|2JE(b z8bK;&oghda9U=ir#V7DKgMA7LLycybLk_sscgKn*YCUxvK3G_wz@AjTBnbXR(JQNt ze8ZF^t4#)1E^bkY{{3;J>IRmzo6gs9WSAGcbHKO8On>G0@m5q-qryf)T^oKR^<{}~ z`dHIzuH>#6KtQ?0<)v~G+t|`BlPh2r&f5O#D@E;^OT^#E&};+whrPNoXxci;zmGY5 z4zrXePqGL?`Of*3$g3=)+_IWW1kf*u5cJTc_^pBiMTcX;rD!5?5O>{@h@=zYlaIu$ z;X=6U2-WQ|{hhxx3?<3O+&4Yb&&A^{cP zlm+hGkR$7+-nNCT`IDeoV(}az4nQfT z?r}0PGY(gQt`gcZ%mQiI99*8DOW6SAWx*5RCZ~hiN+CBipa_XlRRExdy<;zo>;70> zJ!(GyjL&%oEcp2Ni;GWz!G0oA-s-QyDBN0OB|E)fI1aFR&iOcaU z+*$#?vwG0PyLX--8BWsyoW5)8$-pN^MMJ}B77vB9YCr7Fnq9cGED{Yhb?ce1WcUo^ zbOLSlrLVSrpy@<3T?)*%Zr?_8V^fc7#74+*gTf;7g=pHp`HAAN;Ddw2_z^EBf3|7c z4~TA0In8u{RyyLJS6bWKTX@fu1+fvZJ0vM?R`;AF8$ePZ^aY$@ce;49J0C^tUzOn@x zn29xjCJLiS0JS6_OX*P1u4hk?J@TlpA?GlSh>iFTYzJHuP&;Pdfr@a){R1cU(0 zOG4L70bV@VuZfEtYXm(MAzzbAX$ROhAhr|ygWU6851; zbSh-(A3h#}U#3yggF$a|i*Dc8^UnF}P>c z+k@}gL0cNre{{8cy~4Z-oMM;36-?%9lYbJ?pasE(#+dN(TLTI4_pm@e|1H5n5ApB8 z7yR`v4PyW3N4S~$PtVE=zyO0-VEms$^QH6Whw*>R#!#RVny35ATjC`FDSH&3|B`(v za4$VO59tc@i20{!F6+C?Oe6F6Q3TZ)^yr_&fJhX}$zLb;9R6zvfnA6Ns;^+a+W$4z zHi1A05)=C^>c7~Al0aEx*ku&^pU2{V%3=SDVf>#C{ohW1|HN9(iq~P-H>3;<4B&aH%pE;F zd#u(0)XL-QvULHqaH0;PwSzWTNht=2 zY5NJg?qp~on#(NUxmHj`#lrG5;RQ%Zj$BAgEx+170jIq?)p&8ZI$q@9e^l|&3Rm;( zg%OC*nf3LPXTmu-V9AF2UbtPb&Jv!?oOA#=^pBXZFSEBglxFG;LUjEd{lC9)Las zuCi(8<$acR5~a<9|C~2o>u0ui-isztt&`Yd;7aJEY{j?=+*ltVzvt$tLj;g^WuCi$ zg$LYlQ+hp|;F7dsJb!f?$Bq~MP4?x<81f8>;V0j6Bu-FH@K!Xb} z0rU}(l`X=78+iQ>->#X0dW~(yb;5@!juUK^#^17^vYHJuLS2pB>e7%Q?G`@1Bxs{I z`2P6~yq3c~3(Bv)CJL)FO-*XdIf6iLw*`yx#6mton6LjOk^=!i>#w{5ZTLS8p#Rg% z2d9T(uXXmnD0wgpEI_IWX#_ZS#qb=3h1YePFLi6u=mGN&WKA=6h72_S*?S3t-339I zB=gTQ6WAtT55Roqmibf41D~J=L7zyijiLotVFFbC$0z@Yv*1c<(3L=orv6`sBF=U& zj{T)C)eo0YjJ*TPQDa$BtIYp}3kGe{6i)zwCt`A63Mv*Ufq6~xrQRK=hQOi!Z{Y9$ zXKwmm4XtRPZw*)q%T7m8@uibedTy>1U~gnKfXx|UiLL4NZ#HLrWO=c7%PHm15q3D>l~g>Z1rbNplCw!`lreJNhc59{;&Nn9b@2j|7$W=#F+nOB~?S>rl*%$>`S(C3ZJ!x1Zv1%GG18RtR$g)MP2JJ>=x(hJErukGI48nFSi-7GEAfOT>^r2J0!+CV(!tZLoUQ=oCBm zBv^=NJ|`=QRhSq9T6QZ8GTQHhZXQ;sF%rH>K3^Vy zwqqeGLde*H^q~S;NCyFWv12>Kv{4V%M*1opKh>0*A`no=uQCnRgo`f9p^~~fJ!Bxf zbc_NINL@S%!MpeGLjg}UHg&zad3R-ynvG2<2`n};?haNY`#}R*HVE!BF>xM%NLEot zXZ;#t;Vv6iLdLJ$$PQL11dY(oiSYr{-QSZjt#qU2YOSCF?EHaDKdI z3;L(JKqHs&`RGKQlhuy+9j=e5sN9->Grhx=vakkPaK|?mn?DJjth3<-LfwL3bud<| zX?~vVulEp^w@IX0cEL+0GXj?WINn{+bKxej`EoOJVhZG&1<=zM+4tyTGBD>#y~Skp zz^*wVD90xqMzj_$;vm1mj~_quK}7w51_Hnp&#j>wcaLA+!)bU0St)Xa8n-(c7JVez z>uyH9sBqpftT|eY?;-pO)~A^O23FsLhsdOZnV(jGi6b;x+eNal@z_*j0?p|B;{nLf z(a=&8=4PUjMMhB49zmrB01}(iu$$0%?gQ6+!@)G0&)(~|%Q`FAk4~+5z+!UU-S2td zck2ZU7=pJ_h<6&S<>eUx{u~bE8Hj(o3jUgOE12SXEd+WbF4qAA9->bhna!_(bw_jQ zh67l|##-4)mL3QSV0pK%qa}K>BRQ=B1a+1_?9heBqt0c?d<;p25?*Kj(8GQHyAhR3?e>o|70C`zm z1F^d|ft9tu!pE*|q6avNwOtV$gPX2Ev^Vqwi!7=6!HVO+dSNTK(=M_=&vIA7Bcjq7 zuv8v!A)v!ARP*)7!o$M4)oBCYJaMVD7#bFlzSAHumORj?j8P~D&A28rjSahqi4jKO z6de>5+5~Iwl{;ykUjc?Zk=cw9CwKqW9kqP>DaUyGC4^T9=zvnm|FN|mLmGmQP$xg+ zBuGAMZEX#UjivKEY#}!{BZf5}K|U?hbxV*h9_UWhI@orzw0{MQM?HY%=@^&oyu=Z3 z`x=1t*Ki34jKC^;Fl?wP&9?$76d|+L|F`&>kFCII{TRJHAAk)ZV2P9p^fv<^s6*Id z`gevkaB;Y*l~oidYk|%ux&z!*U1koPjV%DSq#bVj2AxF!-1rAN*8w!xaOB958+TP0 z8V(!IWM)u!^Y{M$zw?1TdM`)E#+;j*j=p;aJlmq7ONc>XP3?z+>_xXSm!FKz->VwD z%*XKey}IAIon64CX_>$(c<~|@299XZ!ZF|>eipnwLM>c012l*jlFQ#lkXkL52qbAjd{TZA$5! z13YaEIDC-w^7i)i=Qk=kx19i)aZ*WPmG^7#KWV{an^LB{Ts5`TA{d literal 0 HcmV?d00001 diff --git a/idz4/img/task1_3.png b/idz4/img/task1_3.png new file mode 100644 index 0000000000000000000000000000000000000000..714b15808f9926fcef566e2db1dbe990106d3d98 GIT binary patch literal 25412 zcmd42XIN8RyDc0ADI!G?eWWW@P*9rmj`ZH7tMuLiNC_YyhzLmUy?2Gso1NYQ1gR0} zgdz|?5&~z&_uc#K^PO^?^Y8n?6|%C{Tx-p8-(!q>%xE1gWy;I+mmv@crK*ae9t1+9 z27z2;BO?Jvq>Ru5;6og$^aQH!ZU^;y=4A`fd zJyr)O)WchxpWpRA&){?Svgh}9KU)ED_RBH@$azh6pRa*5)Gih+Sa)wpL5)6MmH;!!FkC8fmVWcDOZ&HXlf-uY?S z$s_5Ivmo-~S-19~t)49Ru4$K9?-42crlG7y{H!>V`~xMi94-5slGKntOv%CfNqM~% ze)Amu{{BNvsKDLMYqYd%c|rTCvPaY(3o<19YUhFuhW5M9@!G>;Ym8Ia{e7=nq8|B} z?OEdm|23xQII20nw#LTBRf>!sKb}m#e-{4r+qaCvl9Cbuhf&tPp`n!Hg+Ts%99jOs zSKnXOL?3T6$OLy}LlLS&NSTx6Bt1R7YwuteJ=TNqXsZFi5lOZw%fOnT)4iU=^mGR# zDga$mA9(C$(&S?Dkw`^eKJ0WuJ48UvZ8%%ZtB1)i{gD1Ql;s?UIwuKYxd3H8^C2Q* zz#Z?VweNPB#Yyg~M90Uc1>>=O_nYVL`1tq??Nn(xb_lPH=Y2r+ENrcw9*jIf?{*w$ zO^J8bptlxXw`UsdI*oegI`_Uacwsln)V;jwZES3MU){9iW_aX=X^B5fmkK;ej*KLU zccr+=2iN%)OIC=5&!-(??E5A5U^_+>K3{n3#Bh_otk!sHkAZ zmDe>0BZKQq8`WxCSLqLei%UxSmiv-yQC+a1ojR@_qLL3SajW^Ix7?@jIpLyNLbi^PCM=V zPmfIh&rjh)OSZPQeXVP`vs;2EJu+vv%d)-RIG!PE%pTnmc1oU(KVnoy1>lg{gEg7+X`wIeYq^1gZPYTSI?OPPE^T4tm0NeZu3x{N&aaO-K&(li zs~a?4_2hAO9ED{0TKB}IsPlJD5SQ?GpXx2Zjx8Ec-KQ)3Lu(|gLAtsZX+&zfuudmv zt8*TiKcA=vqmj7XZg(v=q0oDl9Y4?`4(|}0LTcKXluo8Iev7~Z-LFBRO$jB{N^ zQaf9m=;w&rQX3)53CcEKUtg_vn{Tt@Dx{;M+utAHA5gk!v21#b8Q0FDedbEP%qzM1 z2(z$Get7AoIcu7QZ^p#bRF?EjdNoWdW*L=57^K9Ej18x=AJdrSjT7@cO-a^=iL}1+Nl(c956V zGdW@?LsV0`PTq!C6J2^MXwwtN#Mx`2iLe{W59NKNfPG1q5w$lj2W> zU7TLL=V@rL9}%h3Rj3znom{oSx+{HY52S5rVpeWL1!!pJNzZqj)2CukiOd6CLA!w{ z!MyF=;A4rCz4#Cp%e<~Aqm@!&dM)AiPAY91rCDDWJ$jeoW!ygF`crsq|NLI$glyW| zeTXwTo+{i8=cktblTY5;77}>0l^_knrXOFGO&^z5gV4C-24fw!Wj4$k>|&?3?Xx{2 z4}Mt3``oXy>Ry;T->j-TYC%yxntO`u2J4R*oyKqFhO9GhMKrqgC*K|ZLM=1b*zx?^ zWp9=ovq)-|9YzpKOhP~$XhEV~Et)}~h+iASPaR?d?)9*QbbvR`9R{nl1qs89DG#r& zJFJ0KlO?rUteTWfSfm!{?lY{jx0Qu^h}L`vj44%_1vYVug=Lpf(C%%Iv;O4dB=f-G z;ouw@?klaf(C*8XGu-YYv{lfaQiHj!?&4r? zug4jtOy=;e!w*U)(DjYihknZ$d-I?%Q4wbS0h!onH;&z=>C`SP``-?6v0E}Fvq@n)Qy zm`LwwU(IxuWUjhjhr$aV@669mcLw@3oDZblcODm{*3Fx1a~=K-&K91Y9|VPk zC&ip5xa(xBW$f^Kf0p92@Z*ksi5%MjS0DwiO8p?8!wgq49$H8C1k~KCI6qyJVMaHG zJ%^!DMlzcjnvMkR#s5WfS*OoGjlg6$a9UJprHGMd$7HxEUt6KWDT2}f-7h$RLTsZ5n!ir*N z8m}SgkB=)#aP7O+hK4Dvc}5T@NaWr@_Muoq>S{muomfurt*oX1w;;RtH+K<25PVRzt~$4`T*m zlZ8q#8Y=^4!rv=j-#4lMDl~!{at|J_c8~R835jFFYhd=^GgFq>%toHlb67=+7 z#>ZLz6FDtsdVe(s7gvu^l38a!N%fNK;hw1tOC4;M>Szu7)E#e8;{_6LLuWL|b~^QHG4k zAMGB3%OWR3z7BPD3vbtWw8+M$QbmJ;Y$ zt0cbmZf$W#R`_`7JEQW6H6+eaP-vwqkDl=`!U7lTvd}Tz5x;=F*;pEKe#Sh24GQ>$ zpER~=&FrfH`MP1c3$5CIG`W|?Tz3@u{L<6owaI*!5H0kN`dnkHW)l8mh+En5SP0k5 z&B_{6i8vwF4P2?_m6~H&RG>TlqM7%8A6Hgu^Gmaiv6t6{J~m=@RpMW{&NitkkFf^N z`%Go5jq_954QEe3i>G9LF{Vr|`^0g>%o99#0HvPm-h{q(2CXque~U1-ri+9)#`i2& z+^3R}hw|!7pM}IvbeD5THYxLq{BJmPU*!>QH2B_vR(2!m&5<@jni1PVPX^B{gxTc6 zj;8I7r`9HZ<`ez%r*NukED0uMf;^K#KD~^Uyg_NNp2p|eq;1;jL0x8QJFXUTO$1 z2!8prj<|8<2|3+Nnd&*E1B=-9Kv@qw*rWh|`9cJL*tO929)A|2vS`)tNAvXAasZDE z7$`v7+ef5vgF(EgR89r#P^0f0vi~*Sb4%#O6HRDx=iT(f1Mw%J^J{q_Zo$Y|^3vSb z3on*pOP?2p8~z}@^nP6TD@HotJoREuBpqe&&d`Psw|~)Y8V)x@Pw8!BD@*$7&w5e3 zhSJv@5#t8q+3Ly^rKq>a{0dFVMzKt#tdG-
;bhxX9x!j!hy>2uUMJ`bM4EMfiq zt>=AXBcsgH#I+p1TodHj^^`by2h{P=4BRoP;#wPN5NxQQ{vY`~f?Q#!6}kFW|JN70E3qVQ-N`%5;Em&)T3kY}I7GkjPs3_6Jv&nbJ3+X>C= zDrV_4zKWwN)BI*ie>lKm+B!ySAa&wLO%kwZ?%HP4NhKk*H+lQ(VPV=rW_jy)f0{_a zc*4*e?oUfYq$jd67B}L^azn!Pb1_$^E3A79^VK|W#0ojmVs+EP9lf>~Ym@|C7U>j; zkGvexy*;ItjC-(!W!`jf7Z1xuyoolV2*J&wL>Ox4ov2ppe*JnLfAv*KDd>E6yu<94MqJnz0oQ_9- z)kOHC1B(@uoX3S==hbI?XNWGY048QiPSc9f%H&)RXNV5=6dUZoJ=z~8ay;H2c~pe> zBrlW>n9NAs+Jv2Vz?F5@+tbt2`)S>$-?F#bjgR1oe-P^Y8P0r;NeZ0{DI|V1xf_i| zLfq>Q3wm01W&wV1skFvUJN<*;jBV2-wH_TYChE?`IA2=-6~iw=rvwY$Miu8Z%Jd{4 zN=pK+%tp!Yx|nVwHVcCvn{H3`$5Bz&_RQmtQK;J^1-m688xu>zoo}joBDApWilq6! zMV?#^eL%DR>==^I7D;MMNl7_8-C!?qu)m*874;<}E6X`Dwzj6mXI?o<3Axyb3OUEy z#ZM!C{}ea(205z-Ms54T;}GChG3B@aENWqGyKr|5h7A5A)JF$=}NM`mgm{;C>dz**~!{aZgKjb9lR+xF7zExdtoVZO_chA`8R}@1!+ef!M@wb@g@<#drfcIH#7#-ogd$;e3 z)!DGbF8oDENF*t$$u-O0{J7v`e&aU=OV8i(^J4eWE!p+gi1SP0)fXT%+(_;)Q$t5| zxiga-j&;K!QXI<)Vf{0z{J$jL*niV=@OR>9LN3dbhTW0icI4;_5JVsl7u)#3)Yu1Tw_j{6 zn~f@pEgu&)`tc!Ai09x(D@MWJH+!zgpQPXA=YOPhotI4!s#Bji>!@-$G9OSznm z4YE>ePEOA6lE%vBH(nD|iO)v1wk0m8u6c8bOH2x=0n5&SjH|C&A9IB5rH{R2^YZdy z=i}RX#~k(d$FWji&UxC8@_^0|2OOzD`G{ z3g#*G#tA{(V0FpDtw$$C7JvQvRd!eFNe*VS&p}@Pq8z!L-{5+;4^!AFx~|(-%0AE& zN(2dg|CodP^}R8s>)-#k$_RMpe~BtI5o+q{L$cS8?y|A5jkc305)FCiwCzE2 zir#ylJeLIv$JBNNKyk}J9eFseKrJ;f{Xyib3pfQ^I3|rBfA|Ocg$d3*0b#Id< z*ICXqbFXL<6u{xFzdut9SwjjU@`;J}SXNI@s)oGIIwmcSqHaMvLWAXmy~jxWtKNUL z##es6*6KeNsdav_s5 zfTpmIG;{Bpb??4^_wHS*hjg&QRb-zF0b+&(e_%i72AgCb z0Gc%K9~jW|?wpx1t*EU{EiPvF&I8;>f9!*3j#gd#WSKTg9u7*7SODiCs3EVfvT2OV z;6?~UuikOI)b4`zvGc*|kaQjq*$rY2)?Q*PwIJkYD4bZiYE~cSB4a=ZsW!H@8Pd`V z4taUIA?LXL7^_qHoz7!R@9xPe;{iis3){>V6FF6)fi@qs6+FEpJ)^t{$X&91u7BzD2pWAs{*oLynZV1lFIOO< ztb!a`j}J$LCW9m_>SiUz!8~{45xsu`VxJ~$Gr*}IF@|~zne!V>MRDT&jf@OvJcgg2 ze`IZRN&IPqw9!be)Ji{ZT{3Q`y>1$&CAvsVTaJ-7^}i@j2TKlR#edn-G(IH^U;a?` zZkA~A^sbFXu7sybnQ(Y*MMXkcZh+bu2)>zeSABQpHZtM2azt{*XX&3ne?}-X`ztoN zOy2?hfLi&`!<;l+oWkQOUxtr`{@4ffw{{xF*S;mt2eJj*ykkmbd3i5Jvu&phZ39$~ zoVE~I<-$T@;tdu%rj|wg{r2`P(B1j13%8>8dyAiyhLnrIkdG}pEKx-8f_eszD26gqmQwm|a2!)onJ zaAr=MG;Va%TKJ^FDqOYhr1(n;QNdfVLhj;=vX@^c#?H7&@|rMGVL30zva4ulxOhTH z)qQ=NZo#Nz*Zyj{#0f0;b!9uJ*dyJGqpknT;QU|p-T#bY5Xk=^4HGBu*0#tO78aUj zgXl)o86&I6O2|#b89>-I?mAgzh<6+-RC>8^pS6&nFv}`>i09}TTG72z&6{P}+uK7_ z8S}?i1Rn1U?UXHU0KG-{cz3EUPxALiqM;pcfZRo@)ChdP(IRB0Ad1=RJ`hFFLpy>2 z7>8EypA@s-(blvVkYw9avobT6Yuk4c38D^u%oS(_-mV1MW^l>Q)>ah;>vYBg3B?A9 z4sJ1?oXZOV6BYqP!#*Hv)XV}Y!TiPItHhj~zflJezX7n~eS7Or!?Vs)Ju?O>bB3H7cQ@^_WMj(a2XmJGS`iqVch`)ji34}UF2!1sU@oOwJP@a z_eFXhOlA|4<<%_m!w$=;3{tG#&eX&x&Qha zz1l($PTiz?j4l1Y)h+EdcjIe1u$xtOGNf1jVV!MqP14sAQxaz&lvG%WrT+X3_d=T3 z_iZ<$+*0GEu?{C&4I|5b-MAcO9VZ8e2a_aHFAW3QOY(mc1bmlqwb)z;ZV4dR&cST4 zak|je;T&FGqv{8fVJ8P`?K@>J7YP#JG03+fT-^b`Iz1NU>*A{lWEDQXy(PE|#@M%p z1<1b{_Xr9dL8Q*EcGhtiLA&$Uq_*HdFS=AJ@fz1A6OxWyj*$#pzDz`FQg;$fDm^9d_nwn-R zDk}#Dxw(p+VLHc;b*<7GM=V|vfZZMWM7BNy-;0NHOs-4cV^<>(^Mw5Rz|qA8YG?&l z`)MiX5FMEcYD}8Ufm;vj@CESJl-zYQ_{rSE9>%4BI6!v~PLJ?or9M0G{^Izel(&Xe zMj1&~u6mP+S#E8rger#Euh(pnNOUyZXdM2$0M-K6)795!Gi!D`Y_T%4>?V5=uKzs&e0rR;nzyI7H8lC zW;%%eZ#B&ePFjV+#SY`O01OQ5;-h0@h3WVynN2+rcF&N}-8n`!7%@z%B@lY!U1vrf zYv(p5me5_PxsLxyD)W2&d;&RDH#7^)gS*FfQDd36=32*vQoKX9Z`8~<^foxyD&ce; zXOJDaJc4J8{+twv?7p3kVKh}N?5Ub7RM1^Iua|k2Tb$MPI)B6*$ zwv?Homb z_3Of6nNU_ri?ZElD#ilXYh< z=?t}sGR48<6?JXPMyuh1(IiJHPb8#_j+u$xoYcsJWp6m=$n4f5H}jbIvVxT^+>T&T zyMK|KI9h< zxyPi^znfLFyGTtn#rD3^YI@5u#kIMFrdgyH!iYMk>#N5YMM3jPY9e#I zhs9PO&PSbh5qe5cm9h)l>Xauy8DylSdaQ)9hIL~931FGGud1y0QiUc1V#{vG5Uz;G zDhTj2SLri2DkGAcDO#H}V_i*mxYlX;CTr$f;S1;&zfEsYu`~H7(ZZP(@8gR|=l)I0 zjYU}mO>d7f1LC|LpdKa9>!zN1Zv%tAD(tiO zaD1j47E*sf`L7!AKRN)2Z*9*ON!f^3P3KHvY8$fVUjY&d*5$v90oN6Quy8T@Mg?b`Fj{P)Hdfr&TcVo6{Mgm-ZpE zThJ#Se^`{lPN^D@@N9e57G{F5B)AS}QURP~2c-ye?G?a5s4zPblv1}QV?sACnI1}! zgl(sfy_={qu2TqR{CjURPft%ocSuMk%ICMz8{-;Nj-to0m)m2mvtif*UhAN?`YQN$ru8zwE>EJkb5neX1M1Hr8+^H_&-}8!tQbpWe6&3NuSuLYHFtB zN(J^ukkc*$sq=SByk)u*SZ)NUq^hc#5KYU~Uu)5Rv1x?RU!SdH!x5kmsYw<9q6eX} zWB2wD%ns$s%1ZO&lgYYZ4j|yCgaC`d>e;t%-@HHxmei}6@I(=To~5PRDppkdQsUw1%LVEPs<>N! zVysEdex<+c7PX`4?|CbOqY;t=)LgZ;`z+wr!{-r-yN&>m4WpCzrm^u4tc zBJs_f@eQHdj(fkp?SE%*SFyCr?Kz^=mK^Iy2RiY5qgE6(s?Db=J7BZo!Vhc0@FuW| zj1Fx>729uG1&x`j_ig$m=jQT7M@QQQPZ}C$ltRTnhKuB6NyFO6Ro}iK1y``%3rFOg zVYmcYqypeQ0ZbQ9-|*HxXg&wRs0tJcZyl|UvwP$=C+ZK>0;2kE!cFcdxa4OooFu+` z$9k|f@`#pj4Eib*P&e>T=u^f2$&LdK|DUJx|K7>-|Hn&1$qbDw_?6nL2Db|nc^ZIN z5elH7EHMvXO@bo@1$)SuQ$x0ld!vTclcz``2muu-GS)B-nZxB4c<${z>8^aQ=w=Cj z*?$c}Afc}%IZ_UX?vXbL)CxOov+t&<$*WDMJ9L1RFq2 zI0a<_!B3mv)Y9*CbS-B`H;*o}%wB-3JHUM*5Y%&y*Ezm3j->%mz$i0U{efMflu+2( zkCHhp_?A~uRVA2I($O(D$Usj&I5C-MUBoW^-O;T_IdIre&&5FYh@#+=xQOWEQ6ok{ zhZu{J$^B2M^Ve9$Pu<6HX1-b5s&VCzU5+riZu@^n(iNz9w}dk_>vj?R#oqIb2hYNs zb4ZwL?%)ah7dX|TNO&Ymf-RQa zM2LM-_;FwPS%#fNxA#wqkSv-vAa9MZz^8QUvDY2FCHx*fe2AEsU@v&AZB*^P1|9CB z2#xzn272j?vd#S$4egt`js3Z3g+C0JATMjVH+&LBTxXU|`FMB)=!yV*Q3sB;mA8V! z?-<-W#>^E|vleQA`v+qj03aJt>nwx@&X(@D7K9_Si`St49?hS*k(1yMM_JVvF4A1o zNCY8P)iG`NtpPOrd!x(YeZ=igH}5@R9g#ZD-tdM_+otsae~0FiHXwzp0H>NiA1efpU}iVq5Hk0mveAZ}B=0wGQcCE@6l)^iTu0g943uq|!y&2vG>gw5+HA)#?M z;V=;7T$55q1L#-@@e4A_2mp}0xte_STgl3(Dc3g3W)No1e^1eZqlWXrtPig;%!BZCssKodyt#>HxOww?*~r6f&I2w=K{T{>pslMT68NPce`4NTgG9)& zlx$)jXB>a$jE?v0$Ctgf@bJZ;RX{;F{q=IIQXTsS{Ufrrh*VPDomy(OY^@;5s>_Yt3Z)0N-4^S5$QF1 zg|ZMesNuPnkag2FzaFRzqnE(N@9zGWPy>-&yTg4!uC$}6U~-#Ix`_xfYO*d9qav?! zF-*f$9?h0gf(6M#);|CI-W}kVB@@WF>p8^7=rnfN#srdq;<<_99Z<)KnEL!*^2O&% zieq;&ze3jUVe*vNe}y&3(ro4=aDxfN*{)V)yOfzy58YG&>);N1fzk{{se2p$bil3k zJef%IIbq(*H#2KPJh%xDqNqeprbqu~zdmuuHHS8F^ctaA7ece(xn*A$sa^>ke*CY8 zfJBJ?=Z{BuCGntJ{~ovu&MrR8D=8#~+>YaX2x+^Fx4){2wT)h&c=WF z!F-oyS4JI7wNNs;{+nUMH1r6C7b<^Q#nph@z5kKjt8a#7cfJ2uP5Q3{F1qM(TLrw` zzw)xEIoUPHUqLODjFt*C0$vnABG%6lUtY0Z$Zxnx$oUWcSC`z(z7+bPfGuT13198} z%cd-9SP4IRD36za2N|6v%-w%}W{SRsQ^;MEwPz#r;!>t4fL@Y>i6~kdO$3qc`F}gS zBo4Zgq=geKFs8rDr>I>K=Z5R=RI%^uwH?o_ciTF_X*QjD*0#;g*D;S~;Qh}&N{!pf(21yTdv2SW3# zMdcyn&%Zj+BjGvx=8*7J)r<7WMu1(NoSY!q{oJG9yh-FxPZeq(`5w!#5=O!I4ugTJ zYH6h=X-k^`yDR-W{G~QT?Y`-Wm+>obR|}HRxQ|M2#+Zes6pP6nbO8NHEKrE*KRr3< zbVC98{Vk}ZkWevl6Vk8CkN0wJ-FRQ1pRe!3Ks!h&LxH7}L$AHOg@*&;=Z6RAp#X@e zfqC&iXN9etcXVZ=NLhg2GQ-phUDMnTGA7qCDx}+a9_Yr?N`a)rkw$TL_s^azEWnk2 zS$COr2aGef+V1u2f8^*<_ocVG0dbJ&B-`7-3wDZhj~{|&w;gNyRI=ld?#Jlj*-hz7epX4(6iZo9#oK#Uz2>N(L{i){m>obv)25MccvV-;_$xwJa;@7tr zi`x!s!#RmbNo;_FdV#Fc3s}DmAdg-^2JZz1!ex-Ueq%-b7W~TwbEVp+v49RDC2xSq z7usuJVR1jrGN2+kB?V}&rVb<}KqVF1djG`+QLM_j`~>=xlxgDG;^$YcwcNlzpr)!C zJ@TlC_uAI}%7E?Gj}HL7o-r(Je55o&vE!R|c9Jrej~d7Hrl3D(=WhmkW-{jF(EsdI zeE;kC%FOdGM|!Q8zGJgfsfOR1ivlg$j|rfmxTDn4?ev($Kky*eu4nKyTVU^Q@B>A} zHOGLcpXam1)2xDm4VrRy9kLcSC|<|LrT}F5-5Q@S7jAR7NmNwxf|iBFol^p@a}ock z8YtH;HPbv}563Q`ZW7lG!r8^d_{TA-_3JE!ZQr?X`5RC-t zE$1-saS0cf*Xc(E>L`Vs);})H!Tnda1Wf9)jv zNL&qw4|d$Y39_v<9@JRxMzI99L=>914<@3!TC@VBf9MaNqBFb>oF5HPFj&3YUYRB8 zbSAqauJgs6pWa12LBaxgcx4&#Q)lBTWf9gsV7?T6Yw*Ite`G;`sxobJ&|X?3x5*dp z=F^q*_p40<|C)1adASO*&WeA&-7k&6=3^f%aLZuF;%z3%b!(;7fTSR-@G7cMQMvG| za*w(a>{az2r&k&GI`snw?ndR@;X0O{9@O51CEBo$Zr#>9+)i+L+&uo0K?L?E)zPgi z1(YU3!R`&ULSrugIXBYvvN_;H4a>?8E|z*t-zs=L)~U0Bvq|D38(t0_M(4C z4{rZc9QAUNyG+8bH_uJ>Pp%1?VEuM?FKctL_|{)R3lB!zS0tfS5^u{1PRWNQ{;?*` z7px@ucYZ7tfA=p=^^{DlNICw7m9?rlu<6=ezWGr1p+L*pQ?bSOw9A#WwF2nM&8p(3 z_AfiS@h}tpj_(>~N3IE_*=-8FXF zT&*owA!Cxy+pmug#t1xp``a}1UB5?8)|JM55!4+wOj-js|JC{4Jt7#hu?2sIn!6% zU#k)Ma^w^R+l~RxcKXG{>vdFFQ5%bGscJY^hL7ej=iNDdhe}QQY-lY$j|a`$8Oi0^ z*$*@ufc%AOjBdw=D`K6eJ6w!NoXQ}hdw;gxB-e%-?hzxdx`~6w#+YLpMFV#-uXJ6|$-=l#SN^8!`Ux1;{&%y_ooUN5bu zqs*p`6ErnL!jJyLrf?m+9tj z=Ca0R#+R);=Vfk-d@{%r5~bV_TmC2+_}YfUUbXlqG0ApG0e9b34hAK5{(m_WKK-jv zVh(6PcUkZ){GiaYpTtuEH3DFJfHiGqwNnzGv9LiaNs>oePWJuq2GXqG#okPx&4~;P z*-o)&kBdb44gc=L+pLIR<2H(@t9JG4?^cv>Z!}&Aj5m|6W*xhUu+0?q~M& z!U8^6P-==ZO&y5R7RGJ)7T>xiW#D-+{OEbHBAgCC1NrzU>{?hPNgi7}i(_dF3D|y9 zck?@bc~)EF+s2YRwN|@ys+4fx@_>|8rsLRmCFY@H5?d;9n(P3oRO>)yXSb;S(Ut6v z`BMMfy?Rz?#Q=fFjo-fE<&(Z(;B_R4F;I{v6^Ba;T^?Ux#@1+RNr0boDJ~H*LQqB_H4jMe682p z9LmN+UuBT ziP5dvwGUo>AJSToQ#*CSux$8d@uDh!W|cRkj;)XFJ|R*q^Gzq*3$G{12-Xp&9AtDz z^`RkGzGBD%m3pj33}FqG+W@xHl)a@Mg6)Z;htd13Bq+ip=H;Qt+liq}On*ML86`X^Pn{In@e9I;v2iRCodpjmZ}nab?T0jr0{gg%qxNR%d5NRe{=p{(ALe*2%4+ll{r z1Lnco0L_8A9A(BM_gr(Z2a2#gFgo@y=ryob)rAm6IE4yKIrlSfedsFqAV&zc^5fqV ziIPYvM%1O#HY1&;#M{5)ADa&1LXEmN8@{7Hl5zeyPuRTAIGK*Gg_$_jAzhEke7aA5PW8X6AN)GoUdWY!leuD9ckbGBP6FrJ~7% z^FUvGU$mq5n-Gn6#W@{i=pI-9w3$azY;5YRvTS2}HGCfqyIs3EYqsi+z8_eG>#ZMx z6>qiHE%yx!r&UiR^9A{k(Y;M3gUCX{5TN$P%M$earK9g7|NUjExl61aKI&V@EpZ*E zkn!NVGser8wXKqaZd>i(^`vn}-ghfbjOdGwR5d50O}f^`iO%(`l`LmC5NPT#1bc*UvK%BrasW(0H6 zj9$$V4n@#BTsLbZGnL^plK`$ifVmVE8H5z-6=AGtgo>% z-J5)47e6ocp`BOA@ioHV@^Nm)cri678nF$#g_8ZVX`+x!LZ9<}Id<>IDpY)Bw$k0A zKy{72xEd_7j+2GVPP=+58{=<^-_m=0sI_O3wcVZdySJ8I0Izd84g|eLLk1p1#b*+f z>z>!^*AGEWcN~YBjFHBfV<$qgCX1@>=(akwZUId!v{qmJ=I-QAkfG2`!nPc?SBrti zXcYL&91PXW-&`4HcHxw8MI38>d!%PzYI89;lB=^Oi3Aja4cohsK9qOeF@^2)>4QGy z2x=|l_S-KUTpY^J3$5FJrhtwO0)F27dAKU-nPXIjqYWxysA=jEGVA^FWgXm`WpsU= z=4(XjQ5GU*$L-#<1E)KvK)adNl53Vy8_m27euAubQ;$>M2{Q)8$UEe6)HZ$M8{RjX9y3N=L&5@i!j9=Yb-aF*A|Ha+0_x(6zT`Qx+@sV2aiC>& zCn@r7EypDYsRk=?dW&SK446wZQ)1)!5)wmVvxp=eYL)`jnhk zlqoeJU$uaQ8{IT~n5p+k{EwoEPv@<>x^yW9s=fg@We^ziYcRXjMB z?(De{5!dqEdw7!%>FlLzauM$O$V)xU+x4*7ho_cXebnbij*JWZN z+0kZVRjpw@vv_J`Zl)AsbmA$GiTKGi7Fzd)m;w$c((Ia@Y0u#{``d-lzZw9=Qy%c(JF^eEZfLKqwB-dx!3CCi_24{`$0V z?T&B{1{FJjzI81bk{|Ba(0(R`&FY(K4#D;eIUW5x+s<T~9>dnoZM_f1L94_~AM4T7$48eWZs7%_&kI&d85!6u z6JSu;CNbRCf9#u9TJAN~ zoQ&)ZMmDD-i!~ut^p(Yx)&1sq{dw=pLehmLGg?W?BX$t?KV+FSmAa9WruuX)XvJv9 z{3vCFghd6DmuMp4h@yfXe3NsfPdn_vKPi(bjX1H!?h2#Bd0s4iFf@mRrE1fCzI28~ zl<-VM;>0a+Ze>%tGc9%{9Ri0zeZvm3KFQU-zmI;~z!)mIE^!E>U~H9WjE!7YM2l5X zKTE*Xrt8)c$H(Qmb^ z`iz6SjVMj&QvvYU?vAX0i#E^hIVRGl1w3WWn{hG0C2hQly#Qsx;|tPE%gd`CSRs<9 zQnF_4f<2})p`C~A@mT8Q_|4`(b~ny ztC-Q}`81a?ZOgO_MgnauX|+sGFMUN8C0lg9pwTdg#EseFM*YleRyKr&~>%ho?6YGHCTd0AyY zT}Uybm2Izm_Cs{7Eu~w)?BIOr;U1<*_*)P26Xaol*&23Rgez!KHC$=_Onls6Fca-r z)m&r!L)vlj`yhkU;I`cXUYPTAy%=3R3nD|=q-?{=s8!m@^IuO>re=$0t2f^pN+E5J zX9HNe(q-*gxqSrqh{+*L1H`YABYa8k$K*bBdR^aj=zHEY8>Fyvw*BXmsy3rfyIVt- z9LP3(B_P5?G?fkuiEZ)BuhtCyLZLP{4nUl&-$ay0?}qLkdbTL&zu>k zhpCN-F-?Y2?>Uco!g5>8govM@@rS+}vrI?Q`3J4W*J>^oH}`d#Zdew;D>G`<%9h$~ z=j~qIp_CDydhg=s;P4JOgq6S+u?~^rSH$vH!CWcffS*yYgPNTpCt%zKs@+V@S|Snx zp^cBL70yPH5C{kLpm(6)LZVg-L`d+>8&;5&kc>CIfln&r3HtxvG8pOLwaJO3tom-g`N$tg~qYYFh%8A*GIX z_GM@viJx&mbvP~H+EpDR{cIALzWH(3c)4Q{sAnIUC>10!az~x$WEFtc3HE!CadkKt z14#yyQTTY&F0{}rBP!TtgKn!RGGiMHI@hO2K*6G*a6$=Vqr?xXAXI5h<-0}T%~rGj zVMIU%yN=(yk$wn@i6D}*s^A*^6}m5u-M}FEo=JW2H{2Q6 zHt^`!f4v~84a#zX)nK%a($&zg8%6i#uVfUea&z>*^>*g*P>~;#gsh2dQ6WntA*E!i!LO8EC}inoES1skdxpB}uKRgj&+~g; z&-|mzT(ewru5-TUocHG~)p-AY0kzW+q8_^O7P6_~2lai>dVL!*DI?tJ5lO*i&R zbk%BxRPHgt5j9!=B$bs&wF|b&0W21D(1%-)HaJ>b~rPqe_OV0J*B+P+kD20 zTV}*tBQSJ;hoVG}>!i9|bYxokrQKwW22RN1|L&K*YkI zGVO4rF4?177)%%jyBL|*Otq~^6u?m*~CyN@0`uHg6z>p`RgS4mub=HAMQ zo69?WjiNg%<;+GBSI&=HoS8nhzH`f_hu)!wCQoZ!>HJ#t!v2tcBFl5F%Oh#DTJ>Cl zy#D)yQ~dWy$Y0_T3O>A%lM{ER-)%L-CkxDy?(QbhX9AI}Q%RXIAMPm4ceaEO$uN>Oiz7P9DCzcoTZ~yXXZ6eF$=8FdUc;XpdQY9=Cx$= z^~>aR5A=Z|MzZXJNwQ}XagXFXU74TV`5UDrI%#U06M2aKZ@6IcSU*5 z=4r^AnbMBFycNg7xfPFjGh@|S`EeQP9bFF`1J^&SR^Hr{tPu1;_~Fa>#|ZC3v@uPm48|zle(1=2FL%O@2NA|DR-(WfM0dTkU}or^ z*1Z(h`sHxFxz)``#4Qjqm>mr^06I4(Gi0ShiNf$v!{_YX%!;e8lFcZ3SrTGfDSE{> z$&lI zMrH8TEo6rItxvzA)wMDRiLrw26$iai>b`-X03O3K`bWs2^~mnbF*nYQ+_}vn1PF5; z@LzqC){*IoGa>`9pt_H}Gk4T$edb2oq+M(R23}aZ#NMr{BSQzHd`M$(!(|kMwfUEn zwbFnnEEBHex!t#nqSq@a(iWnQ`mNQc8a2$DdvFVBCoXB$eC!1Zj`MR8tVSAbyo_cZ zgrMtHOzk>L8}+v>l(@M?8Lbg=hJQrr!J*Y?wD&vYMvGN81HwjRRQF$vIr6|8Co=9v z|6C7<2HbvS3r}Az9Ptuvx3qWVxMG}Oj~-MVn)bHR|TLr_N z)1c$Kv=x&kHlekjp#h$lN?TzZ3x`5y4P(p?kRFDkZF&Ap@!VsGC5Oo3GWBC&rT)nmBj2L{hNU-)aRa}q0`SA>LTKXaU+!xCAP2!lz`nF) znS&A68p^1hET$~1KMrX`(}OL8WvheZ(Q^tcJ*Rp>KzD#9>7OV*42N5KQ~V;@mg;JT z-?rB=yg~7s*6=C)~gDIQBE^iuF`q~_R$N3m&4e>`{tMw2_~qBQ($)RUXeGm&p` zXU|WR&9(4Pj=7=%?tBK@+XkqPt<(@_$JkAeXx&+H-PqFyA!tgc@f>n+BQc= zd__ei3{EvN5MxmbfZIQlqIlhy{cSo+ndEvgh(pi7k`IAX==W46_7$ESU*j}5Broa5 zuXa+#ZXv_Qp({P^8eZ*$%s@EDuIoVF5R_o)0$($hb2E-NrR4xx^2>ot^L^(O%fqq$ zr?jn$cz`^DB_WK@)jxXQHNSFA*wnAJt&sTe`KjRHhcK|QzNuHe_f-r|tg6Mn=ps|i z!XYoXyzs0S)E+GT`ZUFlw}Y$vs5OQeeCHDR$4%D8K5M!t7o=_H&h|hLmVTUimkxCsK_=mgT+co&RR!u@EpQi5 z!5;7p;jFiOFi;4kVcn3+vxJ)JIR}r1Wki0W0G)(57_}|V*mXX5OHtg0g?}D$W(eLi z_eIdu(Tf2Z0aLL4E5Kc-Ej0evklhL_d9igY-Lcr_mQVlnsBD9A>Z5=If*Y%@iW7j> zupTc73Z>ZWY$4M^yHICySoDC1+CKVK8^!AC>fY^)-m*9L?c2A6acMY+$jJIrEhFDy z0t^BKDx)Fz-PLG)rf(UF0S*9I!uYHbmI1L4Zkn-lS-<%+GM>?ZSU1E;&K{I^>)xRV zUI{xmumzhz2AzJyeyyp8gd6TGZ{ubOx)_hK|$U4 z-qYSLF1cZxQmTkdc>&qVixDW4S`XQnq+EXh@CAg0bJS+n!;2DzNaM-~q7Z%vq3?5k z1}y{f$KR^Isq`&>@abJrZl#dh+RV;Q3kbC%@>0&1r~T?NU?*6rFUa-%%*XpQI?6q3 zY&^Qp;KGV?@-q+yy_{dQV1~9RQY3|bsR|IJ{{veO!+pVZ)~Myo%=RFTf>c5TVFJ2< zrBiNdDhx5l6XG0e*VaMcA8pnkXoPC7BlUu?t58->t{%YtCdw&q3kwTumK%LI1sHX| z(~CR4ZT7E^=|l0y1|&4Aec^Q4i9FP7`JfaI!1#9)0;A3+zj_+Q7h13mfyq2ZVC=q>S=17ZniA`??~}}TG_`^bXXX<$Xi=HccLD#E5Rxr*dKnHz|d|I{evRhyQem-|LU3!Fu2#VSU>Y z{dS--R4p-iZUph7jqVS5YFV(kbsguwz`$lP5vJ~G*Ru7^elu|dvLZ0neGfZKd)VMn zup@|Ati8vg;Yu`AhpYNYUup`ISuMP2@$_Nn-2P)1Cp-gnfF=Zq+{%kf>)QX$-B9a_ zDJ1V<`hwwU*Z!XAhSPxYhXW@i(T;~b{WG_%VeM63vYlYhv`Exni>m+Zz*na%HVjDo zDeA*@Jzdmpb%^>LWgu!&pZrmVfPz`qwGlM`poLBsV-sB5_9oxgYy0rmab8AOf8al* zpw?`8LJz$WMrix+5Bwv|Llx?4#+*<4hM?FTR~SmdVe1m1ID_{6-&#t)of-J~Q;Pk6 zeJCMb=;u?6je#4LxYfYIY*XvHb(#zFFC7&9yN@I+vWwUPl@@HRZ$>Ca?j!by>08Tn z2Hx%F$`+%+NGqu=@yD`f5tcpvO-KQ)LskQxpEWMF7b>8er~*n=q!yb$mpEtw{6j-M zCxB+&A#V`YyZXa>3Js=`?Xf3qhqO~XRK>BEoK5Os5-y;$DKrv|z~Hq6D)PFJr0AQ@ zSBiX0m4E;ugaVa;HM=j+;6nmiZtlOedDkv$ui0^Nun890)v-s6fm_yZDyc^kB!HU* z1?yo(CJte3nhqFcAJK3K(-ZNlv;p&%J~d>Ju*<))Z45DbJLW$=o`l?g9f&g}VVsbL z=u1v+?igTy7~TTCGUH@5_tOY~yWENs!5_J*4s=t3$P{Wi3)yPD!lEL*!C{!#9p{)3 z$FRPDi)-izj1gW3jEy%dd5p_8jfsH)McQZX7)n)|vuJ~5$e}PME-uLvMyLeZI=u@nKY%Q@2;@I=_9dMim8w$!9S`G*Me9!ck;A6Boqx7$DJ;pZ3Cieb z+tZ-snQ)?QSuJb`siu0YQVILU-LGp=$vKd3*}a|GO@O5c#)`7J4zL?o_hx74OLs7mNHR$dUH72{45%S|Ti= z(Vh+aeOHU6G9y>WK5*QKZ7vHIKrBA-`EEp+fA4JJ<6MWHL`6`%x_M;A7-du)#Wx|f-~d?+!I>Vt>H?L2yqU*Mn&9O0oo>=2%DR z-aTQQd|;>ZIX(-6Ngds)9eD7oMN^ecA-Mk92>I0{6Y#uD9kjZ0C?H2{SnFf9VLEMz zHKUc;U3U*iLM4hspLbC%pm~sU`*uu&L^)OF2rP>?ZG{peO+i5c_-FD76ZEPNJIhWA zKp%`8z-{+IQNbi&97AL^Ffnm>2aN41avmOs3S;Ce7l~}gt#S-C$piC?k0RJt=_*7S z*hnfh9(|3LQox$qI55)z9*ncY);dM(OD5ty7u0Lf6x9xH6#1Tipl^ zZD0ttNcCV)83kvtTy=Iyi3xbe?I3}AqEV_A=T*v@A*-8jUiuuax%NN6I+S(pG2pbi zMdhIHYXIO!0!3(t_c7n=D73%m^kys6=4FGi=8Y4HVA<7&2^UJju`h?-fzhY`mVb~V z!%A!NfIa2&bQUdY4;}M-Eeoze0renT&?6|^A| z$fbpx+B9AAxc3|tTar&j&CirpZEG+yY?(@^-RLc5ca~jmf{2II)M6SJW*=EaJ4qWT zvE$k4;ZZ0@8+J82@Yy_gn_0-Ne2h;1wQf}u6Xc3&eXqV{#Y<=?cgk{`+F;lc&oDbBI@9+*@T$GOgymUV%XP!u@tG^g1LBmmy2tlVW0jNM7v z<{ay^F1>1>h=@qzpXq#Gz?)*7>ajva(?9?9mmPvzwj?LP>ibD25*^2UkD4hWmR0L_+3y0-vVJ|kdO?EvfpPfyW?h3o4 zf$?}^wrR$vwU8u<-riw`h5w1*v;9H`3*yi0#%Y*#9u6BG~u-P;|4)e#egU;<}>*f_uFNP74178bfn!H+l{6$(a3-9dhCb7cc5~h|GbC z)Sv%hS8)>j+-=4{HQo+}N4$L9)Iy$ODE zk9iX#Wls%}V66VD3q^_$zaDue>;HJf4)FBWv8WU`B({IVjYHmMt#Ht?1;pH zVW|$}^7hcbuyb*74O!A+I7MV4393L&BNSyv3*ev%Axx|UDBJ+D*Fkq7Orh~yp`XPQ z*6Rnad5=qdu<{<;1_%{=t&mIQ1bYSH_07DzSY*jUI(8Jw7=Q{&nr{0J=<(1OM2Jj> zcn+gEdKn0yT1h<)aBfwa28ne8vW?Tb54Gh(gJQ#2GoYv^-YGsYsEw>*15NThF_$-K zcpU}z|JBi+suaO97;zo?NN5m23BBL`sRru3snk;Ge=-RQx$%`@R3$MpCU(PC^vqhj L_0{uK51sutMBg*; literal 0 HcmV?d00001 diff --git a/idz4/img/task1_4.png b/idz4/img/task1_4.png new file mode 100644 index 0000000000000000000000000000000000000000..d0f55cfaa3ea0b93a187dbd4227abaf503c933c7 GIT binary patch literal 41401 zcmd?RbySp5xHk%dVgXWubj(oFNT-rBbazOoGz{Hh&^dHVOA89ppmZZhODNsaF~r@2 z=X~d^@7{I3b=SK8-C2tzGW&hs9nXID^ZPx&=M7O+mczYEeis7+0~aPQt&V|#WrBfm zgW>iq@R#!+Suepq!Y(qpE*cImT-=`{EHRXxyExi9xY$~m(Yje8oUI(}c{#YbIJntp zU%9wAItz1h+WoH<91e(=oX!rHOW-bd9Od<#F);9-qkk|zN)%XOU}QmI(oZ!#(l%#s zT!<}6Z_NwDza#V#aLGM3&eb6xiH;;@877Wqgv(*B$wWuWM|_~Yp`HiZktc~(eyxg? z%Y@2Am8SX=5z0TSoJ%+sda3+^DK@#D_j79PJ|ENDZ>AUo*B>a$O74v4zu)gLnn+)N z9=0ro1*1P*Hb_;<6A zSDOu;+Yds5ZHJLi1um;$$f209 z=bpu3O0ay*9@hh*>K{3B4DQ>%IN4PaInon6f`d1Idsq3Qj>tqkxWFZWmc0pUcp)p0Oe~qn=7OUke zKB`K;|A^;-FQ6PI#z0+R%rqA@bLKH`1||G z;kZeT?FJYP8J8(WD9Pi%I2MiXy}b(1f&%6A(8`RqS5t%Cu}nGV%72`loYa~PKELQ! zaO%0ti9Mp-6PYZiZ4V>O(Js~RieriO^5WpW`rC>hTr6>QPPEgokEfn1AMnI#c>XQE zc+2Vjiiy68+4iqm-b%~f{38ZvmYCOpq`Z8WO>ser308qhruGi6N`~k<*~@O^%}k%Y zJJjMnWVPidhFE;oKUHIE9hxs54h#(FR+!1eE#0Zr9?n-Pu5NbUnH{I@ohbX9R5o4H zVNN*B-!I|3ryrSK8$!fXw6xsWIkpy#*$ zmBc(=@3Y-E)8MH=6}7sv^>xlqDn~YgzP!1?bKk5liTgG_zWLv}gC=%sPH ziye)a*OQ(-9DM3Fj|P=A!K^0yMenDPmRnO*PJidWk$q+1?pmovEcM7|iu;z#C04XA zZg1mBNHjAyi#X0pE_z2$JNuLg2yvF5QKtG2s-*Jc%7hZDWv=uk^Dd02NVG3>Mwv|I zpYoZBC!1j9yJq`qFaGLuX$aXQQD_Qgo=xB|3T?i+MCC0Z_Spqc_V)IxW2LEQo!(15 zB^; z-+^=y($Qj_&RXY{pZ!@vwRACC@`jAV)l&9pZ{EBy78WlnD--lSDhX}YEL4x_U25#9 z&W@E77_#?H1b|&grMx~UG<_wTWaSKPRh^E;uL^vS|1L3~k*`95rAYs)EK0aP5mVfqGi)3m4Ien+`z|#Zsr05ML>KlhU zb0+;Jjb2(*JFAc%Jaz_U_0z_ViQ`9@g86<_ zX3|V;Ndep@x4p>AfwVw8D&dANq7X=1G>ZnK)Q@Z#+<<_9m|g+fi4R9YJ|};>EccFC z)N?(SyrVC=<}UVnIb(V=#C@&1QuvCqt`~i=@qJK`+^K=*TsIQR8%`}IjF<#=GkT=| z)!q(ljz&5`LBTzD;2i|MSdGYD_#Li~a<)&_IGIcB%r-J4?#$GW&#$dnodCyT;za`% zowG6V>~Mo(Z?W6lBOUnKBJ-2KzgxR3fy3ev6cM4A`szSatGH~br#SvpaitVkmvtyi zaktE{R-Gyg%uU+{d2myC1cd;(p^*{p1?t#8$42JprTuJ!r*&g%5Pm0F>qZ%`Q0Lw; zLa9xFnt+_VC?SfRk9BM?Eqa_mHayrz46I#MCXZ#0v=B|c&B*x_Z_G)5lq=Xuqjd<} z6jAS^zGxA5dnxcpdWm~?8fW{X4wHFb{&anDHp}Jjz-=Uu>33F02RzU^uhsT&p2GT0 zBAXsztzu-@=~lR{fiZ9>Kcb^|B!Rz3jQr{&J~K0et5aqeV(7LqKy~QLH0OQiw8=+H z5m6FG^7vuxIdH#Jo;_lX zqU0rDFFiYb#n|odH4AI~ubNnwxH$=s>n!R#M2-5IhVq5+r?EbsZ`g7FEU^H;;m)AI zp9@coW>wh}UxGDgrpFCuuaXPcm&{Is)nia#%Y7mPpD<(Slq>4HiGw32-k(4i1vX^! zmoiN{9?!Fb!Xi9qo}+plq}+UAW23kz2sX;OAE}YM9viopobg2APD8hZ z)w5yG#rRLWwJm-A0;x_AK8?1PUMio>kvdG?r<}xdkT6jZ5$<=k#$?f-!Z$WteG=** zs$MnXveh0RrwC_R{`9=nxTwf_Z*%f<*RfSfcI<{ET&!5Tl)P54nkf&iZl?_Qo;&ao zc*J9I8=lBf3XeB&ok{wWpw7q=6KmafN6dKdxRSk)@nxTh`HM5#WX3{2Tji#ExjlP9 zG=3l9NTtQP7{ZC>%QJ=e;r12Oo~!ufiTUBI(&#<^(GNRa7UV!Z_=PvO664c`0q*mj_RI5}lZOyD*#4Zai1m zQn5Qyvp%MpB%dOt`%v*+KI?`ABQeilFXgn@fbmf@xD3xXr2;&5TREijGm>FD?dnVc~KB{ zK5Wl^=6Y~`>Ky;KvD=l+smon&y4r43ijH3HJOA}e??bN6aquX~@`!GF(+R-UQ)mUs zhUZP}rxq`cwx$ITEk9Q+jA}!gJ$AFb^le#5f+N;$X~P>91C^&H7w+JsZbrYO2gk~d zi23!7G42<3YTZRbszPmH{0Zb~bfh+0zveot-Qu5T!iq6&f_v0v*3Rbib{>j$*?kIS zvzk8T?sPMyfGvAYF{x-F zO~`pU;y9l7rShSM{olpF{xmk;3-Km_UG>AR^KKM~9drCr?4@&KG1sW|?eAyL(ZX4D z6&C}I>}8e2M0@5Gu+GP4G~=1oo{6z1O4H{LW3aG97lk04ZHyy$y<9WLshU@FSz{YW zS(IXjS!&mm!krnl>fJUc0@QM3Wvm)#G+@27IqH~q2xSmXww`fN{=&5jSPVJ?|qUI4voQXJLiRJ zarPI_$d+fb>}bFT%tW-2rroVECq5<}?_H7@#%+M>(HvEUDdsSl>^9CSj*^)OGz4!d z2yeyUdG!^)?~ok`qh#_-IuJ%sFM2;Kf-^4Gr*(~0Owkdvhn#y%qN5D?XJM;DYiFZYGmQa~?H7VrOgmC&Ck||Kb1)%-+pXiSQ+lc6<1A!XeDgi*jW|mS>Bb0MZ_hwL!ZYSL-VBb*Cn4J z*{tg6yThVWWm)b-OLKaSkN!Bm5aw=woLjsuKnEqvXEhiefMs+kjCQouY3G*0b#-;) znth3OBRV@fnFj0zAR#f>np0hEU&V|S7losbTq=!-3R9RHe|BTtc{DW-{D8(Nj}$?(-Z{}U(Lu7vx z8#isEcsO#sD&u^*D-z5z$i`EBGGQbySnPaAU}a0^Fx=Nk18+}{L%)o~;y`}HHc!Z_ zvyLZwMioj&zJme}z=Rm#&{EA^H?Ym^wW}qFu{Kj*lAA(x^@lz=ixd|hDwcO;Ev#g) z%UWd2a@`n`L#hTn{|y*TtVgX{T?XHrrzV%~05 zGZSzw!e>YePZOg$7d0&bsAup_6}^D(@+e+jU4e__gGPhHccC_-$W1tj&ZBin`?Lk5 zV)t$w-h=GKSJ0n{CVnCDk9CSRr0WP1ZPWVDW`WKj#M<9eQaq}p=g6~=J_-gbKzoR2ZG!)1Ilb1J zg(y=k49Q)zn6F(F-=*>M1X-}IJ}Q^7r!b9Q$jBtng~%Zoe@E*@0)dGy%F5dJK)B=7 zaS9_X=vCI1mJKsr^zJOmN)vVh57ZT*YdcD4&afkwKOtYmT6l|PLBG3Y5b4p?(y9KP zY+A$78S$1wAY*v#wI)^^1ygMna^dAVwp3TdDu5zCgSP0@Q5mFqT65@+BFch(s z6obGZqLoo)J|`;bh!GMKchOZ5T`iIy@OHtgR6d@^N`!II0m_n?>ig)ma77!G8rGD@ znnLNk&)sV*Lm1n(`AC`inLLG9h?+RXo@YFT1I*r7%Zw~@!)Rcnc#5;$&R~x8LQxK9+ zr&24?uY&t__DYpZzy)$*edR^;>E)In7yTP}Z-SXwx^dqgtTG9BN=rw|PL07(4LUP> zFhZue_+{vVbll0r@_$l3=(rS6KansJjYk?ATDccSKE*0TYUgN|Hz}qq0s#z<&3`dO z|8?PiaYZ7(nNRtxohc^zG;77x`1CNdR4B^q)Y`?r+)@ zO@;=l)!Et~+(hLgZpO$spPX3`#s5HlO<&Vs?G=yLK7HbP7ZkLC_ukBkW^sKz^uq_* z3w{d-+m|+}9kKS44F5gOjr}dRkgZcjkl8ML~rGwjw6$$Zys(_qE-W z^Y)`k^ge%|nGyRo{f|;RxC^GC1`Qhb*s(tLL?rV4x;@;xvIYQ~d@|3{W1L#(G{JM| ziY8Lh6JudzrJ(8F-pXL+yvM(ZZ+!F1rCaGk_-_W4rf%VGA*A!t@891RdzGbie+V5O z9B9tWm^Ax|@#MdokB5P=664f4Tn2X?HDjHyKl?v1dX*YfB5rLU!af<^1Eg0WHASYV zXEv0BUatLr;|kjozhN|ZWW7ZCG6k6Uo!$go%hO7W?&!xl9EusDLOnZ{lS$m>Lv^k; zx$-eLCO^OI1k;dR!jNahgE!UaeN3O&Jt1GIv|sT9V7fQ>;wKmY&uNJN{N(yy9nd-Z@!kvpY$ zwD?sf?4f)tBQC&z1!m1|Tlys^zIZnKUo`{((&@|~bxL#z01gi^TmkIDx^9nC9Nm31 zO9!4SI~m!=|NJ{Pp!ZbT6By+1d{A3o*WD|xRy#YMB-0RiUbNy%d;kEysQy6IbI%k2 zpItxyimkzh1I^`nm$f(Hk9YyocdyEN^n0O3!Jo$TIX@IG;C-|^Wd?%MGCzI##JpoQ zQ|DSPI{u?P0?c%S%SG2Nm4H1ZVr8H-QYnNGYAnp}mh97wqk|W1m;@+{7SKy`BlpYm zQ;(H&_h^1QeZJ8`jg`DZOWH5st73wWOOidpiGaJR9LSN28mhK4aDCqOeyrB{C0{U_ zcKBg)6B~m?V?EhoE(CD2=IhJ#TE*HYfa}nD!(%(abq)wxwXsw|r|i0?Voraso6h$X z4%S9+K)4=OsSIN4PaeB}y2g1p1s0YUGd5=2=d=XcDobzSl7Dbo=%@id3db(U2WMwz zMKCi(+mQklosi{RSghmOfz{7)6B+?b#tbk6m_(vaVMvZZ9%ND zrzHSuv^t7XC_6HsL2feR_T9VBl6fpO-!Q`TzS__H-R-22t1YJj7_lRYrhK3sAh%Cu z?RVoprNriry7*WiAw0sTs2BYyh0^ld{!5~n68_>(cLu*mz{YZHW*daI=bED=E>EP4 zG?0>`Wkv=w?x~q0I(BkqujZN>>#7%P6w`%Cz=jP`6efCxEV;Zu6(3tF6P5!u;SPxF zz5%=aQEnpf#bz9@-hD?F$^EL@dX)8TeSQ6NK-~m>emO{9=eA`H3@+mLY@;`K*<8L7 zMJurM`%KDdTxk;ivqKf;a#HI*3vt14LJeP@pX^#s0xtYMnpL@a&GOduvC%$`j=hoD;ixi#P$%`-J> z{RQ2(4dYO^TlZHG_X@$D>{JWFqq@(*!4XKzqAr~*Dk}QZw+~=lhMn^Du~Ld92LQcZ zF&ox6E^YwuP=sP~W;dvQ@&wq!UX`u$#HZ(hfT$%0zWisLguh?art8;qu)(?e(u8<> zD(R#G$$AplDV8pL{(i$zGfNS6ElR=1$Jg1B^GnezH=Y>+%ro;eCAZnTI-DonXzFCz zp*f;bxfZc>AJ9db`wEF1e8kMEl8vOX^Yf-}3knLJ1BAofl$b8!UUdBUxRw#0MqJZ> zVPS!2gZtIbk1<*PSC`hab8~aiY1j`7$>{fthl2iTkm>**diNwp|VECIv5-lS6WvGL+)y6B0NH7vO= zL(E`?GezD?`Su~pd>j>PjeKSu(Jo!hu)^nicA%Ef z>&Z74+1%WG_GsEOeoKBW)f1LT`8b4$mX>z!L_S_=#MNpl%F|Vy=#-*X98ejYma)fd z&BX>^?c)xYMB`Ys?!shj_Mi^Rp^!ZJQJ=+Eg^V8aEdhddQg|uEi9I*j%ZwXC!3Hj} zOUhMF*VlR(X9wSdO5_z~vFs97Hfyn&7Za5I ze+3a#sI(s8Jx84)j&9=a5hDGho|Zpfik{Atz(r`B^C6w*V#%{PAy&qIDN{BwCY_q^ z+0N!*^_d_!QaIP!a9aIN6EoKOW&V-ku%dJkaZh8yX*Gl;<^^P#TQ=%>%WKTlp{%!c zyNRq`NNM;psNJA+D!<*|Q5_SRGEV$odDf|?-cf$`{d42M>u4UffODnE#V3#Td7KS> zpgHNqasJ6tqe8qKOK|j&F*01fN??RLn%}s>j-d?2Wpb=EmkD`{Q2cDsO}J1IyVX^T z%oP!?-Qh3w-xyxxs#V-b+FtU%x^N%e9!R4^O+?n7H~KIoG5PJDUVY#@_4+#>&|{G^ZWKQbc46=c z|Dsh;oMtj!6T~>*PI@kX&3#WpxkgAwM<>1|c`QUZBRia&Z#{1bEN4Vt3p|Lx ze?)tK(}b6W;=QqJf5)YMAFtZ2;73R?=fU$Sl=g$hpV=oZ$qG8mHcWhesS z@f6)I%qqP^@f{WGQWjligjtgnyq(hGI3x3Q_`xlMEOwtKS>&v3tT zGcQLrt^P&#JuU<5JN-%AQt^^7cDll%bOXH4S2wWphUe)_y%3i&37; zbrxhXialKX43d1VB}Vny7j}x7z9YNwZ5n=@A#s|%z0q`Ui#V9LVd3hy%7nOU(#paK z(HV4kZwV&L72n>%RY%2n7T#q6Nd`Iyqs9sWQZc1jLWuDPQ6Zp_i`zi-P_*s~Q-3^X z<>cv)OoM-iI0u4en`zzU|-fB@{fr} zs+gN&?O=cAKw_uMI&7~g@2k@OM&G%Zti(8i@*#)e$7;GAk+VaF*tnJ+&lsC$V`$nR zt_Xc7ME#@NJK;jRSbHmP=S>oluUMgJ@kU(OT!V-@UHQ_Tkz)C2Hld2WZ;7#1W@jRk zfrf0$(@#dR;$3r@9y%i%;VNtuTRO_2g(u@_Y0^{zI(0`1Ff<&~Z58r8KjEep^9sJ3 z8U9*l%uwIF!qWcg5ZAC`+~QrzsPyh}W1v)+Y~cc%5lO7CpK@NDG$D3va%^`(Qr&JO z_1CqkH8GgReJgJWY)D|vCuch=*W1B!-c;FMd#S_7k4d0h-BKCuknLc=xSw&S|CkB# zBigPPxBM4Ae2)oAldqd+{o$9R0xrWE0ZMB}j*vKcF@GX%Cg0Qs|F7{Y&EtZJb45B4*O+u{^ zrTPO&<~(1-IRrCi77q%G!EQM?Mu;z-#l4dzd?dsPk}^>U_6`>#S^q&~SI_CzO#RoX zKo=_$kU0=+lqfu7*}A3F31@Uh^eK&!L4P0#RbZC>?nZ7(!6p0WGz@3ILav6(2EMR?H65>u%kVv(aWBeMnk|p>fb)$` z3>2UHD$Y?jUHI=Dm_*S{b!j|g`5uR#yhaOC%QK|pcCDdXl$K{`0KwfyZlb>K>6ij` z^(!6al4$%mN?lLn^L0llaa|BFX}KD{_o>NKQ1XORCgKTLr0!YBh|?x;oFeZT2;=%F8qCHqehNx2vMA54+rY<*s7C&!Q zz0!eYnHZVeqk+M~6VHjMLBZZVWr@6}*hCD8?a!2G78XQ4S9oSww+iu2kXG>0i_1`1 zyr+v4gY`{}(4jern3$jHVdBcEwW}9wL&a7qP5RZgg`rSr7E-$BNm0$3G~7XSIl1g7 zO+tsgI-9k9TQEV9yte$0&k#p-pU25H#8$oh{k)omL~M5wi3@v<@&+n?Ix}9AAq-Z7 z&{p1dS>X~|3V72y$WxwnZCe|TYI+rC^)u+9v}I_-fh}|1OEfY+@N%lfVPGiCFQ~Ot zf!Kt+4L{Jy_{XUrF#f4<{=A0XmX7R?zCHIJvK-@YKPk)%anzvnDB{0!?k%YY7PcgI z*NUBz+OGm@%F|C|KZbW(kUtJB335^3NUwys&yNkU3r!9R@sZtU-9_$ToN`3(ynAPM zE%-Sg=g}?Uf|^?RF5VL2;!?%^)VDYxPFAv+2LEGu#v#xAPw-PtC*Y^|`GpJsh(Aw0 zfW{3V(T6iyq%|VmA~rcE1dbu^970Z_f32M$0wy6&Sh6810}8sjN#x^N#}UF%JW>(S zf|3Uc|0hy{p8h{&M$*#%A8MBVe{-|QXdggT+ym(AO;8XHtLDeo=$w4rHX7WP=|5ZFykO)(=tLh^HOxj$7-uiR$53~&ux z&z})C0EHO(^H{zKm{2zI1IUGD0r^xC?@K%+lS(9DaoTJAK$p3k{z!kZ9=!{+4q;B| zfMF?W>w981@d*=z)iOZYkW<2h;x-xV?R^ZJWw`EWjN_;)*|TTQ9D!B~h_@h!H?^$cK;TT4&WR^(Ge2!TyW_WyF07enqH7#T`66?bwiOAObWBj0)Ua zy+~AUZu`HOM^;+8Wn_fNe&BVn#=C7t+k~|V8HqrI;nGQuQ+43JQuV1&UfVa&_L<#k zS_hx3UH3SE@(-w~BY^}-PLHFU)37F*8KwKxo+?As^Gzg`h^*c$;0qS}l8GiOEn5M| z=l1w(YS`dG0P@;4CDS0ePbnKgemJ~WYVfs*$4Y@Ue?87Z0??UJRcRxDvAPsEmUMb)JQGhVfK%8{($VMHT|?Xd!`0l6a>*PQ*qNYtf(zVyAz>ohBXgxDfl&E3AI3X zBr`zzSo=PD6Qd^lB#Led1)Lg;4e_#3)b~Xezjtg|_tOyXT z$_yx6c)`-t^A$sUPWNPBe;}twyZSm=-!Szm$M#SX4{&nFi2HhtE*ArOwn$$YJeU3K zG6XHH>~eaggg$caNJvQBrxB+F0z4UD?-jtryOae1cbQd$NCJEVP98iy)JF`6C;4Ck zduW}aA;&20l7qzQVl0`$uf^khX_YCv?v{R_FjLw){^wXD6}*Eez!Yn1DE1Mt#sGen z?0(?5y@v3&U^_8bwcE~YddsWpZUhqsmX`nf?SGJZ{vX_?9N7xUFvv3{{^hdRtB;&B7u%q2Jv}py& zx?-@pQb-(^KP%DGdp$xcQW4C0+cVOIyePHROroxBZ`|Yy`&K@BQDy(sKh2qI8KRN{ z28n79TW~5(yP~hkZ#yF3$Ya2KSHDNgS10+t4w=TkiWhdqfDTeh zj-kF9>oYMYGx_j(E+{9Y)x-+nY`-{?{UCSuU2P5R_eqjlIxjT`|58q0j4%*$$X{%7 z4@=Yq5$g=nnO)uTQ7s}?7xTjYRd-X=1EWOGJWYDJ?@FbOoc~EeBnT^{uFq7rPAD7k zlFFv+sFZ=~;va60ci1wQ9DVI1EBlFUh4ds&{UXiq8tT06lb&G~or2rMg9jK_vxBd> zTCa+U#e1}FPaiq7RNTC$TIXU#3&9pdU{BN%O;p{R_=;cSj{kR;Te&i7sw!Y0Jpf+< zTT~QzuKR!>=I}b%;KtBDg7dL)Md0TwiegyI_d)IX^OSHwy)T5y#KrG;Z}!r6wQ2@% z#njegX%&$bWJyJAwct_lFq%()#qz(fJZI6UbCH~`?vO5#4#^D(3Jxy0i(ZaOyIWYZ zO?v|CJNj?$cDl({&v|XeQ~NjVi{r%?1yDFFjf`xw>hXNg=UaGUhV6LB`pKih3CSAD z`;xqX$MW^|Ou*4r#2reo8c=kAU=f=}Pp`VR>h@%|jMra|Rbd$#y2t@*4++0s;k56hQ8`;F zJ2A%{HxGr|`li-uUE&)a83+ns$Ev8mjOb78?#VrxLlb(212Ji%H|# zX1@^s?B3}sSHUgq@8p?+>)L@iFJma|v?d=*H_(qJ0P^8)+UeGIPyj2Hbk znoxK^QT%Fhc;caLAK854@r02WK@8RP0%&s{js(5BMBVs#w&5;FLH}TT^Uc>`Gh24hKSxD*{6>p*Z# z{1{0@5Tn(z?2Vhl-EtHqY(uJBh(VCEs^f^02uZ!49K_(NyUx#8{rMg#HH^7S`(i;_9L$h({ItCq9K6bhPMO7M7iNfcL_fM1vKl1@ zd+)bm01w#{9~L)lyT0MFiJv8R(!_D^Q@-+H7o*cIy=z#XFTw--&Q0{=bCtF?NV&GB zRaDQ<39xIuP1TAoPpWrZMCCKJ++U3iju0hrVNQIxBcF&T=tazIL_YE9sk;S8y4}0J zTBZssmCO2>yM>1jep7P8?qT%%3H{HH?hl-g6LaEH++b41Sn9=!qQQ!wz%uc*+@y*@ z@35;@&}o_4cR^VTJuIuI3j#$N5$5eh^Tp*4|F~8Es+0O`B!s~5KE9FZ`@%=eo>KKI zhvRYCb{9BE?q8d3($C8%E|;E{uRhsCcr`9Js&EyqxZgfdEEIV%y|Qgj89mvFBcDtN zTnMw)T|p03bdL{cuBV&8vpl19!a*c!Xi4MtU-^I#vF6s44kO)uu8OKx&uy=uGeZj9 zI;Hw84$W(kp~1n|6AX1>N z+#O8+nl6Zf_!HC<1P3DnzrALpAkCSs+?lrxZiy_4;LbzoVteHeQ6(=py53wKxY=~t zaiU+B?=YQ!#Y043^&Nc~VY-Giws2WWXu`%y@pyC7G{OF~Z^&(s5X=&ye)REdqdWk_ ztlbkuT9OxMEwM~>3=H%LK{VuIR;vvRod5iuK{G0lKv`M$S0#<#<%d-6JG8!2Uj^{G z(pX78c?+oK-F4j0-~JdJOnL1f;ZLZaa&o;IlhhQi!+Oq9mNe-Jss3qQCc?%OQ_*Z8 z`pI_kwet$tC;=Peu5vQci(Kf5RLhn>J!c72I=$aMNb^*cN5yB{n-DLqxLAZOv`qTW zd}^v%hL zJ4xYp+!k)B=G<~z3PnF`lN|jpIM-kcDH+c~SQlYA_r;5AgKW*NK~|fHxZk*Wk6dIf zn(&iCq6-+5#nFT5Z~l?F z9ugILNW`4mbWh0+E+mQTeC~3JYM9w(TGb@vyx#t_s$|(?q1X~ig5~2IAnY1$_YJJ< z4|EkvwxIJp+>Y0iZ`Bqv7l6e_I{D^TI^%jHxf%YhWJ+c|YbiBA+r(R(x*TxuQC!=E zavJ^j-N`pG)|BNf7Tw&J`-L@W^}*Ypm@6#1Fl;Apcz9!xa$rP|V-99+fL+qXas8xm zUa}#lQO!7sT8gYP`=kk*8<*V%itd_mnvmV8IuiLzYC#_|uuE>^jZu*h#PpA3{NHff z9+V~w(Er&WYPa@fVq#KE<=@J4m5rn<^m{2z635}vkA3rImQJ}b(1DAAShTR(6KK96 zp8nF(NAs-`e$Osun(4oH- ze7@7Y-Q91bCO!cK46^ely9>-}+1TsjDSuL{aX79`UmY2glp)@&8Jy-FbhHv;(9nqeVRtAhX8Yao8LGI0)3E zWP@zBd;*(Z$+WAht5$ciRS)gq_|^Wwng&2Ss$2D-l7?9$|NcWx<8Z*MFU)^?3)>S1 zr=nJO^D)|s{5*F!oPMrQx(rH&6p9TG6&Y;@1h}9g#=3Mr_1Q)wvq%M??9s&G#WKKUyxO7}O z2lNFUHT@vd$(MYBLKSCLvL~~(f8kWvjzvBM;+BehXL14pOcfQC8X>GQWrE$aX;GcQ zteu7|$B^5dvvAx`b!!E?vw@9VjXSG5CXvOICPD*aj!m(Ov5bxx+*ll$zKn+`f(&sn zdJsoc_oavz#0mb>yrhrRbbMq-XJjzHx3hL??l|yG?wS*}7 ztchnmSE#@Q-zrqk`wn=`-vBOwLZgN+CZ|TWkbqb_nXj%J+FJTAt)_D?#U@DrwlZg5 zaarn#zv^#q?EOpZzCE9=XF{(h|6n_w^?m0>{fF8ODZx6%M>H}<(JbtBrG_Cu*HPSE z=INayS**=mV@;BVI{5ZnLgE*v9m?*iWC;L7G^1?$Il!5lS^4=*=6(lG6czS#17&m(T-P?Nu{cK%}0V-+k2^79n;g9+cy3%!> zxJauwFa_%cL#g|v;6+5@6+<|s#I5f0i(Q9-8zQ??-O4`Gt z<+PJV&1qfp-PSBFG5cKu3nhTEDFGa1`WZM-Sg4&g%4jl-*W2E{lxKWv>9AOMB$$)s zw-=C+IH5D9`qk`O)Id-}n0K(@ii+od!Cl20d+%vy`v;qUQl}`sG>yUmDl)R*q1)0h za$~+=#GIZ~^jZMt_KUvA9WRxRFbfvUqlyn*+)pGT|1l3^zGdt$whh6tAP9OTuvW4@ zL`SQ^IKgUjlBWLW4?yeo{Eo^CMxCr6+}wg_JBwmRI=R! z9!0C%G85t0ckI3UM+Ow}F{l9qY2keTmWv)grh|!C*h;s?@A^T;g+d+S8MT-yCwCm6 z`{_!=uW?hV!jV#qMjsNkZ^o>H)Fa9P0%bO+W&<@wHvA>Jg*yDwlUK&;@hodWIr$IO*PSL}T2iD*GAz3vt)=pG9X`n<7AE zS=2NCGSfGouzW&znwB1cy<=w-u#R&jS@Zc`zANfhQ*s3GoQ=}AOlCh}Mqj0(jQ~ z@B1E5typ3daHA!KPx9@pmc6Bpr^!KhqiD~rH8T5K7Wm~+Vj_)amPj-tH|DKb0Cs9z zud?>W4-|`71I+8?Q zWz4tN%EkE~{z@=Cn2(_(@=|Ksk1GT*Om$EDP2Gwc%<9-R-lVT)4ZS*suRHb}g#U}L z*S9Z8T#qgTZ!KFp1DJy+s-(Y>PuWI)L_qjurr_) zHADxsQ`a+!L2@M&!svgVyS(Ce4i%aBkekRs^>?HEbpg{SPhKwTIP}fGpfR1r${q&U z7r%^@s~l}-N@g7$clkwTcpS#^qjItEM_A{V_18_&41z@`sQ&wV?{(a_fD--`>yHpT^mq3UO9WWhP|9+MWPHA}o9P?C{&YUmFE^^Y5J^i@4RXr1Un_UF+y_~Lc z00!Mehko8J%lH3IzO;5@ejQtT7nl)c`d5L!3sD`Xg&F~e8|a1>PUuD1RFcFPs)Rlu zepe9xctK=l_dzm#%dhfGrzUf``3~F}z^>^LU*C~I;Ooi&re5Xz*+(_5)ySZ(Unjeg zla(zCost`4lCM6Zr+_UGZ4qL6jZ+g^lrn41MYMEC%t;_wk3Co3EdZ zE}y11fV^eKC$~t;6eM6aL~lC>*^XR;$~HmHkcqQH^k#>v4|M*1*|}V+I=#NG%>WXXG{N15lp3{&xRbIuC!FybUclF**8Rmt2T_R4o~IB z^gj=H&8XzKTaan$=&tgmU#?5)J_eB7z4`okK|E|Anhp!G*p(%6pFRkUD!U$@?}b$` z3D&~S*O*#*(d!25?Y{F>HcGZq;!?6hA@NhKI@BjVIQ978psgqVv0AA(OI)Yc)P12Lq z)Bf*`_;C7UKUO^G`+b5kZq1U(0U9iH8QMcMV(m(SsW@c%+z|D`j^nV~T#N1sIKO3T zP|@=db?oPJ+NnY&YJ2C|FR@vV`Z8stlbEFb&iQR#LHjBx`bsvx=?4UQpHKG#*bTzP zn%NC*LCjJ~=?%E+jSWNm30t4W}?pUlaQY;P*U|GZVdY_GJ66q*-#2dn*bewB$(pQRI zx9wl*ZTaxD<8-G9YY(ctV=rCJF~K0@xB8clJ}phvW^RZ1@K}5X5cv*nXmr z=)nUFK;Rr~76PLvM*QAVpU|w&OW8RZ@yPYL)O42zJFw$=Iu$eV&JRhWd7z(O#W<;2 z(uaOud8^{|*oGtb&_5U)XxFnbaAJ}k+@){WaNEan^9OD$BW5jPEi$-^^?e;v>t>`B z0buV~<*Kv3S4g;`2g!8Z@uwbwLlq3@O;UQ#Wg{QmlOu<+?Vdb;Hg&qKC> z*xon{?a27hET6{%;J6-gV5g;_ZRF6;_bY?_i{6MQgVZ^12cOLRen8Op5IxA5flQo0 zT;2hd^t&G3z~go?zN@Xh8b@XE7E#ZJ@)R7cgI6MS)y0;B@Qn`Cv;O`2SMvQ`5=T(K zt2+)-FKj7%Hu+=j2*md_UL^ES* z3v9m;Np_~48Ns3SNe(Va8C$gJiDO~C12TI=cS$+IK@A)&sQ=Z4%slRtgnwaFP74Ou zk4~@B0zBJu|Aouu1OfVm0NuZUA~={rzFXV5$OlinXzex}Sy+CpPJsj^i z4Iu*0T*dX0NE^9)%y)u_z)Ds9)A#h+__|0^-o1PG@!hMgXu6o*wDfef0%a=7=z^Az z#WjtE`LMO&ys%1;0$S3owoQgNfGH0LlJUZKZ2aH8eY57-Jr>ZmiAM7McLex0L*p$b zN4iL>5G@A5XfcDKm$2d+8(Mn$8{h>Mj?T9X)9DF)QIX$WHnVA@gvt;;OM?5n_e;lj znoq;bY)YesOgpVz4EU){A`L?&2Z?vZ3nJTQ%SI;595H|!vJ=sTcqRT!r`jA==p~VT+wm>TVJ~cJ9{hu-kb8xNH z!0}>2P&{Vj>s)rAOHGV4NHYJoq@_gnk@-%pOD@Qs>i$2aEsM5uug=6qw{3jHPMsG4 zL-RPSA?)+}o{o()VM6bEztgLK)hHmF=}l$VtrK|v(fpr3Z@?y!0m)wT4MhfVujB0q zfMGv!#(kaj+KAtPbB6udTk5R z07o@?9L`+ZuK%%QDk%t`~%nV~U!Lyx$n7n!I!V&i_gfu2c|Hl_5kgSu<4{CaK zIBkgbQ!>M6ALWX6fy{;m@Ic={5es{oa5)DZI5@DMDzn#U(m3Z458z zD<+4_kq!4eQ~d$)55k4?JhH_H(vk!*EOBDY5RB>7I=^^FKwZ=F@{;JLs9$)?ke@T zyk6M?-_Lp$2RcCg?l`^p#B^W%{A`v9{q`E1l_Yk>kYF}g2gT-Sub{-M2dYJA@Id(; zz^z^LUO(%mwS1bGivg|cZG=V?aX*{R)z_7<08DBP+K3G7%A#a8!08Or3bgS^D)L(; z{$2Byl_D}qWh}LI)993t{MBk1I3K#6 zHahK9dF+~@odqZmg0kwAg$v~~HGq2#c%FOAf4?btD>9Sosk@*w-v7nfTSsNNcU!}h zAT5G~lp-l8f^^4CgMfl`35XI3(v6~obRzZ z@j1pGW4kxp_jUbpt-0o$%SLa9xh%evQp6YYm+Jv)%4ZJBwXq&5AH)nC54_G!JvoeO zXuxPiC9w@cZ0(Gtfk_d&PaDnO-$@J=!DzjBf^A{({lw*>l)>eSIe|Pk9M7dgM;fYBp5nfaMg^8pVfumymH4X)^c4H)jwH!xMF)l zkIqHZ`_(7zSvr!4V&Z}kgr<1_(lLj%FZ&cq<+JcXU;Pxzpa#I&`6$=wM? zFyfu97XNoEajeg^OW11$m1?QeB#AdQB%QTU)7LI*Y|hNgya6YN%x|E{LaZnfz}@B+ z?5+>{>X%6dF`m|qf5u5n7H@5odUL6}I1^ro6+6zJqJH;k3r_n7jt^L+;l}67L|(0Z z0It9I{fJ8>gB2gVvH5IX)sNDqyX`g!chM+DwCQG_=24FcR^vl~{qtZ;vvyxjhMXXl+;vi35qQ zNw$OkQst$~mm~MP;Y%|(Yq3^GG4aSzO&=vIK41SNP^Op95E|=&lS48&U*RB<_{S+J zAX59)Qj@y=Ef>MDxji};#Trqklxpd73zuZ=c1#~}M zrAz1MbZHj0e`>yAJra%52+*|2B` z~rv!K{>HX+SCwm#}bl6+=yDMhuZjr@kc|^k1Eu#FuJMBHXe#uf3-NK z@h*75ErMw@4*}n@+N;Q1K;`o~u9FCsq$#DnWS^Ks|DJqH69dTypU=n1ewZ-yvz9+= zBEIGIK2w;6p+Fi}u?AL57+|oqMaQ6yD+6uZqb7*xtLa40YW5oh#2;aW^XDRKhvYSc zyRS-GQWzH34llUoB=yq5GJA)`WQ3>#f$n9b>ox!D`VK_8m3+3>*4MAA6|o`-<`ekc z6N565-Pl|l3tx1DI29jzmw06TbVosYc<-ZP%uUW)xnL4?FInUrr5&Um=}E#b>AiU# z-i^+$9vML%KhRod>*t1u>&@w!1LDQCV;MLhrsvz^ww?BYV;C1J?s-TyIXM|f0>Si7 zL>F&r6ybGocFi7I$R%H<8!qI1daBAh{^CR=)!RW8IR)Cw;CvZtVC?tK0>Igr zAA6us{ibjXLAjbk$H#8U0T#8w6N{LZvhY#?kyn`A^%fbcwgGJstp|r-l%av~@S_BJ z)mE3V zP^r1onLut6@I2(vEqd}2DkzyZ19~w3LQz9a(`;wBoRc8WZ?K^ zF`{c{t*5%Y7w9Buj)DSsqCEnw2MbKH7TE3p9->zgZ0bfL_|=HoQ7Y}TaQHzzEss$x znv&jjH_VoxZhIUO!hv8Z81A~SPa#asXe5LQ+nnz{tBj)OBWR0~gU2f(u*e}C(Z)5%bkfimYwXE=q=QD z7+!FszkS$rT2MS`9Uw7aK3>oEN>rFM;zCp|u;?d&)ZYpb24G;d84IAF@PI=LroZVcC4BZ+E*T4Zz6WKUZ`Zfxs#;vL2H zj-Ka9_#rJ6W}>=y#ZG<;jF;c7GvNuK8H)N%l~?eTn0I`$v|RqE>3r&0+vDQmC}8F{ zdNx6I%%GW}alUR0qgXHjc%tHN+rJ8j5CePONfNOgn==U`F`mTHhx8@nYncu#2Md^l zoL33x>FHx^+ku97vu{HdN(`jpiVO@&hkHiG+w*5ECJVg?rkZ88oO@t{bA4p+LQLpM zV59{RvR7$RG7lgqsc&yr2wAy8PW~mfyu2LIs8Nc0c|2;BM>*Y7?4bwtP^R&nYin~K zZaAu4N{+b|q$KkeZDU!Um4QL(Lg3gc%N4Fp9tg8S+ok~KtXgWO!vpe z*skV$(F<R+Nf(!(8Jka#_05o9W0GXl7~WHwF0x(1b?2DE!r&j3Qa@NKmrk z=m|CL8p(Y*r@C(6w--_9Mmnur=QMK4zMKIp6seFm#zXt3o@f^RKZCN;Bm&uaCfu&KlZ#iM8@#OT7-(IwE_Z|@bT`3+*JfxtrZz5T zE->J)^yOR!LA)m+DUBIy@@L1m9(SwXWM>~u`wszc$%p7TMsb4WyJ$ZAxlg0SA&!A6K)M{QpTL;s8&NV1TMD(_V zP;0)&-U50{3G>h5t*>X}e?)_Hi6x$3ka9A-pb66Re0j~87^y<{?LGfZOGGkg)jsgI zIq1gRK$ea#B)QjsXc$NZ2UxR!%-_Nu9%Bj{P ztfcmP!^UOJ4G#0Gqb4K~S9KNhLFW+pha_Wq{n4GQ>sd!+da{tyA`brh-P>UhAb zvqV6*Ne1#L-Ms+C>qd+@*gWIg_Qu*@M&x7gs0BdR39GQkhoHMr(8q-(g^Cjap z$s0qR#Uw^WmwuTyqX_6KuqJb!RW!nyP^kHGFX^h_2PP$Q4ucAw&0>O@?*PYGOSa#| z`K>KF*>xK^DG3sAP|OU&#fy!rtj>@4$2P0|_DZswo)Zo)A-5gVL516nDF%posrT+a2Kobu&O0p8Sz0g_#K6F~ z%;fXGq9k#bOF(AM^yIyyq~v^GCPh!WY8V6p88%~;&YbFF#3X}$%BvYYEl8X%%kLG9i+ zO3Hjv<@hGyEZH^69 ziHh$5Q`U6E31p)Q%Eu=seX4`8%CV1z;+Xan6gs!LWEc-l#{~0m z-`xHn6<&!GTe6C;W#JkhU8d=)yw-SmZO(DTAgOP|(b=xxt&6p$^;~o-|5K)!4V8|c z3oU*&>ND#P&8ofev-^KG_dN7837K}+3eEK(9&S9lCU@p-8TJo}y9JBI2=wZp_&!qV zOuO|^KQb2ptZO17G+Fsj;i`Ye6d z63E`YWxM_n6Vp~e>PC3YG;gB6DClwj1D5>G)FL)CG$j9#F@uq%S9*J7M8GdV)OOq6 zZSgmoM&?681d;|MS)n5Lw$khkDAtxmh;lM(%)eeg!ac?FU~-MT&F^4!(sTX$$I_!i zYB}eL`JRohzwNmT$XRoE$@R#G1!07B63yTeDm)v<=a@a6uvn?NVofKe^b*J6BCo<>Ptoy4Ln1kz^g}m83z~OF8i#fM z`S)_@J)@U9@wWW=4~|lUlr}ri~5=;yFAc1Ou!hb|7sX7qWLtR`p_Nu~9f83Q5 z;GX{vT&2ooLuyCkA7EvRfGr;^bW;<|3>R5Ck3r2aRrLe1#LvJ+w-j}y??LxJ1}lT} zO8M~aSV_$KZuQ&rZ#}57ix77=5V=l7RbGt5x$yDiXD@PjBrugFo}_>9k^;z0gHw?E z3a23r&|5+V_z*Ren@Tj1kYX&yx69uUs|~04>uKtUykn`;MgKowl_uBsk097Y!o1%T z9XZ;3~vg=h<_C2LlkPk;f`gTe1E9RXxKLpDOz2?^!D_(#$y8 zjgJIkt5S#k3eDomsmu>ffO}G&afWrvp;8;evTG#r@#WOlJD&djQ;RN~S(6JzpMqUL zf0)*PrAS+ z?$_h#8duyEuLHV5VM64p)3M)lJltN;IyG!LhAXaUJ8U(j`S8Hf%eByOeNQnRDNn_r z%E}%|4%bs|8E9z;mr+%+R|ged=v*WU3drI;h^!AvN=$r2W3LqJ@9)ndYmGu}^wgcHrRUo&;lP@QvR!u z(cg4`!QYWI6m-Xeg5wGQMeI2&-lt3q1@W5nUTdddpnUSthq+Fxaq z3#Dm;H5LqfY$jK%Y6*ZK`i}kFZ0y+e=#YV{e)!Qs@%ZmDfmYX^4L_B_vB!_Ao=9UlfSa^sBOIRXZol{ajndQH#XSUnntBz zzEE~^)2TI;uSO$N=9{O!I;|rpVMH;L5mfIj@ra20K762uEItriml|7JaT@&#D>WDj z2!JQsD$qx#ka4>;_G|*X6gBi??6!clhRptn5hU}MkBBS z&P{}5es_qg4k*4h%DLl^5@$adB2~R_fkd+EuijLaJp$Mz!1jgI4%Bd_8`O~v26ur< z0#AmGmUUG0EAzHG>T3*&kFYU?vJ(h?PN4CA8Tg<%J^*k+H+3b@I`LzXOwSmNE`?#6oYZ>tFJ?}g; z!FL&4Z4|##!Y_PB&Vd7E^{pkrFBBw$01t?lEc$cKdSzo9jv18@J+tV{1}sXE(L-Mu z#h2DsQ7*qXjgI6n#cStZAr7L5x^Bp=t|EJnrH+k33K>m#sN_ccK;ZD-qbHdOMt>e( zk{XQy5>f!`hM=H{-4f@e=C z;~_Hp3bQ5^9Qy~gyM{L2@7@5R9645EpKY1np+qcg7?pMx(|^>ST6%D+prW;}+UNx) zmgd%p%UE()oxTI$Bp`BRHi13`fy?Zt7>3S72=7(~1LucCr(il0*kKukA&58a3!oY( zzdHu3(ND(G@N%vNTQ8C|v$o5iLQiIbq1gI)di)51*II}ULoSkb zDPOxU5>(6I{-{AbiXyk?wUD&V=)DX=iElOdIKkSX#$nTthkU|9Y`@I4ZZdivG8A*4_Gpu1gPNM_jPxD>gF9vfgy zj691_JK#~~2Pod!^2hf2?FQP&1PzHQ#gHq#_s*FWAIiJ*Zf(2=2Dh2?{O5lR{FH+l z&AL(?l^DH4FC?H5ec^OQsuVYI_I_Q0)hxMl5gx@Cd6XEDfv%}hT5)9W_m-HPXfBDBX{^M-fL@!=M| zQY-48m15TfX7I`s3PEBOjn`pRsh3Jxic2?dfK9K%{&RUEh61D<(RS0! z-9eT28b!~?k#Y7UIP?OtVz<$ROHVGL1Oz{KMA)!;E^@-wRi{BHKAFGf!k9A9%Xt{% zuxEhDZmDHY-t

`U>eJ)xJKA&-PXLTzTQAzw{%-*tsG#HLS7W6K~e#NS;$969>QktczBJaw>| z`Z^kO?H(>c7ea+#C{SQe*llX$p^Df!z2&i8nZE`9O$_;IVsY__!k@pF`O$I;E8w+X zU2yx-)WC9c%&oAycz1HcsjAL{Oh!Sn z*af%kJ6(HgVLl8p$WdX&pPZ%`#B}Q@v~p@8u_xouR?9ZZ(&n-rDq`zcL$2vW zsNPeShc0s-uC<0)bdr8z+?o4OcYM%tZ~-4pRTVBGl0kaNexLADqSLXh@AehCIQt`9 zls4T+&i^glUK_8a2Q95EB-VC+n{Yk$C;crElc;GSh-KBkfa>_$bOr>F>Lt8x+w-hT zp1Vdrtx(ZehE-@4PP|=v%eWeu2*HD)a);H1nZxE;RqoS+VG*-xcck8AM)-fDtjFAG zHiH1>$*+&-*ia~tdV^;IT@Y9S5~+b&dz&MYg_|Ejp9I9=3G#H7juND6fO$29po|Ac zOfR&JJTDv{aZaod=0(4Q<8dXchcX>M#ureBio(O|5t_Dr<%TtuW4|YY)clc%uv(@c6!?k_^dP_@CX%wH)Mm>KoRey?g$QT&dW0q%0*evGbZ-;58Y5xl>01FHECzeWl%ynUyncFA&g z!Ix}rby9bIF9tz+ z9}?+;yVX+&AYW$cD$;HOpjR*}D~Kz((f;mWT)sW7w3Hv<@4XJpL^7QnV8E!AJ~Q~Y z&E@h*qR`$FPMrIm@%papZVY>b=+N8@T#(R@;i@H3d`QvQfeG=nf?HH@SYAITZ3BUu zmGihj1*TkFs9aidR7A0aU3UJTsefnR*$egw(~2ea;jjGFryIDcc+H7wR>Vo6N-6@8 zwJ^(06Bu-Aym!~LScAb&QCg~L+?>PSvxP2=A40dZ(Mq=$ zjC5r(uKvSdaB{|ET$9^#$HNU$YvpGg`6x>6E|M-%qtFTFuUEy=WADsO<=(M#5GJc~ zz=J%z8S?PHy&M{&1GV z0ThvhSm~EBLKc-CTB!Rq4jX3UcGVbMr2}*msA~dL%VmWm4D4yuKeWIXZ*p$VAG{u? zV9B5J8gjTTy0W~yr&XCf#SnaN6tv-;>;e{M$x1UzD1shTZ5yF4E9ER5ld zrq#XG=~3qD#{in(-DxHHZ<^bY>`_pDt}e;~S-PcL3>+oj*qD1dC+mH2NGWfTRA0`d zhUhNaooc+HgIV-fyT#3l(}TNT7Kj4c>YwB~L8Zg5j}RL84E10A5!^>CE&Wkel5lRK z6BUaP9xsPQYamx$M4uM0t|qO3MgH-ok8)=mK)`J#aM=O#bV|=*`AMRMBSd1EYbS6P zJ+u@XULLF)EJUX5BHUf9cH2uh`n5#UU4+WXS;%$d7V?8B(}$`6ICQZD1kuG$FQzI2xfOnzmW8FwN5tg5%<;Y*sEgsIIakYVKR!N2>veHE zIl}DAKvqt`-!_W6AN9T=oHYm70#3?s`a6ZdJkLIvOG*U}U#)c70^%?olx9P1r zOPKVYSg+quWzu6`fSA1P8L-7ay^f+Q@H)8yvPH0)Twg~x%p}cm8dPVKIH2Hw!n5(d zE%F4nAUcV@Q~Ip^;sQd0G24ED+<@v*AU6B{;dx>l*VVn1UMPtfAXMB93KDdOMJy3d zyl75hkApP06$9o~s?Ws0T`pg-TtnPrR~e#ZCnOGS{-B{cSTm~qLoI_^5vZdK1)ja> zm>@1aJH_8#$%OH%Y=pV_I|udb35luW*SHcdF_6gRQ&Xf+@kUBQ5oXkNRDTW-fg=nM zdZ-->rfrE0J{C4cu_b!7+xbXc*4tS;CwAr-pc^fOCkI@{gyDZ%ss7pLh8$3;gMHbA zx7c5UN-l(sFq#8b#N#43iRIH$l2mhz36iLf0B`fovqU?uRsFhQJtWYN))*NLX$+Jf z9{chB!i*zq3}NM zs?EU8k_3p#gQ<}6AA^$D*+4Ea)&;8JW53tHR&M)(%#W5{d5`uEYRDNVv@WjaFT){I zbCfpFxV`X_l*NbS1_VcDz3|oQ%c(_~a>P@|c_tDw9mohVD0RjX#`FIaI2(1Y8>>dX zS_fI6k0&SVTIs2W-8Hi=63}KK>!T;_>4T3CSWI*Md$9L6OpzI9gc&Eh`_$}~D*uBo zJP-LD91*TH$pVk3P&hxQ?G*O)bICDQX;{Ay%`EHX2z%{iRMKl!@CXr3xJ1hC4&(9mc; zVf|IXyFQJpmV&YVga3S@^>#K|TkNjiU94ZEXhbw7vi}ep zP$kM4c@(z^_75>uhVoA+)Cph&1wVyQzqFeQ-ohtGE4M#?VQYi8WQb~LbGmMKB}-kB z3}J3KWiUz4aKOD2?2fbvNqWqm?2(i$G-ziQ@tuJV4oR^g@xFDUi(*MG)yx!4`?U5mOR$QcND+aTw{ z$U>Zv4|q~cwZ5bi^=S@5hvgnYqC*qK`3d@)T)-!nGB%cov>pfJA9k%A6c9-+#RsTj zvSa)?89)BGZmYc5bD^K(yiSfBOfRO<9%f@K_F=|ypx@NE!)$^gg7mA~Na82! z*P#i4L4y>RhvM^8?^7)P!r7LFZ(Iuv0^W%CgiaVm5~5-=yg=ogXnLPzS!#huG{k@ zLvT}Ya&m&&4jZZ-E%pnM@7w(PhK{HgS9Samq1dv>W#_x@NDVlEH6xns<+)UBBDXd; z4Te?9eRF1N%9pcd9|KxQ)qxOM{Syiov7Fvp8xONPf%@fVK&)@-2!X4$*zvkFZ<3%r zbB9}`^}*qx?7g0pmx2maUCE+I@D2oRLhukJMw%3+uEnsj%^d9!037&f*4wL={T{ig zs2dz?_n+4iau`@9e&E8?El;sCREj0gdGt-1!$1$*OQ`@Bmeiqg#;60f>ITx4rzceb zXnw;=-lQ}%Sr9qV7$(*d9(iglxXA$ZgGnJ)d9*R0&J=`nqiP+GO8xiSoLSA zr)e?M3ORsXg6cXLJXde?3%;0EV={-PjUoEXX^)Yvc2kV+GH5%joSmH!%o%o116Vxz z!mt1<_t8MDx3>rwiM^oi=}piujlLNIu&nFTTBx}+eO3Q#s9OVG-#c^x4t98iGBJ~l z5vRwl`|j?hYp-!HZf*aD`aazGZ~Q<1Egfgr+L*ei{DH2L(LB zt@=Ss^G8Bf!L(AvIuS9k9F)R8gWVKjO}p_N=@d70STKT8Y)Rm=c?%{>Q&6?pU(C$? z1uZ6Nz)J;^Ago&~D+r%18?Dypu<;0Ul4Sh6jEB{39LM>tB1 zXpJ?2dX4j@U`z>gu*G)*V4w&PL^*?NmQH&XDau{ zmtQnJu$?X}mpADF-FRwDbn5`9x-0&bylJR#rVje^^<~t92uFm|5LGQ`f2qb(cw&-d z?Z-M@`+1K9#AEBw(qAD31o9DEJ=f*Ha0(%Gfv6R~*gQB8E8H@eTZV<=RcMgpfER5< zVPWCbW9^m+#SZUZ1uOf{YR9^a)GSK#eM8oS!|GO)1<`HH2XRR+lc$6}moKYdedcrd z#XZvZqVz^q0{<m;D5enyvk!tzGt+^iVV$P#iCkpy>8sMX#cQrNC*>BRAz|l?fuk zUsYUt=durfS#s*@#`po4GJWU{*v z9=Hmxl$o@;6${OK3jL^4R=iw?CbsY&m9*XnKvGH)jb zSbXbQ3VHsTCAEF>WqdzIH3ZW$Z^#j=Prz; zQ;MxgU2E$f%uf!Y;*WzN+8U#TSdu+%sYS-4#271)5Zl^&4)a*O5}~|+LiMwWv~fSj z)NuewovJwG3G*Qk@fJLyqC0%F{vCatfT->rhIw9@qxY^gAorm&y{a!Eb=*o4?%bDv zcuMgO#BL97HsgDH2o{R>9EvyXEW2`*w+g(j)Rv(ageQvSb>jGyape*@HjfS7xdifD zj%W5}M9P=Tc-OdU#+{J3*R09;gNiJa5P>EJ$-?zUqFaUp8rgV|3sxQ7o>&!7ZeS9nj`h@o~JUU0{B5W9lsTt-RR{h)Q%K{DwW(fthG| z>Q7`eWnEuzzIh66yKZ4D4NxmJ@IAwF+nuH~HoJ@bbl{6tr@vFYcYhzhWggAXmGVT& zp}-D)d*vl4Zf)vkf8zLoc%DQ(5gA#Gg|ky?QSwlAQ&*epF|4H}Z_tOs)?DgO#l2$@ zYUj1AEui`VqS8+T5Q?YjtXfg1nJjCU`M;TX5}2_M9IDV6SfXSUpcAf4!I|K;y;kMC z`kR)dn;qiQ9@h73yaWkj^v_%pdp;@aA!#aLx18bi7vV;Q8J@H(KxW|D>kJ+43dW$h^l zG*4-LyrBNHL~BkFR))Z$boHT zC?ha9+4!WuGSHY92vi$eVd4xnOZ{Irj|F>*EZ@kY(MaU!aVyV@;__GR^h>iq*ro;5;5vS=Dgs7)+h1pD z>2$B0AwALs(1o%FA}(7$k0)83Ejgw1N4dZ!YoFyg*ZKY#ECyLiCf2g#(Dyd4J)xT9 zL&5u^-k*dyUf9BbM+$5lTGwCvx0%m~smSSVeZ%u9C#vU^ei(f4h#4&Xd}y3co3(lm zufgUXHHpB4-4~5YY;64HKFO*fQqvpn;z;lRK!zQmDF91T{%G;};SV)hgBgHnja1g~ zf7Z=G0TTzh@3015&NU2b{n(RFd(qym`L}B8U$guUgk=ecrE|eFVyx5%_1EcYFLde0 z9_V2oDUjcUIvi_+AdpO3BcH3!wDG+btTeVPeQsOja^?Ij1&j0sxBd=$^=gJSK0kBE zHtL!u{wcw1Y=)o}mjyQ#PkRNb?4JZFR()|k!fsW3*o%Z+BDzDM}JhE zwaw<>tf@wS`c>G>O*~q_nNo6H`!+BMwe)!E7hN z;S-H^pHqL)f3DKWkoOPm=$ZR*RBqY%LCcCxm-_Q<1g2Nr%6Gx=jc(E4#6OsV&kTEL z$p^2)g|HEQ+AX@H!GV`kZZ1k2(U;7wq{)fw=%l>_ZQsMe?4=ba!Y&+v=S4xx|M(Jbr-Ig^gK}6(8`p zmJ^Erdo<s!jPhBD!{+UTcOo32@FZJ^rqN<?N}IV2i3&B>3wa!Wo7fnHWRp#|c}J8J z(ura8_@L{Zx`UUO#ArobhNe#@drk;lNMON8y8>dKhe~Y+Bdc|r@dZl{RjRqI_jU$? z0H(@5m^i^q#_%nuvj~&Ne#FWCcQ16*-4#H?d`v9cxFWWU8}auw z045$f_mT;Co)L(+WB>k&P9sJ@b~_8PGGr)_>RH+-6MK;VdGQE{<{uju7cy8-;Lr-A z7z3jidW#WjeuRqhPF?(K#}zyhi9H|++DL^F-^@YqCL_G&V;;$M{cgWFLI{3`I z@7=qn{sq#0mO*z$_8SA*@3_y_w55mKJx>MQd62ZgMfhPsf+da>$vtwaGk3}}az zlF%j3>4*k2^50I-@$ZWl!f7mX*1z%xNx%dX3+NaGhT`X?#Tw!Y>v49nx3~vA$6BDS`0JAlKG=GpL4i}FR@iBo z5@~*Bt_PJ@xgY^&@VqK{r|Ifs+(Ap`_^P<=C0G{DZ zG_eADv`S}3f7yo(nsZ&!Qc@cCdCc0v+swPVy1qV0CnA#PALk06xqtuhJ;e?nJ5wxq zC5w4xWL)_IB=C+G|7&qs?xB5j`+eo3f@!gphBPHxo59QXEV}9@{=N#xHznyV&CO4k zv+zB zt3a335QN(gDJy3-JsH_+5Db3hdxSLYz5kb)=`k?F9vsDCsVR<|xhf;he7hv0U;w9~ zK&z9Rg+u)5cQBPL{zVD31Ren)V>CMQTN&rKV}U)}vvJvjjj2h;EoKINecRQkFguxq z26;InGp*ExD6(1kl(4vM7UK{mqu4fyw8NC?IB|Jl`n$7f7NC^YQWyp5?ptWbhBzK@ z+9*Zd-Kvc^SI7hD`y8Jbi_*yahxCo$6Yt3`W6YT}PH;PBxKXJW-_(!glzWq#?zCe#`bzRTh!{MY{RdFqk9RK&DEj(|F#5o{nn&ts6?F= z-?mwn^<1$k$EY?G67#KM+{o<$N^){PFp~dP@~B%uiu}QS=6^vLHZ9_3X!nKOj>|S2 z&rWUW_=&o31s>nO!UsyG6cYI!PW!>*^`MwTN}lG|7L?{ zPugb$fpWh8#l4vt$xzPwUtVwh6vy0}!}L6?bL}J-h`WW)p@;oDCtFzg{lsHTWc8>n z#jvG;zhrbhIJ$o-%8eM9?Ys1&9l;sQnr4^YU(N*W;Jp>rAJcd`Jz0lMJs!WO~(O~1TgarzNZI1sQc96=v?O}fv7)XF@M z`1*5=a%au;W}%}~AQ-cMUG$ACQee5-<7)yQ1)7^zswrd&uDkD|L9wrOHIk0K_Jo}B zjt`+O5*}5^%h`Zd*l`ifpi)t5Od{~I55fE2CE5AW!OO8w%HCcb)l=ab1O|grX9EB8 zoG93*k0+0)N&!%u(OtFuOO<*6OZ zIZyUYCkBjO3fljn@~1V;M;nA8fI32Ontr5REPP8l9{}HAh>bc)W4;` z0evo1?6fazbl({5R%d_BH?T zJUw6Tjoo#+>2y}JI?qZ1q1{rcd+By0Mlk(zjup$kj(8t%l=){gnpjlWQ)w%=n{HLp z-!>v5<9I^TsWDU@^#j7*ex>B~qUXdAhd@P$Vu2U9|2-14UA8rReUjLv_ix8UvDngmQ#_IBO02zC*% z6Fy7XLm)lmxwH11CegK**|c=~1UlULMfAY{xlt0-RXDb&kEj@tHNQn4E~RcQZcET~ zevQO={YsX&DhX!G=oNOR*EqiKO9*>=nc5S&svz!o3r`0$3z>hV;@Tc?hYQ}l<6V=l z)HhV@D2G%x&4d{TBQpZ@O3>cmV-nM2h`L`L{-NZ4$8|#GA<#W_x{9qN{E5I~ttG!w zM8qezmaktcHs^s(GlFBWnn2;|UJ}ORF07t3%&tVP5}c@<1@m8z3-FX{SQkcX2)7q6 zRGsj_A<)8d$7c8{wV&4(Vff9M)r-h@Eq~T(8mkT=E=hB40#7edcb}V@!J4G1ANpxi z8e!Ec2+J3EtZ&U;fU2rf(9J$P^SnCqP9GXU2RT5+P-fn#(@HHD?&ca4nP93Fq;8<^ z$FNu2aL|VDep(T7w#a_X`I+&e1~drxs(a;6dGDVT*@MlB8wl`I;5|0h;z`3#NGZurX7NBmm*j1+Hr<1uVC7GVD{Va?NX!P`mo4h2Z zscHZ|IpzD;^3Ws7!i*#*c94*%7%>Wh2vm1>#cPS2o73PeaO4_wT2?SFL0ISEzFpUA z*%v&eF0bmxw^$YYSrT~>;ysdauOPA??{9Q|l98`|{vn^yx*1R8n+|DBlJJc@wd>kJ z7pcy!^n|ss2?)39KaRdGjXj;0@`XdWW|?v0rgq*XXwJw{G5!|~8}kWn-EY-NNwg`n zW3PqF1U+M&p|7#2NtNK~KMmk|9IDBpWD!^=TM>O9PvQaEQ>RspUV5|^%s-!n1<=4h zNW1(66EK1N>gwvW`xQd*DY}N0FPj_WJ zAi;t-CFME>A-aA?BBoX6K;vq|49Vi+7bd>aGrUTK%%)~~U7PH*X2AAIH>)Ej2tqkP zr{oZM%=pqw68)>wle>#6#}~$GwE7AzvRKe?JRn_KDs3!2+kH>8D<}2`Mi_+~!TlhV zu~J-#D?6<1^(W<%4H((jMH1>RnsP8e?!KXMx)Y~*D z{k78lmSWN%vBg5HM#i|g8@`?uPh(C;$ffyr_nqUB&yL1QPFD`uAsjL_9pz*7_F%bc zvnN?&HK+CDphPUvpm}(IMz&|bE?{sG$SQ* z<7GA?>bk|F?HOQsx+DD7P=vgE1Tdsy&3yC{&F2{7-%GlEz>^-b_?8(F8Lk_u>MjT3 zQpK3wA9syvuLBbIwbCLf;q-?(n)gFbdYq2_mLM|2ipFAH zy(0h3Z7PC@Cvn|5<;5SJG_KHC7aWskART8yHX=Ji(lhI?s?_s3T-e(I)7+1XdbjVfy+MUrk2-2 zp|Mt)>>q;z1H`4@>U^BdFu{E?Vrb?UI$I3GKOy5ThY;`v_zXPHy6w>JP=llX#jCj;w^32 z7+YF4oe+a2U|Nu@!W#pGH0m)z3K6N5~TN@P6;B5=`~^9)+0KNZS^uHGSScxM8`N=O%>6 zVth84?AWw;6WfhCZYws!qY7zh>FZZfG9~cIWVa+mgkp{$LmELCU~AVr_{zMmsL5E3 zwmIg|y;iY_kuA!uDQ}V-+t}Aq(VofKM3Yzji&A+|9XZ!Q0cO3RJ%hgUrSqr3otegh zZX11!)y!_#H4=gN{u`4q2J0er z0lGMAd{smDC#LtBIsBh+%%|fq<2%OSuGN;n%MMip#Q09X!hx+r2ne!L&>?veY>L1$ z{38gtT%c4RStb6@qph^Zg@qBXsnyc zdp<%CCpF{Hd-wpAdkS*u2H>XTJsTA&?gBzEv}AhB0ll1KiZruzuiUlhYJ#ivx7+zl zqXK_ix%%eyYs6QOlG{vvn%ly{LQ`cOjN<=`fuCWnnDw8%h?#UYOF@T!ADR)HKohVV z0}(sso^}wi-a7*4HPcfjIun90YI~c(Yr>XJ{!e z$%C5JvBb-=L!VEKdT+FivUQiP%@SaxD*LvcCCfg+qPcgU-iY>pN!5pjH;P;A506h( z9D`>JwO2zN-FBCC%p`xYQ}I-I9+jXhz&Fr4dIq|v@qnk7SWB&)z5QLV`(WrO0L26q z^wvt9-CG$>FL4ER1?v*e^RW>GisC&3S;N&aucMW?k|Zuu*+!Tz(~-3Rk{iFB1VMxW z9{%?LWCJw@mooqJF%R?8&&AW7vGNOvu7P?e)a#o&iqOj-F_B}BN1EFm9REhDTpu`+ zOO+rF@9T*}^#9eLc_pkCc(&HkUBeCOSd$J;iwvY#Kab*7d|Z#jab znX3HWHj!vULxTqQm0_Y)^knI&N8E*^gZ@5qew1|+8+BbEW!AVSpLDVUo7UiE5kI&p?pZYan@ zJ_7=k;otCCF6-UB0Hp9|NPGjcMb~dATHN1jdFE!V*pBh#OOkl4L&sQ6ZP)+g$oXb;JLyC?bru? z0fNgr{l-IfYxYN`n++Z=Za3}K=3bzDgoEpPpH+^>98f?&PZur0?Vtkf2E)Ms-mD{9 z;ba`NhM%CL2T2IMxY&#N>jehjvw%d};n2iwN4y9|#nOdMuXVc9?_{%+bANv-tS|lv zSPVBnduBvSGisvF5I%WXU^a23(suII)hbU|3<6-u3XUilE#%QA+-*+#(AbxYjmb{z zKf5VbNPouqQ|-j?9-$!%~hc0C%7T zBLA_vt+}7-06s&bcyh5NuN({~nth*-??t;0gk0+H`u`HTQM=(_=) zJAwMlP9+P zC+c6)XAwFX=p*vsuFxdY`z%W+0*+SBE>M}fI12g^Fy}MyoD4rH_c-8w+?5!pDt@Bj z%t|Il49Yqe7Xc7k(3qE3)qquHNg1o1JlmHd{K!QWkc#!u5>>whcGWkW-kvXE%Tr=| zFp?5L1j_$^D!cY?DAPFpmRdy{qU@1G8MeVpghE5dEt!lWF{mLNm&&D!+fa^6QX*3% z*Cm(L7*cMzy%Qyj>zEo-nXIkdBG=pv?f0!eV0Y)2=ggTi?|a_odA^tT`F_5ij~8d# z%%?sv;Gr{sBloq~E|IuNEll~uRI@kQGBwMmJpc>A*f?PsORr#EaDxFcTLLK`i$p-W z0ny|7`0YI@-6aNlO8lX45Pn0wFw@*~2M%ZFVebE~J$SGoOcrZG0WML8;sc(`;73ku z<$|)qLpzWLs4MxF&Gmot`sv8#sQeM&vBa;0rh+&po6mRb0^Hky3t`Z3#+!h`K+1<8 zyW!k^4E5yT!T9P!v3>@y%(L>gbj7i(3`}!S@9b-HAT!qn8dynls|4H+(Z=Hr(OvDM z(BI^9^QO=hR@#9Derj%rRU_oWw5%yn(A+W9)>W5q*NO8qwK{_v^C%*zJ=hb3NIOVn z-|=)ccsE=jY1>1!RA2A^jbM(}!MMk2{ynXYcc-NSa$GL{hvv)AJNIWWIky zPWA(!pzebDs0{z2A4u0e=bSLq8jEWSuC1?UUaY}{E%FYo@`a6Y=2eG-6ln~(RMl;! zY1I1+W2=o`KF6%%W~9xp{}dgfF`|;sjwd*&VlD7D+ya8*I#2TmzgetT*fOj9=7rq@ zC0EF%vAk+^=~k(bFEtV9olvuxT*74D0d>r` z5^Kk+Vd=wQ3&eUDZZyQ>ttBKRHk>9@!nu4vb=0Skk?H5&uFdzzT0nXh9&>4?f-=ax znrLWY<4cu&r>?1au6YGei_0Z+vnf`ok?$ne_~^1i=#h)z^Kf)2#dB`eCe; z1xiS1fJ)=Q`HYvF+mJ1)hp=ghaP7&vpd-owH17u}ja&ffm9WL>!V?Y-?SQ*eH8wu| zleqY|8JBg4s1UoetwG>W6f1bJDbhthK&a{N?*159V4*#rtbsmHNm3&DC2v58h@Jhy8PPo=O?Cf%M<7qz1KDpX9KVyPRKWoKS53{Vxy6Kp zgt_$6QcVH0UkzMTP*6}+R%Tzpzh4doY~X+gutNF2v?h~xh-B9zBEl*IdI{R&2f^9loSsKyftiRafMDEX$fk%Z)2*N97SV37e~)Ub~jQzT*i=NjcLEO5YZy9#mFUwL_%E zdNdz{LXeTXl9I8??SDFc6sLlq&|+MV)kXRL{=NjwK?2+Tl$Il9Lzd@<#SmU!V5J zFp`p-+zh9X4n)!wT+^{-u25%;)6v~sjp)nv`6 zz$fn9FWX6@#C^(r>!IDf$N(vxkWw(##J+ms7_S-2q`Wc@kv1!xY zkr6+G;4kU3tXmc)1W5Qp(dk-!wHTh0tw}t zKk*tGI2`W9$@2XCd{q+@nlVHdv+|0NiPKOixyQ-}#pP%E0k20z64@7Of#Eu!L+Y}F zP0TKYy&|$i`Kg;Q177ed{oe)+fBP4A&~|lVr=a(c-*JBGN$f61EGXt>rf$*y09$UB AHvj+t literal 0 HcmV?d00001 diff --git a/idz4/img/task1_5.png b/idz4/img/task1_5.png new file mode 100644 index 0000000000000000000000000000000000000000..362b21305b6a2598935cc4b3e36a211df19251de GIT binary patch literal 24743 zcmYg&1ymJX*e)R;(%p@ebT^Uy1S%HLOSn;@Ba7x zuEk>MnVB|CtWHg0Y%uEHD~j{olncIS82 z9InoH>)o|ttFJmA$lxjB`W$eDFHD>7kw*WNi3T4M{6c1uTe|mkt$c#*qMl^wxwM%s z=5k=1v?5ti&a>1%z2zoM5eEMBr++UZdkKL+63L0}z~5oCoa5LyIPub^g*3FZw2^IU zQs6_vplm4kkQG4+0|y63{|S^7d{*%koez9wf%E@Q%nOVp;>dBFtAS;TiI7uJ#IqUj zyZdgB=4l;y=O3^2;!RIao1ScqY#2;q+C@r{cJ*>ID?qL3{oA$QpV3e-$zN{trivM@ zFlo`6%3IsrpQ}~Hxc+r6=(ZKtAR`GSH>rPz#P+%>u%zS#w^e^wi{CXZJw5&8E}L-^ zakc%FOcJa9xQpIOM+jHI-OW@>d6kiO@@Sr7L79-(@i$>AO3Jc95fPDGNI0(G+dq)f z@)G^ZeD7awHy1}+{5|-df-h)k5u!=?fb7{sE=j zsGybO*eA|@Dd65OikORbvRQGDrWNt+;qoirvl(la!r#q(DLjl<=LfO6<;KzhlOTo8Tx4bMfd3OziA~9k zq3La(eGHWZrEDx^SE+vG;mxHht3eIx6)7s`@y6Evel)M`XyL(q>-{a3y1M#Kw1(

3tkF0G{ zig>V!-(8sFGpSKe4&An+P!-yruIW+b(C?jYjYx%boA<<+o$bvO_b6xLEi`({W(d3I zwAL6kde|&B)nAEwzm+P>JPBqqti!gSEDa|>fBrt2gh!^i%=e%~x4d{M_oMWs*ShuC z3$4PqXAYx3IV3i#Y{#_Jntaa7UbQ0T;L~-gLK1IoZf`AZbf>_xft3F{JJXp$LPpM? z-rZkl)HSLEujNTO37=hJgN!jp{{8Jiz|PG~rFHHQ5(-M|+3D%-)YN)kGRM{Q)RgY# z^77Z~os#mLA;*OV?Pi@^nP|6%M>-FVaOdaeZvan1)M{=Qe7AN&P6D7Og!Ml0>oew`H zy~?5~o3D4>6?WUgK5#u+Xgpf&De=KRKV7{h!Mip_BV<*Z8Uzb_lF#4Yf5%h3+*r)W z!ouR@Qpk0qaF>Yfb>ea}QD-QY?o{tCb{+${KP~qsA`aui*zi;SU%tixehST**>BFO z!WNr-N@C|~onyrrJ2|}J;o*yQ@@1k)i)*E0PCHq_&HnTzV$mx6Dy}dT=1(l|jr2`c z`dRiW-NCkr-zkCkL;h73A{|NbNJ2KD?O2WD z+&CCOthSiu=3vG|oVwE6&<=E*e~U;+NJT!n_3tcCT@?<7=RO6$z0^m>qAd09esi@N zD=~hMW76vXqx$y1@vHq*ncWxl`^uf(!>?6}{%3TuG0U|}{+iWB-1yRosV*1cFu6~- zIw#f7{(x7wgTc6wmYJ3|XVALX$fEbdv~>06@?VL7q#s6T+{!bOjW_{O5`}Pi$>^$k z@CbJF^0QmR4Rc$?%S`+)rIl?>8a>!_$_z;k_(VMR!pi#MuWiFbJpcX@xnZCm-?ERU zFAUF-j-(ZWVGqLM>3(|sv*IfyN)X3pm;mc&{5Cu)D(ZYwb<5h_#pPv-?`2Nbl!)(z zOX&*RW!iMz+f{=QL0a=Spc=-*$m;P;6mF&8ta%l2#0%ilh>;i@8;@Wy_xmMJDLTDf zf_>}$(}^Xab^j^(HQJ?a%XqmQMR;5TDNb$Oh4LH1-#hZt*Bfcht(!Yzp2RXNNdocQn>FeY#=_@r-!xf1MYHx-}?G+QeTtt%jC)caZJVq({ zp1rJpn?tL!)%L~j8~m=%MmC>|HbuVaiYTHr-(F9MJ^rUSJ%Lryb)$bO5i8ES*x>#` zN4)|TMuP0#tbogX3>ME6pjfcfkEExKkdd zlQm`IeB<5nSfNq|p2%+~u(2_o5q?GGh$_YWnES&{tYYMif-HZ96Z_vuY$f^M`c832 z-(XrAwfO2!Og<%n#@EPW$<5D5$Qzx#Xz^jp>WeDzq>1GGJ;dJm5%k{5XAMjK*N!Lu zjy<1?d1*M~|MTf%Wxib44ww`;&FN}Vg%rX2*o8&O<)8i@-_-g3x+p-bFD~rF88(bDq5Nic`*IIKm8SIPZYL8$3A|9-)2rYq;96ZS_(p^lNXE3 z{-z^qmq=f#aFF<9)Fj~cw0btxlcrjNyNb`O4WMjp&DJ=UxO#X@60m5=onIfcme^ZFxb(zOxZ959Yikx`QHhi9o?0sW zG$e9O_3Y)=TsGRp?EVcCnWF*iN_xnNz|`3xv@* z+LD&vtzqWuZ<1ddb8P%^;EtZs)AX!YM!64d#Zz>& z+_C^&GSIqXLfKE9BOd-iApI7=O@KxD{)3&M>l^)B0cmtVhec06K-&*m zzhT9HD#T>_GuFQgkIQ}SP2njhN_zz^;=BS1u-#0=M?LMrcuLY+<@j~jckTD@1wHm> z^O9w+r&?cx7EP4w;t&t~B@KLuiXMv&LPz>R^R)7>RK;SNbNfS|dXVREM9OfxdZ zXuQ&q2tBcg6vD(exH=P$BP$y241Jl#Khmju@dwRxL+N_~1L}WJ+s$JiVYUW|QUZCj z0ELis7@D<+5Sj&s%(N~If$I!KJl(Yq%7>sXul3eq@&=1NJg>xxze^~us}V3MMq_+V z;PRCb)6*BXElD0gKhwIy5@wY%mZ%@gSbR{HKf>!OxuoQcLp<=BNle}ga#}ncuKP)7 z^E(kHA# z$Tmti#)I&{8gjH~xfMdqYctyqq@PyQ31<5mV@=PbZX@@bna#Q+lnT)OPDYt5g+E^7 znys~X;2;V}9>$05U)YkD@vw3I2Kxq3b5jXrKI9m4z7TLm$O^zr7tE%>B7Yi1h9W3P zd^%U5_65+GU;eEZPsMc7BM59hI=>7P<_PL>C^f-KWXVG!#lkZEXJz^uKNp3x{ej+C zNU94jU+?RFjocKv720l(&o0tpqkpnBgLkpVL(Pd@Xh+m-rAhb$!TpUk!i zaPqcqKL0I;6*E5j?e$c-J&laVIAJH$_F8bgKP6|tR2gukcvK`PnMVdbR)Io^E}~H* z0*47g3O9UTG9m`)mv79V+ksg?qwCXImN27M^t(j&<@w)P4-{ORV%;fdni9UvlLy8X zkGk$T(LOeTgQ`4VbLmN#sC1yhS7r#$q6O!FgY)Aje9I;BbR`NbbK%>-n}=t{O`{Lp z*p&$x-+cQa`c5z3y&(0}E{ScdMo=(-5|&CZU5$2eW|d_)Ide${CsQ;Db5~)k0e5D_O=aaH#Tnj{rTlUs$BHrAzSX; zx!ZjlK_>nqF}o9E`S#Ym!Q&B+%Nu`grt&q{k0+!gZ%8F5r+?CEgO`>0Ks&FT>*Vuo z&-c+jLJ@@C!IkL1YnOD8KeASwaew8726+2Po1SPgM8#wT5>55!Au<5dz>Jv95JpO5 z|Bghe?=0gnk+e`fz%=~y?1Aj+|8p6euWxG$dZ|YoCsJFJtl1U8`A~i!kV)7Q)z&D| z^p95}cUyF(Bec{~$X{N7ngz~EGw%u1$g6s3?u^x+UgYQ09VGL37y4r^V<+3Q4*7Gn zLB5xPouNVEepS)T1LTiOw6wj_`ejc{TN2ysQ9%}h#65aleY?hw0>H0fqZH!kiL6CP zq_VQ6i=w9cuOpxF20tt(n1-}8d;$afLgUw9-m1ld>wF>k$JE}Dh_WdkY>iKPOy z!)A^wOy_$b5*i#4ksiwUs;t& z`l9P`={Y@?vWa}h0>uL538yjS$rwPPAdn5fkcqhvY=&Q=@jh38D^TGYzKMJ+WE;zO zevWnWlV5R6{85$CkiRM0?rk`l|1R7x>#Qvh^WhSvbkkr(3w z{PGuoHn`2qlX36!*oy##{*fGjqgJsh#xK5Tz6yQ?>z12}xKQs|NSkhF6lov@xc!Z? zV>39WWRzTN<+1#I(yeCh(WwfcSI6XcgSX3VK@h}f7dJPp*t#{W&;ZdUEass98M0ss zEXqh9^373;i0)^f6L=yV@8OC95PDLRzK*@St(hV4WhNr8m)a$=$3J^$9{72%M zMbo1<`*j|UY|HPxQW`7?dmSc=QX~ReNELx*#L(2#ltTrS2rlhE+4;Vg%KPm_zlY7grz)hy83pXwnM=~dRC-1kk>ZwXf+5PaazP& z@^PWQl~Z>Kb`!1=X~ru5e0}jI%ZY;x;bUE<*j|X+i=a{|U66Ws_>w6rKUP_MEd9`p z&3rGjrBgJmR$oZQ+?}zd(!K9fTU*zB!V~2PK_~_Zf+> zXXl_V37)a~7o~`YF2Iyu$Yi>sWqRR4O^d*!23KQ0l>;f#$af-XhJSPm9|p-HX;)^esVi*BGx$uTH0NPPUY2Z z_-Z@bppDz}pw@fj1`o@xTs)7hV0V2JrOFX)Z}B@ttvw1@z~5Azcala79xuCF(<6lKK=r@CziQuzp4jF6i|ss2kzuL*Hbby1fQiq4X79gC|P9>eRCjy?-7XD(hGb#qej=A_V344JUQ{ z{}>^IX+tl~+aKlwtm0!RqEsl5VcR#hHPeSusoZCkq?$vG3x$tV!R$BRA^a5oct7iP zK17A;h+lZ+DcG48o@7;J1dEVV6q$orexmm_qP<&^>*2O7r<+LPR`Tg&4?CDCT5h&p zM3r4X?--qyHOaX?Uj_ITEI|oc#m64H!N!VC%n4^RiT?hMoFg(>vJ;c%=f7K)BV%^; zZbs@SJx*eZNBN)LK3@2;!5ytoM>%bT{_4CZOX5D_`fsN5jYcaGO}8^u9@E2mpY;f71&habzQsSGW7Ws=#|)w`wqE%CA0ZanA3-&!EMSi_^HhAY%U1)%ou zOh+|&XcwMCfRVl`G9f*Ab6vQC^0vFIXi^pC`ZqQjpZpuAg;X!$ibi45Sk zPF4>F|CPCyaT#4-$3q|AFdHEK>Snt<&P;7CV>-ug`Ulc>*E*x@jS=B(=07)j=oTsV zi@xWbaVBG5rz0+y%kDm>3IuTG?FjpN&pzmuJ$bh#chW~+H_ob#q2%I`+-GA<-KU?ZOm(qW3_siWFTqhx5>e%QBwvs`lx= zs@56%A*2|um;AO5G2#(xSa4TpzbZ{l)@}J=e<|d0L~CmPp)j6q#nFVspQB^dh-7+W zi4E(U2eg{|*TYj_pb=xmm9ywW*mAqryP;w_?ZNtihJ_?5rpqHX@h>%D2ZS3AsbL61f9XcM2{lWqyRZl(q$fN51+|o|4|R~|j{_fRLmm?e%kfb_ zh>mqYPobDZ2Qw|Y_%=^Y?71oVkiM2tE|tcpvlq2=J8tlwic8N|VoqK!gDb(xWs(;A z=M|-Iz+irJ;Hvd?CaoNu)IF7e!sZPoGk7)%&mK^7{E;=^w(hZ*A8GZRe{hwj6HP}q zVS=4oo9cR+l(l)=inZokA)?--)__u6{AC-uR9ku(OQMKxLC()A*$kBpN9}N*!Fm& zb4TjKb2-yj_U`g4Gn@M(ZsT^!@o^@*P0r*)Ta;Ss+aJvsR1-9{>3o;){Xij8{w#zk9-REL#UOd{TJ z4z~=_ZCuZWzSdz;v@3kJy}wA-(ilxmsUYx=FAkT!Z{^ z2(}cYvD5)dOTq*b&RIH}0{BHC<-507<>aHqo0h5k)_n2I50y~834Y_iV94b-9D{q& z8>)a*QJ9%LzZq+`k;DwUIwmpBd;1I4VDiT3r|?K++DW55&u|>`7wtkJmt{Bx)yyaW z;W~PHP+D)#$i%O<=rjc)!(hSZP8FRMyNq!QU6ke=j@=w3o1H2|A@(G$MKj7%Je&Ue zyXIw5Qi-4XSpXqL$_AF&)_gtBgUO>Q5E=$!Idl4bb1cO0Ju`~MbFgT&x@*T&D}&?c zH_hFtRUIZqN`!t$DinjP7zGEXdEsRDi*)1Lq2%6-mFniS;(758BnJ7^u0JG#_c9KZ zZ|_%XX{*hRa(mouVB_Emv2jKk(VyEk&8IILb)cmUUHuY1h##aJ3htQL^iYrA^0ayG zO{tG&u;n7;O3Bx_ofRcC@lSrnD2*vk&#e#@14A3DxvlNxDVM0Ip;+nXJL}pFA5({> zp6(u>8>?0m-;awWLoJgfw6Cn%gAB@z%CUI$O+?#E*)-Kw7LnX<6nl{`YCLp5&WaST z#(aKfw%H|nh;egpU!Lg{Lp<^WTijOyFMv_Lt<}5}D8mkJ!bZN$VMUqI(F0^?A;6rA z<}&YY^6+2({n^Fi&N)w!mR1ov5AhDQ>XoTroH)i|pG3{mrwP`7c7;Z|d|J8(628>9 zvv9XO`-K)-MQq$kRD)lJvzuxhLKnZJO?2CAxSt&}^Gd24mz+EbU}!qfM9Rv_CQ0o6 z>=prKjWJWy>(iFF?XJ`3NG17k?K>F&Gk7dh}|8t!Kd5v%3QEhD> zUJS1uobFsmPTp*-i#@3otLQ08dHZV-enRM1qSA$@1F_frU?TGvnN+kimV}V7aIvi6 zacHLm(l&2MpXO@|b+UTI>OGrdDA+a5i7pID~Huq?s=?xZCyHcSn(Q+cF0NvHB~}%}06= zk zS-nO8T^--K(%Ts`z@&dh6!p1ZS0L>HkP&1wy{3p)A%4L zEBCluVOT_jM%F!W&TU4&g%Y5g=s-2Dko?hD>334hbM*aKr05$DOYM153gv7#ja1-4YiLHZ7)zeR zzit_K)M|R+6MhLE+&{;^|U%5ZnydqKjx9|MbqEDwS zlIUf3R9l7R%Ul`e`FA;qM>@OX7uVM%nJEExmna`luyizwIgA>O=8+;Eu8ejnIZj`}?!f*GPcijw&-MG-q!BvYp$9e1UOQ(6 zoA+(Cjhmf9qWCl^6>YWyEMGkw6K=^NRs?qWDj5-~61VvJ6&CHlnO6f2INzRDk;e0= z&uxrXWmg>0ETE5vTM_O*taiuKr zg}6Sg5l+yi)kp0t7r()B130b6o~-%({qU5`K&fnmk}n|rV<|c>L>`N;0#N`6_60f& zuY@UPGZ$l=?`}w9;#b};eQs)rB+3XUo*cT>Nc3h+{VrKJ|J7>{%h1sYaqIqvgI*FT+(jnatie*&cg}g%x|3 z9u~Ifmz6&Sn6ukEo|f50VoY_Mr-Mm&_x;9Ue=eVye~!fay?JVig)!0yO?|L&uZ6&} z2B%!qL7RR>8C9xXADg+C+TU@d6R|Qi!@ z`04~o0>Esl)iP-m#F`@ZBd=|Oy4&Fa-{fyCLz!QQp4Xs#fyJko%&t90_v`s)5}QGi z;XYWo2HX(dVp}sX*7j~0q7aT4$F>F&D7EZYsyGP=mkZ9}lH}6(_&58{D;j20D|l*E z3N*2{i{8GwD)-^z=EemJSoiuB(1^9T4sL4lObiNSyj@ysZ{WE@k!UspDGx>KWPNg^ z(UuFc;BGyJIM>fl~xBT8?IAnLO_j?VO%&6TYa537o?E9-hESl8D>fV~8Q;HG; z&sXy2n=VslXR2K8?OSfjLin2NfU3F^MqR;~}H@m;Pt@Al&@95}wBgV*+3ubQg_%JC@3h=!Bq*5v` zDuu8c@B#uH(vxs;QcP*Y)DLEHlorJiow8p&bx{g^6@6{)*&eYYbY6A#WiFqWWup%U z0D&tSUj=)#f2b3Q)2D`1Eb$9C(1Gea4>GxC9>tYk74mk84B+B*)gz8wB9zmthqVrhME8pgaW9!eYOXu_$T(daDl`wV*vQTYQNfX{ zzQeJ>43UIJWuShf?5`2yK+ErMNcL5nb$fa$iMlI86xCY&h1?C91G@2@8F5HrA`d{L zk7y*)T(rjG^c;JFf7X~6v#E1~K2}`a6@f6{lni?#rM%eWH9@J03gGibV@-G%Y|G*T z2Atm(cp4jTTdM9`aiZ-`(dU4|HF6|wkkuTCS~$wB;*a4o@%X{I?X z3})!D>}0^o!yQ8$m9*(mv>CI;0&P)7Uilfx-~UT2EsRxk{A7PlVDX>p=3rMi9^$|UmEGJ1SrA^wz-$jj(h}ptN1(7ZG2M}l*4tBb)C&a~Rj^?orBxDQRoyxAP>}(Rw;H>^AkmFE=;br~_-n~p-%EB^R#?A^E zojCBv56-%VhGN&CprD=kA&L8_hg=b98jtm0;Vc;dD+Ocl5;t%s2Us7WlF4)^>?%fq z1-7nqJLPjMZNKJ!X_(N!_-w=amv-+hSSj^@pSS5r-%B2#D}Nb)-Zf1 zCWT}gzvBEX4cktY^Ibd^=xX^`zLmQwWs~SkOuSWrS_yZSznN zz@!xCIPTZ?n0niPLeGR}e&ffhBc#a`NlqXf=97hc@S9h9LaHW>)9M zhB72i{)3bea`p!Uf~^kof-i*ujkXP1y&r@_#OfI^;`z?T(}mri?ax*#9(sAP^YY?9 zn1O%i>&;jz-n|8!dUoJQt84lcOCAZ!QS1#3$X~v&Xl#8V_p`VAh#k<<6rN=l=_wcp3OJV$s^5#&MZeiSkkl z;OfRLzC~6t?t9ZX-4Ahfz9&f_U8=Xae)0SBizEMNeAZYJo{j2%jUM|NVxp5y=YJRS zor1eo#Z-*Xf`XXD>ci{_mh?hE4ISfBf{lT+TEQT7Z-SjXyt7O5vuVrluY_KcFvX zVqNK)hG!5z?wp>PSsBTd{W;k8Q;9A%7X5QC9s6bH3KiCYl)|!@3bML-+c){PDU-e^ zq|0P{hsm;#=ob2M@k7p7mC<{JTOff|*a* z;CrVltyNF*Qy-GedeC2CFa$Awbbvbd=8Gt5oxXo3-1|d&|4X~TLZRkkBIOH}uEy6t z$j{3)vAwwSG<`(gk_yDHbEm1%SqRsTpCz&x5Q21cPZS9cHa`A0D=D1#keOB!G%hSE z1mJw73%%SNEayN)FEl37CwSkVq-a-ML+N7~RvHO}LQr+cAF3>{omX~uBY~Lm2H5N6 z1Xy_SBndS6Z&w3Ha;viou*Bge%a9@n{q{BVDK3B{ddMp%dD^i@Wr)UjAgZfbJ@Z1! z!Vd_DPk}h*f)^ihe2N6}T4#GBF_toUC&S+q3oz+&-R#;$QP~7;jZJ%*MV^pPSV^Lm z2l!Z}e(rZF&I%0cXB&sj@?M|qcY;9X2Ovpxc6CV)sCT@A&PC z%Ed!weBSG#@ipFs(YY*PGPWqzvrf;sH&`59&$~J_3_3Ab!b>$jNeyI(cn*Ug=6th{ zu5xmctqrc-L+UWb@-q;)=rIKRuG!p{{21+(sDHFwPYXH-Z-}`C9;nJL9d`W;O>(=> zjGs*fu^*umh=nEkBEze4=cSfnwe!n=n|9@l%|PNRNs$8@N&@XNhz@7VAPoG*Jyjp{ zA(t_Z4R&6hb2Mx7%Lpsg{p4eZNhw-L*p|RN$pv^f7Nw}%U=4UpVftuvNKKaStlOg3 zTWRmxC|!K-@Hr?(-@L!goHneps_;|&y9=@K145pKBk@cbbr~p?C1y;tIbT3TESzs* zmYoIn117s{Z0_#FQ68(;NaYOY{IT5PA7fNih=tK7(Ho$PiB*e70gW_z_S$y5P~8Un zysM23>lYoCTPYJCevc&Hz4O^b8YR^-k2Ke-v8b2S#^Ejl>G@cFIIMxbzQAf{yr>W` z10Wnm#l>OsUCW;ZeR4#%P-UW}y^Tva8Q#*p_2g zr@2nfnLAn<@FKyYxm2JiNF;6}-`g(pZ2vhqXU4RY|I2i&BNgYTNAiD`(TwFXD zrKGKh%USlGiZPu#BXL2)kPI{zMt2&=YFsQinJi~>=U(EygCiLgDo#-*$rxKc%FDIU z5Rvc{V4&@kiuTvt6Nt}Qxv-J}R;bFrB+=^c`h{fQpIhZ~E@4l5V1AJ!m*37}v&W1N zay=_)>JE~s#AZc}C`O8X%bs{nVPawRob~nIAmYZahmxjrD?=vP{*F7W{4G6=yFdvo zi50r_<9dLL=grwM0jyKx3HDX8bw+>0nECH@dQQqUIoq*;p7NILHLm*a^WXFSxKShl zhLM@Q-wLpJa#lV|eW^1iH0%sMn(swIBm+Jw((j(@*-zRQp^jpN7r61glF<&KoPJks zhApM1xBiFiC|gtIRN!4FuttOIO6V8up1-73+Ckd%?E%hLv_%8_;%oC zwtD}?x=d$|v7Pivf@fwAY4@9Qbez2Rg((8gnX~uXW2zF`R9&EuPIUO-x_O`NT@F56 z7K@F9cBm5NOQS7q#KnSEkLwG6=(hG8bqD+1eYM=zqC|<@E5rNvFqlQQ6_BP`ngE`8 zab=h#?x&WgKyV7&n|QCXD>6@;ZRIA8{hqp|O=`dC7oy6$5qHYSe_pn59~s;KJHW=% zy?madRjnKh2s*1dMrAV^c|CsP8cF#4gf1>OE~)xJ49iJPZ{UPi%a0B|!4AXPc*~MkU&R-9!cO zgvzIU0B&%rD26e0$#X<}#9j)Fd%tV9=;LcJ;KXuqLP_iBz?G};Vmd$!!Nl6#&r#a! z;WW+FKRys0rH;^(V%Q$zZE;J4N+{u`hj~90S{y$uK0wfij(s?Xf9F^hDTyDy2c1ti z1M^{%0zjSsYMsv#J|p9IkQ+P$>|S0jUefqhm~UJ1gZ94CKgH|uf3Yl6ZOz+goQ-=v zdqFg`eb4wR-W>w=saB%HW&uLh6NA|CmndnV0>3r8hF?3FK-oT+|2Q~^$q#l?l}bUW zOB_EjDgXoFPOZ}S^4$a(-HWH7_Y7~Fp06S#ZcSl5#Xx$u7C5jo@$xeZ2#o*>S28*+ zjqDh-%W)369Ib|-1fmW#k9p4NGJ_H^=3QkreFO`O40Ig*_k|>4-n_uN_y9I<&^XRk zb=wl)kUVdL?S0#PWp?3|rX!&_evS-W>8Az(Q~>cJ&Y|Lg9UB(P$eIFxgk5CkgA?_t z?FcF?dV@jSy=~Fhpg{6qyhu~t83`wEPv)~Qg>d?8#EK752NyTOxl!fU+H-8T@+DFX zAjSZBOc|hdm*X}0D#y8`kPb*ulWhLx?xxaU`5Nh-@$D;GSwLmY4YVG}*D+t$IsPUM0qpwzd3|kajqZi|a zJ|QJD!f&{5hW~)cDn)99?_>po8V^8MG$t>mzKqI}&!9v|cR(z(f&0(2E{_pSBc(zK zbkYV#Qo9Awq8I_fvLKvOZ(7)hPQmpUT1)_!ACb8J90W^JDN(!PwWCvo7 zoWKSsHEJXT`(ym}FJUm)njIMqiC&vM8A13xg;D5Ts7?oPg~=#|hIez#>QaTUHfq?r z;K1oLz1cEW;$UYT5!ikp3vfB7=U+p>Nnh^Ii@i$HW2DWEa#~;>%l>Gl!#pKJyq{OIBqPmhq0QEW9ioao_&#@WZq3}%t9~LFMUaEEP!pb{E?KQ%{3E zGNrEEXe`c)O|VbT(Hh)$p~J&!Qb4gn|LK@U>ZB3W-G!uAiTp(%HV7KFWh6NOcH2dQ z?I$u+SrP%103WGKsc9I{g>)$=db=e%U5H2~rc#Id00?v{tBZzSf zoNz1bP8Z#c5;{Jgk@yXDrg|ef=HGt`+oJHXqaWUyDu`ERwd@A5a)R8ffTKT1d;9ws zenPY*=p8(zG|*}2X!}I)>_2F(nzWQW|m~X^N;-ymYvZnr!k<1 zMRXj4fYV8m7#~pUHL7`li~I{{;hG|< z|934I$e(7aLC?ZlGXE}>e_kn8xa1+N-Ul0ZNbI;Re}6l~LQ`TE3jGhlCBlT4|5u)PZ zq}UdcfW62-g~}&{PeiZ`2nf&=2;YkCY8(2{8GpYm2GSxQdTMb1YAPB>;3=t*`L-Y6 zZi}n>#{c`>^ui1!5co$n^FpD!AcT_QRTy9WR{VO8N2^#16^)3U*WER2Q4gI}yyXYV z(m^W9=AoLX%4Uo|kTuIipHH}6`6oF|{Co3HKTEG#;OdZetj1DMF(Nn*D)V2_1?sI; z{}-;ERX}i+7VvZQv@n#@-z-;|(Oh_(V_ocZQ0-il&v$V(bh#MTDpNU^_r)Po(GwdB zI)Yx_AvrJ?XVhu_mz@iGfA|IZyUoA<^7?#1U!9%2Fs98qoC1Pg&uRsH~U74XbOAu1n zSxmY3VW}!T=q)d34H`kNBCP?H@YO>?kkd`r*TY|+WuY0)mQM1BsTt*ppW-ZCfg z-E#a>nt-Ub*R*N)5y}>P>XHC&qcn&qc1vvY@f-`wR{oJpXqDy|?RbPv6045^LLO3Gy+TEnmkul#0a{AtTx`ig{XkdF^7UhBndnKh5Sr zMG^#oba^Rd@E;*ee1MS?P5(pl4au3Cq+U9wi(}`-FR$>>M@Ki|&6fkB6!WeT8ooizME*mZ{+kYKt?$$_&P$9@^!<%O zyeLWT4b(6GkepmK3H#WDg=vJ%d`yj}lP%6@KUMh5k|+KbbYLKr@tXC)W(lWX?D-&; zfLcQtK=pBM*6iIW=0*LD?3Ycl7~~X(as0hQ7hQ+efK)zSkR*W-T1h_pn3pf~_d^g= z!y%}7fN13J8li(8mmE^+b(#Kf&MD+ZZ^c|&f=*2E9R&_f3UuaV96QgZSt%U^&oi4t z;uU4HS3sb+{1US9aW;)OyXOL z-+bOb`4Zl%n8BZA2`S3%Xg=K{QW0R7k=anw{juu4rPi>e z82NPG@GwYFaCrV+S`Aawft8J4umOjjmJqx z3K`Auv*7w+mdj+d>HwT%IFN`YmWI(8tyHhJxwMa=#{rms3$Y!H1?(X6zeKOBQIg4P z+?+Vt`E$zIpd#>b+J3CEz8M}T{t|p~B!iUPgi}Tbu!-ZD1>s(usn`{t<|9*e`?#JW)+i_f<>vLV# z`+dFN&)3T`CD7)i@R7oUo#3Hz3*WUIabvA&mN%8ZiRFG?e9kxXz=@T$v&D%9yAG1d z1RgS_95*-op|YEW-%iG{#2b}$*5k%uZJ|MF&~@dVLFP}*fEnG9JE?h6292-Cg@Ed( z#B+9$RY1(Z^RViXbu&$ejiz62*`B$(+;J>V!vAm-ntsCsPU32qozY4f zg^zkZ<&-@AcH8YqRPN2EvVbHf#pH%|c_vN^#m&&wx{x(yjO2G`|GE-xIwk+BdGd^H zow0VSI-@C$$fpoSc;@rAuXH<=jY|S@QBmq4lX!3fm|ofXOpJIE3wJ|wD>TQ3V2gA` zPrAIdJa~rhN=f3D*v z(I#TY{hv=rPSoSSvcu1iE}=IL0D zNKfNB=hw;ZiRP@VeP7qk6fn_PihGfaq5GvP@2WC5t1$P1ZmW(`{pPu#G_!hkf-x+`NM($5x}9f298mNU(|w`UkGDv9b!bX3+~|Ci4Yv zFQZv5lL>7t;@kEJz?XhDvM6Hdk2O%Y?zF$vEHEMD$x~$&rbnlS%Y0ymbIVLX8Y`PE zEo;XWE7c@2!R~+?3WhM0UPUZ8c+3(71f1Q#3H?T0BY1YmKyeQr>gaY%d?D~L%JD(h zjNnck&NT`eiKj9XLM}{@6rZLgnfq8koUW3nHYotBfge_beofX zB_LdzLY@+n4$7BxL=Fl$y<(Chi$6WD<-~WHfkCGZ_H5aSuNz zfu4l|fqKlj7deq0Q=-fYnb{z$eFXD^p?0vxx&{QuJ|bxjr@qoFX}8aPMJPK+zI$|* zl8r`>;sOr4s1H`0@9EgUMLI1@*hl=nI|OjsYVsny-_N@EBV_lLr5BM{zW)n;R$-y* zVHvZ&*Kj%vcrox$9J~TFbb=&BI;0@aBtK7bC!_g`aQeH;{F|Ar;b(~%T6&jY_$XNJ zEg;EkL%B>5C_l8z$FpwKxp;BoJBt$6h+BGeHW9*HBx1A}=1OjH$7O zQp40!cCii!fml^)6RK%pKqOj135P=1rDJ2{dj7%y8OVHGJ^F1#{MRFnwV;U6Tu$ga z`9zi8Bp!{64NNi~dvS`(`=w?LH-L2(e4csHfrr%?Dl84AWI;b9d zTXXg=01X+SBc1$eOw^sr{l;CLQ4FG*g=!ZDRoPlK$&TxFSo?anGUEoC?xTu2OZALP zQgWl*IMgcJ|%wLx;IRp)FnWyLo0k6;t>V%v`i3sJf4`K=moCsY6qtec^q!tIqmz4RmG^^pP#yP-$;=9 zuM`xQ%zd(1w9$=l_s|2hO3U8Z)6)m5=pH^( zq5C+6Wm&bRK0y?P=(p}nqruOTfY|JdX=rG~*IpYmtRaa-JwMME^z=fob!U)b)T6{e{apE@sT^MA$47Bi}+p zVV%0CFwjBsBIRWQ!r+z3;K5S#*HB9IV6dRI0Io0-u6^#5Oo7b{4MOXW0AqHaN)aL( zX-vc&^ju6oid}`-RTBG-Lz2Jve}|+v{1Kga!_fZ?Ns>N6Xb1GdI6MR5bSS-! z@3xwel1o45^6uA|;Eqy{8e{~-{3NA@6y z;udZtoE%v3e2>Sz$NFnyz|;}h zvGruvZ%E!62QD*#hR%Mftvl1u*JY-m=tUBkR-0o*P0)LEKJ*40QGkJ^AJerQdo4t=$zpqVA0A>9_@j0RN3y zI0lQ14X)zRJ|cBEx%92u>3EH5vEDd58~-!^H*B=Onuopu*{|(|&gWnkUI>yBo*lfJ zbDL^fPxdI1+DRso5jQJpi4WrN+XoJxu5N4I5hz6>z-t|a94z(5JHaYG)ZXcQxv z-v*`m2mey=@#soLhQfKCl{L1evpiPl40#nb2Vp5W^xE$DQzVS4gV%^bHC}LVl?Vh= zKuHzN&6%Ozsy@jW`TkfpgbSO;%*(-<4e;<0X%scFxCypMF;Fp1YrFuvc#{?)Rv2SM z*PYrD%`@lDg@jREYH4dD7SYzQYKyqnl6mL`q*_{|7;VJ=cn0987D_g)Z*7t10lH>z zbUKsu6>+y!!<~&r)q6bUXOg5j?d!wnyUySZ>#p*G+>wk`RO9-UF=n*0w$a5kDi3$jAD4x26WwxosX z=ro< z62MXKIb=!p$OG^boPHi7-7;8uPkoXHj6$v2D&Te1M&q(4Uenj%;7#~7>{388@Js5G zLXoU2ziN7<ccS=hlht?co9hr+|Ekrhi7BsXE)VDZe-5|v4Z;dF86q{lii_@)!z}V;|5fM>yYisMk zCuWtZ;ib8b_#zl$nbhRmF0?Q>oftkh9R}W8JHo6+=Z5A@*1Hixk4_OtFm5?k?n`OJPdLPN&4Ib+M5*H({$v7o z*I4WaOA2h}42iJoBf zVBYY^uQDO8+F2fdku;by_YPh=doNC32L7w{dg1)>nZc^ z?&HZ}hF$pobiIYhhO^79K3yI5^yjIS)m17FR;MY@0aRm5VOtFhk$qp;ULIeZny(w= zAO6Cpr2-~R0)*=}Nh4NZhO4xk9|ht+zvb64F;w&-jwyLgahQ6b0bguO#j6X{Sa*g3 zVqN;XLG7le->^$>aWdrHNEh((w0|Z-oyz8Hr;H$(`=ssyc5ifI?(7x76Zzi}X_s`H zeXKl2OG{h$@ZGq|!Y3V$UfnW%E%Y92N?GuO)vd%1n*~O}49&p8#wPP!Qv1~19nH{5 z!$A$^eqBMY8x}5A$5(E4zn47kQMU^6-I9xCnVFezdVJHLxsB~^2FX-te0)4=170Ep zOk7@e^3)T!AQTTjKq8^ze{F64^YdYpaloHF+qqBa_b}117I9$jN`PB+X7@k^mLcV< zCsl{&pxN@D)Bn=M{$rLQpfT`B8ZH0@o{#S&^JeZF{P}a>vNZt|-19NOG4%$e$yfpp zf8Bnz@-3X2ZEbBvehb+r&)#$gjBqak9Vr2){otvO5tP;)Jxn#WjvxZy(kn}`FWsy- zTn#+ZX)<2w=ve@8#PsM9m9*xvGca)vG!usn8y^(!W9C<*D1_TC20ZD>l@HS_Hxx$K z)cCDR`|lTB?A!vzEewc^k}q)+H6T9|Qr>xjod9XH0i92OmN>Fxu|YYWGm2jCvxN5= z^B5SMf^+aJfGTh#2BZ2fN_du`q_1322_aedH1al3#&dNlDqYlN7A~wYTT;#w^}#p+ z4=^I(0sX&!*7QvO_z?!bRAkQaZUJY*gE~CW?0ZauXlNc;$KY-Xq*O!!%K0hlyhK6zL=4~b##V-m3S$>}` zXZt;bs8P%$NhSuKI@&#*t7dZD(5x+exD1Q+t~Xn?-D-WOD0M*>(o?2^ic0SRlL`aF$zJK@<+O`LEE?UnwTq3_mkxlx_I8QWV@BO{}&1DpzXaFv~(pZ{GgjRE}-ESD5$sNW7;`Sz_qT7~Kf zMU7I=2i%*V6l7y%W22^_$wQri=6hM_^|{=8^{y7eeylwmt}(F$Mi*@Q;)fGW6M$}Q zx9@~HgKo^j-2CAezz5sUb4#yFA?j^lYD;d*hkly#Wk)yP>(nMwRf&qFu!;i5X0UL+ zX>OilAO9!dX6D^qr zw%n7Tuz-Rm!XlqnLBn1^p=*Yr*l7=*p0a9V_s zKcQ(yoG1cOUWxiX9`%M--Vx?Cw>~CfVgs_WQkKGc_GT4+2p0+anLlBjoJ&?^hA{5^ zEa0-j_s6-R*e6PvkpuUXn8RbvR!=o~X-I8igtdLyZZ-E=#g8oQ?}Miga~t|soT$OV zIg}1x{8?sIbyYu%a9<~Te|Eu#n@8=u?^-lzwDSXQp+xhC*lkRrHg}aQ%3s%>wOW$b z>`JxmJHv)yMrlj12W#1<%%R)BB{ohsbRvCsrQy(-X5WN-&mYL9+fpE*C}?>)aQObb zeFP8w$&iS$@IwcGfJ{p26v>SWY~{#pt;K6%MP*Vu*g{@`-!0fv7q?h)PbC^Ck;PS( z>J~pUbhw2gX18OM_R~LiZRtgt>PVa{v%DJgCU4r=%{x@G)nu{TVV9JG;#jS@m6Glc z$=R&WN5)(47JvuuXN+d(Gp2KUOahW@w?5HK=X=)${NBHk(v=}5xNn&Hj-w5uZSMc) z&j$_dMpomzs+g<7IF__V;B1SL{cxZ*JRE8h+~S($0l%}0hqpIjHOjnV1PYW z9i_sKH@_77{+^kCK^E}aaLSZcovRTkgnY9^9p@JtIj2k&J21?C7qoVFM`EYBb`%LF z)0HZdx-_BZoR&6p4Xs3DXw7ny1tUO%$C08;mGSsm!w&(%D6ICV61u9G;idvY1?q&l z{S6$i+e}82!@Ec!cw!foEh;HmJ6tmchEB)%fa@|YZzuY{^Y*`=`R5*hD^dK5w?2FU d&$}c1rn7@SQJ%K$@IM3alyBWpsE{*%_+M6(tF8b5 literal 0 HcmV?d00001 diff --git a/idz4/img/task1_6.png b/idz4/img/task1_6.png new file mode 100644 index 0000000000000000000000000000000000000000..3513e5658c69acdbb20632cdfd4a9c2a23d2af40 GIT binary patch literal 41545 zcmZU*1yodR)ICmjh)78a0wP08H==;3C@S5JbPqL@l(Z;aiWqcv4K?(rC?Pd4z^K#! z!VLX;@cq{J|JM4?TJL&Ytb6Y~ah`q7*?ZrKfAmm`mg*`M0RaK6j<%*g0Rgcw0Ra&o z1sV9u4)QAx_@9FB9V6c-9uB?%*539653GGXT|InVoo#sh?Y(`RJ=~>4CB#J~AUsaK zzMeh`Vq$LpdxfZnx1*Sk$Jr`)3Zb~-Pw_M3vR z&4B!q^wbw50(&1eJSvQ@4cV=&jgMf*6)^?u{5(871ib$~%ae;%1#SCVm`i?iqm zGLD!Wek1(#?QL?+q|);oemm9Ezl;l^IP>e;sog=yz`Zfqogu-(qOkKb^{s%dIe8j3 zNs>DW%nd|&D?{nUW-Z?M)lADdnMv6ND6wt^M7_+QqMZ71lgHxSXeuTwrZ9}GWpTMb z;c>}5ruRDOWHmPZ8b9luAAfwv$)Vso=w{0lPxF`ve0W#W?(~VAFHKgMP93FuHm-9R zOc$izTI@=BkSk;T_1zt(g?9N54{{xF;-L$&iy^jSs+fW*(mF;ZolAi^wuoe7!LDRR zr2BlUaYU=O_VcOAq{6VX8LD@$1RgvOtpFF`cSpp$PLKAxk00d8eWhA(`B7?b?i-B9 zUhBj!Q-h5luX7mFNMIJ>^~*cPZEHmkk$(B8SJ*wOlHx_CPeZpDyxq}#48y|7<-AuY zsF)#6q*0lo=CuRRo#i{O^Q}yWdzh5(H7_-pL7Z6p`TqIIV5V51-w%(m9BJ)*1;5no z^MhFrgG-Yox-7E;zw|^cJ6*@*M*{TUYg^+y`x3BJs#QPtNcKuHEoy`1mf_xOqt2v; zxw0N~CqG{cJ^4~;u6VLPWjQIK8B5PSKrPmO2`^vsJ~aYaVcJyABT_4-B<=L2n~FmC zS?Lx0{?pI;#wGqolA$MI0UAJ^lcpVRoXOwNsKRaBwjcZ_T8C@)*> z+*|wd_I5?OoP(*P!)P4r^ho*f2(n5m{&Ih7jcfe5&}5Y*wX! zU?o*0M585iTZ3`#>j5jFQuf1t`-YIMe(U8Jw3cItJLb@T)Xzv3gP86NRV+2AcwVs? z$1W>63{K$6b*Xx^Y&`-UY7xBIAa2Qs@M1n;6&NSQT*q&BcrNuk;!dgJFOPpT(-I3$qMaX4|-g;QtaDvSA>E}emU4p~U_$--Lq z{)eSd51;nNaobg-Wk=9{{2>M9qF&&A(l8Ik9f7Z#T;Xv_x!hqVUrl2B(-*K-oT^h) zJ2!1`Tk{o+*E760l!LyP#s>_fGZ)NZRqqsJg&qC=ILYf!$?Y{j@M{mL+H_B!qw{#H zP4Hm>hoL|Mit&6 zKW@4}n1l`L@7d-Rrl14Pa`I;glF=x56vLT(0l`?71mEB~(>F@)DPvDM=;{%E2aVsT zLst7>9THx#WwI1^i$D1L?p7==3B{=kMzdUBf<%Z%hN4Yxb-Fl?q`J? zS_F~?{Jw#*g*r}g!?Q~ zYi+#;9iuL==+o#n8?%E(m?Ey|PDf_;dU3Sh=+l?TQ1o&8jNZ=OW;#(^k{E1I3GqNh z3snBLenRT-Tx0p<3}sfzY;mIKL!usfd_cR`nJ2~-HNLGkz5qLRb8&n6@nL?sz8sm! ziL&u9?$$LX?i!nj?T^X3@apO-DR63!w8I7FZ*nbbSa=lqWbhMh)<-+X9DL`b+cvE2Sz9J{|S?J`LM6S*BjL+H_U z>YsWn{rvk49{0KCh{8ezzu}`6uux>0DO}2^ZzZ}Bi)D}AM*4-p&eQc&C{Kb$GDL{= z0kV6p4!_|^nJ-e03fGLkOgh)%gE$JAEH|D+CbLPc#V?}4(&&Y_eJN6(JiWbph$%E( zoNe)OOszV_-l#n$RoDrSB?vc* zR7`8gp|{#-mIU!l!%7b9udl`3ReAv5gG9%3Z_m`)SLD_KG&9Db(O-T~d?bDca+i1r z9?OGMgkp>Ka}>hzQ~C=zm4kdyQ(N++2B%fyi8Z8){?^D#NgZG*C`=h#j3~2Y zK`j1Quj=Ajk@(r<;Sm~oes&sRN$m{b*Ug|Ad?Rd#!q9W8)F&%DPF0#yLzkjih!z4d z`GNyS0Gr9dvh$mD8ESKc$&PQE!Y#vM83i92;qs*%#~Hi2db`fg*e`+Mh0D18Bsnxr zjt$$>L(BQglehVAQaMeQXYb}Wk4 zEC4B}5_nKZ)pMF1$680E`zeh_i0Z~-S6C`efx)BLTb)6yPdKEH?#a^9;C0W(9a0YU z9EKYCH7`<2G$Ah5WbuX-w_D#CeR_1Q4ASrQ20xlDWiay)tItuOTEn0P@@7TYUJa+L zMZ{X98{(PSLW;d;`!Ks1bojnT4=?_4%i~TyI ziVp`TPRB<{YOilQucqV~%IMg9-mW`QR#^{b-;uLkOREy9gTA$&%c3-| zv59_mc`Q*#D(mfOMLd-F4fRXtwSuP;6Mz12vYuf3Mp~}KK{du+iNh9WP7e1fa(hR_ zx;Wmy9%E~JTJya`D}~D-UuA?P@YPnL;E~eK%BjY>|6sbGjkD>&#!N+ekfC*;IdrEb ze~MH*&N`k;Z>y(=(I}%tB6T&VE)J!`Kb85Sf9I-vN(!`RsP-$W>Y83p9=j)2dg(}B zt7tggj;tMSDNK&}c6<3qtTN1NK-#Czj~znlH;~R(dFV3NT*EY{Or4wtwPBuYSFAcl zVU~<%dq@wH50_j>iySZ+DrpwBY3+OZKyWQTV38 zZ!Z2=+jyDt48G;Sh1s}>^Qx}1m;38errYN<-;C+DC^9(jy}rSK_eh?4oOAVCt2Tp2 z5sz-4ZWQE9i|uQuW=}5Va=ZhwK)E8!C+(J=cXQfxmhruNpXxw>8&yQMj7JKp!f`Iw z5YOBeWa}C09F-a9x1Sklsi6i*ywgWhv47+-nTD|J)1_8^*!ZFZB#*BE;7AVE0-%wHbBvMw~)mo><2a!!lf-4x#*RCQwfEK6fiznR$xOc=pl!_=CJP->l`y&IX{89pS)s8nXxUhQVfzZR`5Qm1 z#Rp(rA7~SDOT8JDQ%S&{g=n79nH{!ju5^5Ip7=27PZ2^#cFA?Jw>zziJ1i#2B&%Ub z;n7*ejs``FWx?Pc(F4!Xf)^Ml1#OD8%qI$DuwY?A!9mDIJ0gL8bXk!a#=r-mvErQ7 z6c-*WXU6co=Se`UgM1_ruw~{lW~Ql(49?|)E+=iDhR`o-$;4a72$wIW*sf+V*~K@3 z_H4NXx(qLiRI2grBw~F9IvOKEk#?fZW`$o)cj4)3utm1ELwU=6hl3YvHyt#L4j4{` zH!h&qNMY@Us?R_op)PyioqcD+iNNUG2lCK&SCw*i%bO_*1+URr`(3h|AlK623=@-i zZAGbTq|U7Ot>sWk?=L?1?uzCM!b`c2NeZV>990at=Hfo9-9?d`Cs9aYJ^j3{fpm7V zHOSCXPw2RmlyUpfcE~d4?2AbMD@DFG?2g6YDRTC+o4$eOxOM1zfV zB<|(oRpn0WA~x(4?Za_l?lb24VwHvPHNCd8hZ5OKt3z^P%h=FlK@2GQALkPnei@#I z-mfk{G{*Ybw(!K+fuhO&c z+$p~Xombp{FmYB_{N~hmV3W^0#8eqy>)mE$dXVr}+*H4*>ZJ;xwe2x%LYP3SfjB{4hEUoWcv2S&f-A)0 zFc6zARN(nAUqM>i6M7^CH3`J3jgf2AB9 z3l2=Q{z_yMQV3J`NbGqaYOGx}mA8>?Xg@EzuX!~IC48(&gI?><(7Y65i`SGw35Zd} zMe;)aVD#XnU5|C=u-xP>`pzzi)KC-V6gEwV4JbowcG#I)Y(1@(6Km0~M$Deqz@jwN z@EMtVNRmWY$q)@LY|hF6y=UyLda%5Gn)*?#3bJxA7~pdps2 zYOby?<`{=v$z1n>?rs^;j2(q$IEnA|k1|aWVO13^>>X!lbqVup?#J58CwEk^VzH%u zPMf}gC7FT-*7;_h9n`r()%O!tgG=d8LGWk9BBhFP2DeuzsXTj)IMe?apg1vL*i~>nwWS66bl8tn4oy-`+4uyY{?3Fak9>6KGdeB_)*bXEb zBzQCqiaaZQ+Wmr(vAnU3j-E@2f>qKk?uU&$=%5U8F#t=*T2hMdR2L_SdJLrtHvNq8 zm~WLf+pOq4QZdE(|M~(Ca!-yB37y#u1+)#wwFX~YJ2qH_w+%rv5)KO2yFt_e2$6?* zat7s%Ik%Ok|K^DZKVn|>GSYC4wjmH*!B>Yr*pqH@fR z$p&k#Kf;a=HU(i*ag9^~(`^AB-MJo}Y^f0A+Hj*98)KYf+wPAtL(@gaV5de=Zdvy^ zMz^!uE=yeBBs$$@8!^w9wwh~5RSJuJFyj$b51d5i0`qG6{WRD3-l=Z?VcuE_HP1V* zOy-ccIi=k@71DWiosd(}zy4>oqEEr?Msv)fGWR)XGa_(H>xwpg6zeVcJW^_A8Y57_ zGw$WexS5od90MYP_as<;Yp=fR0bn&HO%KMm||$Jvq>IS;M0q{(&>l|Eu4Mkc^rrG>069Pke>U0 zd#_{bw&{iHj`%np8z)#NlTxktg^^)L3&Mwf6IPi?McF33+vq;8FddJ!m4UoVGSK8; zcark?Wwic_w%H)jmcBw-;auRb12xYuFCl6GsZNU)L?1It<<0e|^M@^0)eHPzhI9Ib zTVAgT3*7ICnc_9xt$t}sIJ=GCQ_GH9FY-U+|jWW#ZVB{)_d4e52;J~!$wo)e-!HZl}nex0q@28Am`TP+Q!?* zsry%GszH8t#EJh$yWY-I44?y*1nvGYRc%2e8w8;VTKzAZ$a55&_~c{{`N^zB(xxwN z=>UTh%yGee3u((-n+?4+wN-NHFE-Y6>{O}j)9EqSY|U@QA)(=P#ZEc8STmI{!(80} za26GqNp7Q+Z)O)ab=+FqDsH*BDcHGlUdv~5X79A#Uh{d#wf{r%UX1GhFviXxv&F?V z*LUmyI${SC?~UqTN4{lDq%D*9{p08gQze<^J1%T4a!N7@BqVQG+&{-pBTl7wx|pZ)SUR2AH>a_XnwtX{lw%1uNFzNX8Y~ETBEDlK%$y&$1+$& z_3AqZfGeoB>8C0yV>OkXDt$&xOirg+Yd5sPRS*ZgmhT<>nU+0#rY?eCH@xdy#u9zC zV`V6URU+K9X>=@bTcPm?`HFO~V1CYfMVxzYMFO4$)_)VvJvETj-JhWL=et_Aq*}dG z+JP@<5fwrG9RawWB>o*avLuF+IKXA%#(h5b|3J(k-&*P^z!rWSu$ z?bUU)&-&frgx#%v-5tUH=NY`b%bA_WsYf^R}2HGZ0Z)0Jgo3{yMMk&D1&ac`f&;bD;qg)o=xK z>zZl65v!q*i+N$>4u9`uin=MQNCj4P99(@^pu~nht#d@09KRhaROJSoLp=iCXKGnq!ky>1D&7*AczFll99>|qggzbRpxDt`+jH1<1+&n)Tgb@m*W9; z50deIK$%mrb6}ldVh+OdA4Zq!I8!LXin_XJy2>vzKBBlS~zVqqByr_J|05VwE ze5+qX%E*>aJ9ikOEnquFVR5>|5=PH_Wfw{F;DfBH5*^}@gY3ieM0LZ};Wc^u!g3xhBLhSH6`J>d zzDpQV<=1c(Sf;#CTmSQ;%&5hi|AKWPB^uW+xfeZ<#Eu3jMqN!!t(n^gJ&*(_5;g$$ zk$hUoR^T)mR9{d^j$9a!7Ag?N4bR^&U5{RA+wSZIv+CW4a))3EMJ?J{p|;rN4ZtJ( znyg?4EN}EhmLeo2=HB94Nu22f^ph!a#MKJW9y_?ORq1xIs2-45jP|;}jQ|R33GkJ) zyR2fJc-{|sgK;EzpH=XD2JL%97d4`{ zMotCOE{6?}5BmFw2_oS#v@P+=``3>$7LamZ$os5Wfp&B76@S8hyVAovPF2_(Rd?6X zAK`U89zX4KPX`X`x3~nK%9u0NU6g|G9P@A_Wfks)}L}G zA?I@6&xVM2#t1&GaEcR4K3?8k-}aoT65YXbxLoG|BqgEhC|}O2hpGtZ8*IzC!+jtI zEP+~$3TM0fzC*821$w;MQ~@z4x%Wog_tzs~?I30VcGZ!*4w)M4f>EhpNllxuR@FT` z-@K@~tUC86O`$-gs^BSBiy+F9c44ODQgR~I9ar$*aGK9V9|6)h^~Ph~(LDKyBa1{< ziSm{kAnCptv+4c`$UwnJ2&^z$lT5D<^ZZLu#Qq)~jU8*fm+0==n2RzuF}uTeR&fcG z_lf9GmjDA=Bbj|sHAkwBC!qtpt;iDA z5Aa935{JPFBp-Q360oQ8cc_XUQA4R*s68Z1GuxrSb4)mwue-3hVOQ9ZwHMR6Hv)Ffdph&sU7V zxlC7Eryk2iCZgn`tDtp|sGcO{kjU{) zE5)7k{^%9?lro@a7zA>KAwWJ=-eK)KT*9$#h!-tk;F!Nni?F)L+lUYes7-c(4;y-7 z1zD)79g~Re@>|b%_HqzmU2XDmUGS_|t;*@^J9U_#O$>;0=wObtaH(OH``8<8PpaB> zip9*`RVn`Pt?s*QCA!4K>T!9Olu=)n|a3qkuBkta%r< z)OVkDYKlZP-XArUeqG0glya#*-QU5pS#;RTmN_nhdg@RvkyBA-FqE~31W_yJ;3apr zQjv;M%5C(umpS7$h6-|Q8_yvnKilNdf$Q`?^_l zwjx|&sX^( zJ6jsE26zpPWZ>?KftI>M8ffzEEBb8&yH$H`O3}vnAV#lFWk~o8bbM{DOoWS#oCB)g zQF;%xjyx7ep*i*(^UOO#W~h3ymyUN3+-Xt4%W)*d;1oYCwY$k5S)sU3(LN~Ul*+~) zC0c2@P(uvelxFm7aI&5Z6hd8QNE579t}N~dz^aYx$j@eL^}vjit-{w+rtMSMl7Pfr z9CElj4YWwcV7r~`dB%c>B+fPHyUoFFaU;`K-_OtP9RRVq7zoP-%r}7+gOq*qsNXc3l!nqhcV_Y2^}}5!fm@$h647-~FacIrK{syKMQ>zku50`y0D)GlY2c z2eW8-2wptqhebZikLkRgiJd{4n1rMkP(@fCKjDWb*V_7PE0o$;gQzeq{#(zlr`_J$ zv;ej6&Q!}9rI-{Aq{Q1I_{ufcrm-^L@fk{oYF4X`Lx(ukp6;k~!@YASjJHz2a)DvH z{Py}vncQM59cL|(aHG2;PTiwBwDt_>NP-7~dv*n$uE*(!hkIk?j!xT-OG&hUUj{N{ zxG0)@J~w=W`U>4i8%tHecW?amLxs@$E+LJX6Y$Hx%bHyC`S{n0)Pj|??6)iW}!sRLv(K;e?PJ@jibJmJ_Y zi5r-A8dUyW*vP-=(D3x6#uhKxi4ZCDzQ0hx_I{AA zDibE7Y67{i0+DAAT%fR|;OLrXO2il400V>Gd!7;98YYD{8c|~+h#5uU8(vcELa+m) zgFD2sgi72Yk+SioAz9}kS#tn#>+#EruQ(};goq6!H~Rg_`UX!IT$-4MM6K6PCt<(w zTTMbxi(wIDwBfg$3Ec0V&wBjNL`bkj6;`XpqgjMkgoxVrnXB!o1Mb8k(GJ)R%|Uiq zxdQnK5_8vA@Y5y*KS^WJ%~?U-Ww!Bxq;`S3DcnBCDNd8;v>}Un1$pz^yqFeE%^qE_ z6S}V{jOrgW6xz&9C(-q9Ogg`A44GQ z_z*RoKNv)2@mTi~o=r@KOSx2SWFB?`x^LrJk|!S@_V2Ea?0|5zeH&Zu*c^7Q0%VG4 zP`D9Y)X~9mHpQTBECPR%gPq7N?+o9+{;dJV-EDw@6r&wFPkyB=_Ys=Z6ZmhF$+!_w zF%h)}$mUbBxz?<9fTogL%7~`A^JutTtL>=K2V+}q8ZdD*h(Y<>x#i;j`y0RSpYN2w z2z0mHs3uj^T)`!32~?R{llAyK;8L);kb6&n@Hd!)#Nz)>=rI6hMbO>6<>N>gKqbe} zP2icK+^qw}WKHL|a&?cS{qPmL;nzai;Y{CrGQjhCx|*Pw!1ePMU=wRE=~>$SYzX() z_mtIs!e3hID8(&cY_NFacKwpkBz8`{Y?}kd+*_2No({dfY*6K{zzR11SUk7?ypXrp z3_FmdW$>e??sa^jO6XNk?r8vt{=#g;w*O$!=8f=g8laQ9uGq@A6fJWvJJn0|JT_6Sf9 z@>%!1_+(hcbp~qZ?rp%h$%*szFgAfM&gSp0uMvxmjnRw2`R5GsY_jfo`}=F<9_L74 z^ZHV(McS~I{gY2Co8gq@$t zUX^im>TnM+XRQu9-JeqD!T^4O6{Kj;r`wRe1L`^gyVOfe48u$bo76i^D(&(~!RSu7 zETb-jd$@>Y0;(h%GoD|U{P-;SqyxIKyOU2Erh*ugw;c@Y0wxmeG~Q^xIna5OO?QQb zz2L^ga>LX>)l(jbhQ`vc*>oI?cTN0jalN9rKc3`z7mz#T9QuqSgn%i4UbS8_GcOm2 zn5q)8K#uPLVP69~4bl`KHCB1SlGNOErETj+1@&Bq3ocH{(IV^jZ0G!3*6N=r>FF0-e zRIii0Bc{Wk%N>5}26-5P)bnf^H{cf8DhGzM$48yk? zq-B5OakKT#>CYDMfF2TdLbF2AIx-$$50nEaU__kEWUm>9g1$zQQeUtWG|L0odNp3? zyTYCiQ&H#Z2L)Oe0wF3pTb7I~FTg?NH|QO2m^D{3#Yy0w1O7Hg#_c&NmTt5lDYe|lRHxqqY_6s&oxV2z2$TXTJEJp(|V}5 zhjUaLPasx`X;u-DL+ptx^PXElH!eyd6Gue&n~2LP%4Z^Sj?}$Dd7ut>2kd&2izH!= zm9ywO*00DcsQe4e$zG``W} zotKBe<5IzBQ=lnT*T*Pd&@7+XA}=YaB;*hi$wq-eiCpm8A8eUTmm^)`WQ}n`Ju>iz zY*HCD5~(+ye4w!i`pqwFgbum}%g>@*Lf$V>nrYQXqLL$wLBXDOa)AfLUjKIm*X>kijnIKn_%nHIgYO`SN0Us>#{#$-3n^pObd{(#bLC zgL@RtSnYOOvh3|snNC`u_p#G)7aQ^@ThbwF8F+gF79{rnT)rZ9m6o;pO4H02{8zpr z=ZW)7^U^te%|4ubWw$D=6p3pLJeRmmTWQ93{Heqx^pJw?yDVc?RaiTdtGunhEm($0 z9q~FNGxp`g6nNqly@GsV0y1Anu+O-iGCi5ocnUIo0tFJw^UxH27n(H=xU~`BjG`}m zDMErY)OFGj2^z8SdEj^X0tg__`SS})t3^sG==~;hbP-8{=Y5h&h<5RCKZAFg@!erk zS%U@2!6=FDsU$ctF*__p71pO;18sw9R}Lr#)haOttu0~aFqa2;d$!nS$I12NC$nEs>K;zn z0%tVDZe(TSE~R+Iz2FeeeC}8l%{+u|J05j1m!_U17IH;5CA-G?`(S+_x9UQdNn5O8 zBCA?Q(At3Lv#=AwkQ0fjr`h*;*yBC(b3xU`Ws!}^p)-_jLQ%@jX6@PKuD2M)4DQ~n zoc96_p%g!+{E~1Q8`e1a0ErbH5h)hP7*zq>^Yz^wlAXYsz71d(ra#F;118{h>hWta z%LS9;-uwNv_9Nw^I@qFKHe&SxRw2JPT=MV;aygQ`W4#W0eGSTQc7X-Wn}cRQnpW!i- zL%+`#jDRfK@T_v!F-R!`0jPm_gWQAeakZ7Yur^wOHG?|lMG^~Z)=uBPv4pl4ow&yH zqwYh`xmcg>22FS_mz*PM%iS24=&VC3`i!4moBG=M=Ndhz=xpkYyD==7^ax%AB3wZ! zvam?e7P~R{u=Xp(2%o%cUxOaR(l+p_gz3<>Vlo5SK21ITC#e`i;*I2}^}IY)%=SH+ z4P(hHP+>i)dzxI7<+geIrk1Y~UE3Xnt1T~L`0F4ov?8__-Y6H#(o~|K)sYLSk@^l@ z_@J2Y^^tp{Rxh)A!S2Q!nkj7o4l-&Gl;Mb)8e-y#0_6vH6X20AlFpIUR1wFnHKRHC z6xnPm!FEmV?X^9^ViyHtHeFf(VV}WgTkJ8r}jLOK7htZfAud)6d3enC=vW*u?F9n}2>-mSB9XkG9pF&d69YS3P;L;+Mf6*zbCMlbPc39l19H7A5 z7dzeZt7DtmlU*h`QW*7PqRbhyNxem%pEV8@xw<=`3UGXN>)+e4so;MZ{(Hfn>ejOS#mcC|F=73YVF zUL#RofG4qk_?IN=7>`b=uzitTr6~@R^z}xk^%Y*`AW4$(3T#&!9(ss_Sex$NI_L!BS!wW^3XSZPE38 zol1p9{t%!fqN{wy63JQme8O^2*<_W+DdjO5O23yWRdi=r=fu0ICS5ellopj_m*p8S z$Hrdt*ZpBW3*4h@rXhRG--3$bY}i9&Zd>g|p+vfR6VO%$iTsgEGv~sRm>f90;?Y$_7V`LWFE&roL+Ha=!zrN0Af6$3xVkgs0 zOg6?0wN9Yq)K7|+aao=ASCGD++s@>aD2a(=x~zWlR0-6YK9@t^_j)D5E^B=&mqW@b z|JG1Qx%upCmJEn9j^d7{5`9#`AXSKwC=@-whc(k$cjzD=A?STh0^g2qkoVNAE>B{+ zQgEy8*4ITZ+6*7!L{#MV?5gf~fwGHzLnOIT8gOJmCPQjh`JQC-Stad3}^A!wJi2aT++FuVWd2&uzh7)%C6xoZLw_Riel5`jx)py1m5PR0Rav6B$)_y1tF z@w@xG5KBdkyX;$hNYvll}q&+l#~U6rnV{`B_x`<_#3j@&wV+?nHHtZkiifVa{| z;lfTE0Cjcuy676_9n^w9;1BK1um^+I<`NIB9q1O7Wvg#B%bV zM2#7tIP;)sIlg+HgltI+ozSS=jw+4+wVJXW(%C_8x9l>OM?Ody2a{$>Fm7GjbqZh^0W?0(``X-wL)Pv@$(RQbR#e(L3n za?)mQZyWt9CB^@g>0A$)-KAsJHgU4W!Rg1V2e&L3?P@}Wi21i7Rq%oapvSL1|y3t&nsJGud&afKE%N%6WJV+(wgb22t9Sl4;+?GYIO!!EVH(f0YkOM*Q&BKZ8J9SZ8(`=EJOErCH4aQe%Ay^+cVyCNZT= z+9%d!E2*D(YmUA5t6M7jcdz*j+qxE@C|UysW%7g9oLVY7B8gREIsU=a2`90)Os|#n zbzGXO$HvdH(%TH5k*_W8-Ct`nhMzd)r;- zCWd*>^qCI-IUpK6I)M&z`FTm69+|Q0>d^d$7F`+Lv*w8d&@dAnAJ#F?$$!I`l!8iq z8FYGe2ijHy1L4Bu=98yP#C}`n!1Ma0L0Hy{jEwHPPMDq5`b(S-`tKD%7YGXNS zXD0-**8y7ln8`6P)X?gY7>o4mf7$v|If$95wvPI7I#xI=wfPPlps@z!J##<{2+Hsr z9P%U>U1c>1w9;;itYcgP^8K8+An;Z;;5^GHP7BUJ)YR{I)^z}j~!KvWe6$GELElm{CBCiQ0F_ zWG(B!9ekE56Z+@V5=GCSg^y53*@^QmY?`Db+%ea%2K9yLn?+dN9 zCw3Tk->&7*E5h3`Syl<$UB~0T ze6Eu;azWp>zFu69mnAj6d~GyG{L66e)N6)X`KW0@YmK^(lfNfE5HICOt8LAx0aksX z!$0NW#eh_W247L==3K!aI!?sBeavTt_vGQ}-gHCi$7wfcD%%fYNGn(Z%-`)AJ59@yk6hCHt_=V3$ zd*yK|zvxUo^vBIQvbcQmY-I-ICFz^kwcPGXbBC@vM9LVFV(P2pdQ z-|+8zw<-(rOZNgKHENu5f+GsP)9Uv>OWOuKJDCZL?K)b=|bU0x=ft4SxvbUWLPCuHDN)Hbc_den`qm$nz&Ccm3^JkPQ9 zoS*#g;D1J?2trmHA?i<4TWKzpPd@XsH(2}siRZgBh3FZo*D2a zuIb8HH&)?%YjxGpj8#s}*e& zI%Vt#u;n$uPcNrgl|AINI)|kvtz2!p%s;wd`ZL_*B4{6_@;8>_e$Ox(HI9~VFDX1nXkHG5GwZ6- zbCGnOUB#aU6gfSv!!ggo0aY1?=OZy?==~YCD2RJ_n|H}?GsHKkodv5hFIz^}u^dv@MY@%7 z+IlC#JQcV9Zs5&~gzVgyBgkBhIzMw69)lhBZ!rw*p@J0241m)EzzxKb&TfRvcf;vm z?&9t0ojV}N(c);hKZ>Syn!|R(sA6K*zs4rJ`_GDw)vrf&?!sZPy^b=&|3OR_5V9$+ zuTugQS`D|Q*5uwj>yf*W0d0crgfDbF5OVtXaLwg#mykPz0GRy#8fp1V?~S5?2;)s+$k9ya< zPAz#SY;a@xVp)+OWZS>BZ4|9xiHX+#2zuWXQtOVc7KaaVEK6`ybAicpQ)A@JUTB6XkkaZE%Aj5xWbvF#$ zB6u)yRkF`czR^u8pCXV~v{UH$)4IFsU#@|)l0LR_wbEg1Q~+@?B!4g@m8ex)r6mWJ z9{rO0x}MTH*iBTp^jRfi>0xF$}Ey}Zo{Np?l*jawf zFv|H+{hFV3H5vsRL;lIe?-|B7%L=O-mk_lIb2`fx< z$=DKDTq+8{@zxY2HD2Dke4PNC{48<8ETx$|&-0zw`Qpm~LwPf=lWT?U4I~2NGtd-s z#>y{jn7mP7?zzet3jVhQCuypwm~YMh>I=h4Th{cnZ_#sQ(I#64)5<}=Y^7b~-zqQ% zSP9fC{VU4C6P&~g<@q9Ix95ZL%qF?cM7SS%Pei0< zSIoCv1gmKxtAncaR*ke3fw*mq^YQp;V|`Z+7?P4OnDP{;W>%vjNX9xeD$c%f$H-YP4fWyo{AYn^X7-9onU@{TwDzEf8gFF#Hjfg$SNEbn^f0uahWU`{} z-ziw81(PM|Wpu9mA!KqTOU0axCd{BH+_A!1-{#`5TGuxEg zxKLqA3=l)seOmcu4P%rr7b7)umH^wFPnq)*)L-ZSprQc$w1hSVIC_}&x zyx-MntQOuI8-Y}j%Dw7{q-)0&{OklUul)%8B1O-mE|uy4u~a#UNAF0)VeP}@r<}Sv zv-J{eB3lhIJ|B#mq(hqjT^kbEFf!fjFb z8PU%sS+_+N(WjG7Ktx!ATjIlI7YGhEi7i4HKu%|szYIN@-g+D_IGDu%epA6GM7;P} zljx(;*O6Y}a9*6W6*d_$2bnTQy`lh*qPw&pje~uIz6?1WwQzAw+}Z9@8+s*xQV9I^ zUzE0igA+KgM$Qd$I(TF=1wT2AXm9~R1bqc^UX6q!U9}r~s?^8dnt0see|W^38wp9n zJZdNvqDNES(kmsWA>dM}2lEhmcb7CrnizJ<#46e6%WKE?=5cX&Tflz_<=<~MAcY=W zMPUjf-rj!TUuGtc+As#`w4ia@WU=$ZW-xj{tx!cRnWKBk(&a%Rh$*p)H_3>;zRUJs zFe~%h;&@aMh&oyvkC3CGh_kd+)HE|Mz{oot9ME z5>cVhj;5%Pl2uyTMMFbc+F30^q(Pa9_Ac$TG=#LLqR=iarGDr0&iiw`zn|lK{C+?G zypF@mec#XVcwCR`I%?z9~0j zPD`}L>Cov`g*(W}WIb{GXPc3-tRLieP+{kI6zFZgrxr|+ZAUvf={-rd;}lht^s(4x zjoLCL4!w_5#sXW9Mlvq^K7HD}?o@MLpG@>eX}i(Q(Zqf~d)XrxCLR`W zGWb!iRJ)2M_pV*K$wBbSxbeq@AmoB+91P)!IetUiCk_q)`m#59S6}jNR`4+G>292Q zW6C#YzIw&jJYqSy zR<{3-Xke~kas9*yi{O?rdEH>6d?#{(y9?$(AgiDTm2dIcG-JI|U&UOPSr0MDMh;%3 zVM=%GQ`)W_w+XHP8aP~Bo#<#4*?5(fIXBa|9DmnT7qjLzgtgq}1Bg|8YaZic*mld|uoy&2cf zihkXqn7tJCb0uEqPr;oK872Gj0+TU00(*!jA?*4UVvwj^_l znNx{fPVCr)%00_XMB(MD|NWek@tp0xO5fURUL6)(ah<^es(O_`A>VN$r5|^;9bUgl z!QtkVK+L@_yM*gwDMh<#1tO<1mL1W2-FM~p4p0Sef>&zTLqqt~1l$tO57&)T@C@u`6+RwDMaQbQ zYW-1YV5gU@w4;N}bF1?OsGq;S>)>uiPpKjrgUDi`j=MS{JN!VWr?ic6D5cT^I~doM>LyXC|a|DWcbD@8rqQ2kG78?#%UthvqS48nC%qntcF$Dq2zs(zjW zA9TiiznZ4K%v?D(X7JW~7ksepkz+Ic-sCvf#!9EHo~^qZaDizBReudXBomtT?lNbw zby?=8-a@m?e}5T{#kjYOo(2fo3= zTqP~zGE8COOD9HN&zip5khthj)nI^70nZO>?Kex(9U8GsM#9Ish$Gd*gHA6(NGR!n zT+VwZrp=5B$fas44V_+vsD=7l)i(@3*cCmR*t&!bp}Ltc-1)3_`xaCChO2hD2#~0i z5W9O{oY^_!{CRuU(B8xApZNLpx9%n#!2@2z4+Mja1BZ%RyaC4^YA$X$2CN&w!-LIQ z-S02^k6r*rJhd?`qs?=D#$&ju0Sd(KBF6bo191j9c1S#M(626A%qLdHZa-qmW9}q5 zc zmubp5J05fI|ZP3f9BOSjUAOZ>~U5ouN-ox-E%`t`> zMWIo#EpC~&ctJqSOD5grRR>q$C95aaS`j}{aNJEtPB0}tHApFWo`QjcEa@!e;`C02 ztxdPj(aPGBmHg${cX?fH1nrMbopPjcNA&O>782!L{V8evAMMxTc;<2*=mhcRc4%xw zIOzXzGHcGURW!@ku7XP104t9!7*CZyQf7DhB|$M?1u-AF6Nz_ruCjV^WLQx8{2>!Q z9;G{R?roIjPi!MdJ3KJ~W}38znc$lX*PQ&NbM*pSXQdYt8=R`3Cj&?k`bxd6$M|^!KE+;Q?K#@6weL zF6+LKt1sF7W~q*y_=!Dd_n2Z)dQL8TqR@m~W-JZ9Wh*LJBwL)#BdP{ys_oihn9h4% z5}hu3b5>Smx%O@u5bV*`Z|}?A-6X}V?bFE5?r!1b;+Lb^xW~Tpl1n3Kgg{Ze&5CvB z$F2RqoYGVetpU|}?cZM_{rmihPoH0weR-X5dQ;bB$4*NusIzlzG5gutGbn>NnRl4< z-hUOh-(tQN+sFt|XVA6w$XNa4ze@pUUc=8vyl3FcJwv0XM_97X^Bz01c-Jf6*)Bld zeeLMCBYxsU@o(02GfLv*ux31wo%oYScp&6J$x*icHWRIp`EVtP@>bct#CI=)f;^P5 zKv)wleA46y6*TV7j`Fh42rehEAWd(T#nmhcI1b{X@;6)clQZvo~U<6z}|yMv%RA3zPMf1uQpnP913GUzJ(cW zytNVmbw(7A&C`#2fHPVNxz5^>A{wg_KJqOZfhbc?dD*np&Y5y>q9hCH;;~aNh-Gf| zrdzDgT&=%RHsJIt(t|qEj@4J|V#X25%k^*%69~1Fb6sV#Bg9S6@tWIrUzodSaUfn& z_+x3QOdXV&O)uekXLQfml*4Y$-gL@5qUF!xdE%N{r;E)FA>ceYuWkBe2d*vPVJj7w zp0BX<1op_&S#yNy?~Ys6eQhoyRpR^(4{&cVCo`AaMyR)T=rUgDZck?E&Z;3jSb`YL z;{5vePc06+x{VQ5wXtWJ7%FEatSC5kQ$Q96;oXxXEX~)xPg{|09I&FQz|N$W1SY4+ zCmpLnObnfQZ9F{A#i$Res|IUgpNJUBn2zc}7fSl~1jH7kYMUDneFGY${Vx9Ai~g=7 zh_eeZI1X;}1wiG5oc+pgu^Jv(8QgUSs%npd-nP*HInY5l(=_?^33uay8!3Gh7|+BW1WfuQ#vTA!-(SgR7H0| zfRYbjRZ=itV8D7BXa!`dw=_?=x5%`lH7_mGfOY=}#YhX~Z9d5wuB%I<9RUR{Ez{=^ z%1KYDFj+qUCt>ONMhg0kWV!Z$A_qbTs;Oz1Wy*D5pE?jBR3?%Zb-)B1@Jwt97DLrg zYbA$Hs_n;U?(exM6a9DI1ka>o#~~WiathOyUHx_JPfl!oa$2~*Q=0U!N(d9g_P7@F zC$m#E(2yS}4=kG-BNhmI9vhYcXwq}`&C@8Es{GQGOrnk&7{k&Hs<|jy@8Hy6TXmc1{toir6OP9N)dUVjO8}Zm zFmnBR@btlbHmsAAPf1CTBe8fDP5~#&y_g`msjX?_PIHRAcWdd#3v6VLts}~RagPS) zVn~#as3MrNgtKqE@!mYc@{Vx1S}4U;8uIxGoDNeuJ5P}{zltS`x66zAZriyr-{TYM zeajN>d-GmD-)84KFia`P6>#?=tomK`#%-rS% zj{I^&*nB8>)I7%ANo$Mj2VmQ?zsUWT%}Bp+nz)Cw23zsas!MyuUsjccT3!1^BYZbl zUo_Wib%0?;{P6m$;M~@AAwh&jOSRGtx0;eykTL2{p3t*YewBF3=z=7$R8I|BYp2Zj z(N2G-)J<7?{zr-De|FH=0Cl;Hc!^J!z3Fl}ZQY(D-!$&8v^T<%UJXL|yIKiNh?Jf}d*c8piC0UJQHYliv`2MCK z_WI1m!Lu1CB60YiKC`{amdrJm%cC%GTyQ)cOjZXNwtZV!$b zbGrF;)c!0i?g0G-l)^`{-nvPT^+;Mv#lFw{J4eJ-P49DoRAs{PWZ2?An<-n~kmIO+ zrA6c&QEB)Rlu1tsSA8(Jk9`8bV@xg|Wpaqbc z1qRLn(df)3U(YWSTicpUCuKunRA7!Ing8vE)}-?q>*U?2XqYIbhtDp)SwkxXe0QFc z>wgvRkGN-5uW4;oPC@k0@K8hf`MLIgma;k;{rP@cCiQYvDCxX5QX`(LtMyZTNuamQ zK6mtKWJK~WzsEmxBz!wA4)?F@0$`R>)(W%@}V;{AZHL4&Q& z)b&h*fszBO3(gUZ12UA@PhEMWyY}3SyH;I+?Crg6OCmXBWhaW?%G_h0KXQ+1VN^0J zje{}`{glpf0{BN=uRw%Jf#dfCDNB|=U*@x{caOZR^_X74*Pgg-vCtfgn>%?QDf8FH z@kJ>b)*$`MBlaaLg>@DfA}W+mE*d^LNZtSKD2}a_%rstEF>5-rmNy4NISzDW3jN>& zD$(z%(h8%}JK`4V;J@=$g|NR{Z#>OV_4{Y@$plUA?MLrbzSRM^(y$a7v=8c$D49kn z!F?_?wXvL7_#VG&@oY+y*)4Tl8+o#-5HSygZ-y|O^f0mC{X)Tk_226$v6$Z7Ade8H-0u>jzT36|;jsV(E03f#qd|`Cbx3@-fI$GBA^kx0 ztx(jf*F9Fj;Cu#$!5x6CE`6&F0A|z=F27#NV}7;mfdf^PN`E)D=dq(^A>0u8S*&3J5sqPhZmoejBxjuW%bUV(;PlwBH@>3j( zj2fjlMyD8^_aRR{D5k9pp)P%4@z0*&zmOLC^@Lq6 zl!YvYx%Mh_bGd)D(~OJLp#-pJu1OGRuuU;4V1v8!zl4hOK ze}m~jih)pljGXlHjoTLqkBa{TSP=vc1l!wp=rMAC8(CIhHx#>W25PPDomqIaZ80hF zHtUtuP1bAOz3+JLW7_biJ)o(TQ8g!ox9m%2R zq>*t%34{Rs-Y!tooST2XBu4W5`rDfoL%>$~3Mss9o{BAq>vyWT;6f@+!^mao%Kxp` zfbi9I$aCn)oXXq4V$!RcYjL=l{5Epl9&}FE&fHSdxy#EQNFufz-;~u;CO;A7gZ6r* zkATr0k6&MQ+IQ!(od57BgTwdbk-O-8ab#y6HA`{5bp6ll$ROnA6=eaGDW<_G9nnv( zKo*fa5wGag`fJ~h$&T~!`se6I(%Vwl#d)25cN@lp zT|Htca%P?BV9(Fyg4T9RodVs^nkUVE@SZkzzf-073Z?-!;eD#F0#w#!gYfZ9M#Wdy z31o~S8UO3K`$TW;ovnu~Z*dalG7ekKPBWYbn0hqF(bT`zpW-%E2m~z>3E7 zb8MQ0HtoMu`73h@5*a(cSb&INx4lgQ8qnbs{!+B4>C$gFJJV_w0|8FnD-kb_n@Ie_kJ{cyXkgpFSH& z2T^Z}?RFKgz(X3GgM$`CQ*U;Z^w^s!xbC|1pA*@y;@SP{3`mqU{i`gT+Qs^N6^Vpo z;JgY)tU>xuHI%5y2SRVbS>{`ZSVT*)JaBuPYbR59KE9xvY%@XNUZx8#L~ADXTq8|& z5m{M|Awq1zmXWXTZnkdL869nVdg$h`H^7Old(6%iutrJJ>Xme7dktGx8whV37qzhR za!+m3c*M2Cur>S2>XIYr*J)LB5n58hp;F2-$e!pcRhFm`#F0MM8!Ih2Vwq1BxteP5 zV2Kq){FJcg3`MLA`RN3*P>$$oF8T%7lkBfGrwQ#4y|VguUYzir@YVn}lF}k0l2LGc z2$Iy})(u>`tnK)8UU81cvQF{^3SZyl*|Ve{f3BhnhgO!yq3e>9Qcr$-K;2yqd0j;g zxI$Bdt`gm4QIGr4wU`?t3P|l!FDXh^I;AYl)E_JrGV#5s<`NLt!<KTKB1`E}sHBX1r&J%6(KX;-p>{ksX#wS96I| zv==_~GNVA#bfV}v>4NAo3A5kt^$!OLTNgq#<~9xumKqM&y9%C{00D1cDoBE0J>Q$M z!}l-Q9Ir+MP2!32%YKD!M9HT7m8Tp~piQ%XRj8H)qg&M(3r5`3y3E9b*Xeb|9>8g3 zqlhjefZ1%B9V;+$zY{_YJt(UUm^rPf(!vF!E7fijeZEN%M$V2FjH&FF7GZS{0)`p` z&YDo)<|j1^jR^^YKKw3n0!1U49NN>#5#mA~eF_db5+qz;KX3e23Y|U>QpyTkh;{d# zVQJgEiqb=wc+RbIH4ptHORX1M-p}32MWiNdulus5p z4(AI@U0P}V&)t|dRMBlt&^no7Af0X3wnw4{L8kmm>cvb0tr#ceLr>1^1Vy3n@OO*N ziV}Azy<%pzDL*{mJV4eh7tzJ|;t2Wuy^eM3(u`0g3kVo*u*~r42b6sW!k#TA;Vj!| z;3IqkEe*q$SFxLngIUSreXL_xyYtDxJ^4M()Ln9MzSf)U^mT5@m|D=iX70w%jIiPc z$+RgGv}t`8%B8B2;@Q!tRVrVXueI&Uy%^Q!xA^^G#>2nopuOfWdR~=hmg@!K&E>0x zxj^qc#c58t{vz{RX8Aob+!UK8@{!)TvA=L4rkV@b-)@7b{QL2tK?@O1)cSevJoih% z%7*1_Db@=|-;Iv(zx^s(>~ztwMEAb`vtZ%jAuB!BcDS0@aMiTEb<_E2%5_V;1Xf*aiVClgi$pAX;jDNW01p^ZQ(by~2$v@u2A>8|2g(#8wdt*F0WSUvoImbH*Rw zy?|On8#~)IHoLu7&!-2{8rc7=T{@b$OGmEYlk#H1Zh@6;S3JhEVeJK~J~Po9 ziaED&=P4?i&o5Na@No2Nv(e)X-c z_Vf#BibYe?9pd6-kN@fG+skDEn$3$_uV}k93vEuD{=U$>;}9wmNqzVR)xarblJLdA z!~k9SdE^D=e}4beC7T-v-D|K4Z)PdD<%GimL~RAeCEJZ)nWpsj%W`Z>_jLwJMXxvF z)u+9_6;At_UyN%U3IjHL>>(a|mi24#8$k=sLiJmH{`~&YTU_Xh3~b`vxMT7UYnL!; z2ILV&d4lC=Go;7v;oNwABej@T?Zk{P>(gp3^b?EbVmb_ytd2o)Z(6sJ?HUe%bM7j@ z&u&$7`7FgSS!SJ=6)togq2SzuK*;E#khc{N zTZ9p)ENTn_KV+FYw6~ZlS0&XXA7robp%&{e713{j_FVT>nU=yQSE) z)P}!0zO(Go)AkIl#b0rX2L>t=D6-DULwigF>FH6T=3Lk>Q{5jE1^+3(Rq3(b0^=c~ zg)y{Mk5w=A5%CqfSi&}TE5rhBDgCzDu;3Co&_5!)#u1YtSTgR5+GNtbyGa=#92?Qi z???2(wYf^&M%QgpV%#XY?#mnMFRz~;UlbS^RN;`_q~!W*<7OrA3qHQ9D?Z*Z)qx&) zFJb0g%kvx?;V4SxiQWWp_3`eqku*xjVyl?Z;QV8MehZZ$Gfw8V94`Oa98eQZD%C=- zCL=a&gE=;wg&0V)3=AQESA`Vk6DApq*a;thv~J=ZihbJpN8Eb3j0;1&ru7^y_v%|G zY{RyW8%gSwmgq~?3Oa#P@x6Y=yAnYX)xMZN`T{&qq`-Fe-Fo zLPu2%#@CbNXHx+`Ha+@=GWhtVSSj+iZqy;1vVzwI#_vhJCNVYp!n3zT&ncqDwVbcg>IQ4+9)} zzHlAtPBK?(9xpz|Y1)6_iIbUW&3aUr0@IIF0Eg$@x&JVNtTL3d>FrA-ER#z=Kffep z^}RQ--1okl8!vQ^{TtSP>qJjqWe@N>_*%6WG$-?0T0iiz4-WFUc;|tT7SAI^FPX_1 zB;f*rdG@PKCVqdfZy%)uGf^p2IJfvp^thvaLF2e1Acf%%Xi7{8k1FK*$Tz9MHm$Ku z@AwXZ0aq1Wl(Q+UDzq|%@aXWx6-AD*~0^1O$iBlIhvA|avtYTTRiVJ6Wc4Nyj;{=Eh zA~(#7x$Ovi;ITYqTN;742{ZA=9FGD&3FcR4UQ;Zu6cQkdAN$iSBPfiBrZ}atNxsuo zW1m?aI8*V#p*vef1i0;LrD$vFxdd@?Lx_-NJt3LFUJH6J6P^LS3rv=kK?t@|sF>eLD-JGzq zzN8p(DtgUT0#Xq7oVJ8%JSQ=mWSd_lzI^I)0yT#y8JKp*<7oi7_4@G>yfc6bLHzs# z*P;4XdtZvXBi~hl0Tq>22){q2nJ9m2h;H7+yo}id#Hg7h&5uuEhLwN$=PAqEI-qfA z=Gc}!Jw$L^6HkIzUH17U;JxMG=iCgT7u(4r$X8>e@fWJz=kfzZb8VHK`r#@7q(BXo z^Bru9vNS@tw~G&p-+$m|c?S`WblPzWutPKKpT`IXHf{^N zxxM$LlWa1Iowk0=NwUdNblOt3D&xT_%G!~6ept=SU;cyB>5DS8T*{jh&oD$W$eQkMHEx~Ir$aA>ZLo{>G22v&D$jnRHwyob` zviZX2%H*yqU#W@j@V~x4l!H8!lM;RJf=kh3w4J%q0Z{QMZikE-tAFL0+eIL1Sv_P|chf8j9|vCy6dnQ$tJH1aNv9*14gcO5b(>G?aQka*!+Bbay<7ElIBg!pyF{Y#K$Jaw_7jhh#jS8)ShM9xdno-wlQAih|yKni)cC{5c>&xi%tQ%FE#3g8MN z3V5)K#N6d2P*IgAZ?A8wDclkzEeG62;P}PLQlZ^=-H`hmR8NoueZiE3Q z0jZb^lRhCScugxdrZ{Ket`=R$MsgC|GQcchNv4}jX5C2PyZni2C6t3m@iRh6j~ITo zQPU}7U0R3txdjYbSA!Q%V5by+!LX!lK$;@w+Mrbv7qm(Mrvgep@n$b}`P(!%$VJ{Un$lEUNJRz;JG^7hz@+MD676j zJgTipI;BcZ-`1UY8KVEHYSw^sM6oy{H^%dw0iLV0#7H!M*=Rk!vu8Ps45(p~lk~4I+eymN$lNqpz!q zb9`5O5Q2|bl5WHI?7{ZTmpivw$|M=eJ~35+42bmo&gP~=nx@}1KzV7j%jH=^Z-bIZ z`>OQ5)a#!I^X)h{C@Y=F75$i>AtMo4d$vFVjmDpyMs$haO^8`pcSO$a!C6U- zX=7EQtsd7*VV|35khAN`+-NYIDhR-E$C<_#+nrWR z056&7zPbP2He<;&e6#iA{$MuZD2h}2F9IL9R{d?y)Nh5Lf;1m#P1(A_So)#ip`>+5 z$?D3|iTGi7Lbf)31+3OuL(9BbPuAT<;T2!gnB#v8f9JEzIFi6Nea8%PCz_~Q>9fC* zp00)sbrySHEU~B*v&#aa)|o>I)PshZ23!oQ6t|h2#W~9uyQW7IlO>x^Qcx6G$QLni z?!ggflC42@j2PlDi+acmmVOu^wZx{(hFL-Y!)kVMUyf4nlz{y~Adz5I4s$Dbq|g5C zA8L#}Z`Fv?1W{hOr@)04scQxN)9#9y9h_*gEMSnd`p~i0IulOEHwh2d{dezP|1^!H z;RHs_RQ7-09W3=fUdGZM`j@5%;X**t*~ZO==iZWKSgfwXv3Gv@=A!jaTX0kQ{3wgo zH~939*4Zw;^Y)@|%sKxd?|I#rO_5NoMx4Ta)O2&IG$HY?09;qbe{I`#$q&yr(v{(M z#KmE9hxwT$w#FO+7CtufcllSFtl%~D8Th?T4NCp~>^zYrv_Y_Lb>bC)bjLYHz8deg zd28(UgG|)u!tKH^?lInoy-j(qJ{ftndf%MSne_kFJ8AaQ=Ye6>wh<3aWJhm-u@<`P^x_D;sMgYAn%-JO)iy{_v%l+>0F_8TNU#5((T{T7A5q zn#7aO#gG$i#7PF#ZB}3+r?E%*pB1Dp@N2FrTY4y}|Jhbg{9>n+opuU}V}r-kGn0O( zL|HgZgSSZPAHGfY_YczB=rqa6Q;{kHln;ZnV`)%c-jw?7sW^ zGHe2;nze!53MEyIG}hS$w-fzT0Q{+szY0~KPKcu6j`#aOD6=%ZS+evRY%?xDIM&iJ zHeG=XNRY7PMT(%xI==4nD`uzVe4BTFKgb_Invr{v_{7P3+shv9FJo3FD|DwUaDl|= zWpZQ?-`a;Vvuy%AXBrYRnfWh;vba_1B&Z0~jHJa9;xVmQ3RE)>_YkMoD(QTw)Y5n; z6I+)lxyi6Ji&|m6>n$AR(7pr>I7*%qvM|#TUC>hgKvAyRP4q51+-Celb6#$+5h$8%#opCg~6!1~14ErTV4$zGq(d-(c*TtWOs?AmXLYHUPvw7SZE5o}$XMI{TG$sc#Y#5cJo@$$X7vrp^Z z(x_yPLX>5M(h2V_J#qrVsWY$5TOHVU)7$qF4bQf~KQv65x}k>jV2$T;e!S5kkP3bn zqRYD%FgsopghSp2={G+$Y7?kQynxDwFEp&`&Yb@s)v-JBO)3e9^(Oc&EMRB;&CYd{ z6-K8uHgW=pf%^mjJ-;LvDfVUewo*dU^zr%4+v0bJNoi!|Rq=?b2-C<7xpuUWy?m>q z7Bx7|~Yvfq$l6br4AXt_$;*w*f$rg{*MYx^~$r^{p3h3X-zEX)z5>&zPnG}Rbt8ZdxMQkY|9lMPvfHzG2x(N z*FU608z4!S*bGf;Pli_T2pPfqoQm7ae z!`j!2x$!~#8R44m!2pUh2_P|=S2;$H2o@i~f7p;%%_E`d*Kl-?{ zL7HGw;nBIs-DPC~)_kVHtYx2`BOp~0Y&BSVX@ay^87!3bU^g$+vIiEYg?P74CqFwZ ztHL3_p|^wyP%xx|r0%|IH&nCO&hh3Pp>{d>tDnBtTW=eLM-@mUaXNPe$^f8^v=TYz zOO4Jft>tjis#dP~8$LH7%fv|F#r0?#ERZNqy}OQYim3YYoipn(nPIWt;>)^IRq(vU zK4Ym2BES3t{5f&T@*(Q(29Fi*$6WPUNhiv)uYf%ML|^jBalW;!Okyb`NIuzq6r3e6 zyr}8PprL$uEJ->~p|CPo3&c9}G!y1;?`g(1)?PMDF$&^;~&WTn@k^&`5o;inkk6b?rET9UYKsc=Io|fv!ikeCuiQ=j!yRF@Aa_>Tn*MONwm-ocNf{< zKGvQv?UASrP})k>BC=oEYe8XZA9S##%M{DM+0fr5 z7$vuODbIf(0<)#4bWiqssY))Xbvw=;*AlNJ@sm_5Ewb3`XG;7^JNSdO*0<}Yx;v82 z_{Sd8a-~p<(bhM=YK*fVwcI&yob>7{pR0vC%pEp&VWiO;Rj&=JT9_*Py98WGK_^-w z!Fv+441*j3bRv304@l%slwj-wHMBPv#djBae(uf@IguQ-7#Cx4S(9@dhM zU)7>hAlp4t8|uq*q!iR3n;n4|&;fY_TSkt2q3$%7nQ(=WR`yg5Nl$_6nU%38Q(Eo5 z99e(&oxQ#H>>IpSZMMB}9olx|MuZ~d;Pq@pf7SJC8)^2L8YPajksO-!ROrwFH06>c zIsSeMer5Az9c24Q&;!^1yh)g(Go2D#yNC0Yq(v^rB6ET4_b=*i4Rqc!w_5v;oESY( zV8!sUK$2iPWhHb(XptnS*ndr)U#a`En*6WQ1}J!f?I&$0D!kD-h?|W|njU=wOvWC4 zo#U2*i!}j}AMw*0In1$0GNdI?!4^mKdb2H%8sTv-45ZP+%!*4hSIg2_lm8dN_yQ|x z$`i~gd3UH)Y~&igf4C^~O2;#5-;3i+$p+MnJXGG30d%>0jMC9gNm*O6CP6$c*<(Z2 z*{G4=Y93?3$VcD()(YGEG*4o>bKS2NpdtxlON69Iqv-D1kBFdMTI?13H`^dbf}AsU zi)Ng?2EAI{1IgHPE`tMabU+ZkY)=x2tn%!S9A1 zZehWqdDC-y{WZ~IFF~n=ML-TCH{gG*AptKpq@Yjq#7|2It=tk!=%z6pRPSH*Jgro# zzDq!xluoEp9l-JcFaNEp^~LqP{6O1Bd+e}09MEkT^zTT9(zDl#Ip41jxvwxmNW~Jl zCj8kjkD||q_R)SyoYt6Y(&`kvsuA;L6C1eKvtBPX$c43Wluex>y=~P%2oV#{@j?X> zCBvjw+B^F6OM#@*VkS~w`EZ8ZmA*`Bu+FIZNs!f)Dr|txfi(k%QFX8-?(TCo&$jPi z&8zs4SGVL2qhnNHhrwJR#v)%H@8(7;!hIwkb!4R%_MhB_xP4}G$1i333|r^OI>Lw| zgQ0N!c!x#Z(UC9YZ(UE%t4w{~5=!0*B1Z-$X2BYNBd?4-(ukBp#j7aelDkm&IsN#! zwINQCS41~CJx~(w;Vx>5w(KcuPra^Ou+?I6CnAJwF5WKHh}wV_7UahPbZiYb+U##{ z9gtRO{q+2B3YiUd=?>jwE@<&?(Xk1cf|H=Th5a5ePX#U0MExuw!jH5F#6Q&pKe9;Mp0V#M;mgsN;#)7uZdqVe4=ke-zBAn(E*58P`v>;o-a1vF$|hlLBoI|LUwcX`(Mqkn3aZPI<lZNsUscYi1 zX2|lE7XJnVXo8CphEKs($nS%DiUA=xav37zLOBNZ_dk^?L*zHf9VgKj7cw&2K2!`T zq$c-ijn0Hy`tR6J;@w>7Byf~;=~@lKCD|(m8d97=E9GbarQB0C$g*Z4ra(zotP}a1 zeClNgyVP!Ykpo?H`w6;`s%qfiXUEh=oA!^FA20pbh8zK^T#o?mBX`QiSwiG3YssMZ zXtj2>svl}ByT9{5kq0XG?sAd03~+F5u2avkZK0QU8!ZEb^(n*RuoToVARJ_jyR0mG z5|HJel5J(?!F^+0dEzcZnjbfmkf`H@G~){1cDm;~;DuKai&hE&@xWWQP@$5tPF`h5=3in!T@KuA0I zeZ}l9M}5EY*ELmn_=*cEt-H5IrlQKf85F;dXpFNZ>hZ+w5^F_Ah6+UQ>E?xwkxaUY zrkIF?1Uy)CR1Esgs{md&083dd!C$?bNF+c>e7RaAzyO~SvkeqO@LzcnS`(f-Ew`Ey3oOg5jRTn#`vK~f1=0b4+E zmnRP?MG`Q+tuIQW+kIZd-N8lTgHNvS0{Oai>0Xzoiv}viwX~~mOXvM+0icVV@Y=t( z9bWseiAopM32PQIMi_GGByF@`thmu)e{G5aW+@2haWA{g%)o7Qrp1@cIy)-=b~DetN4i+br#-d{^MyWw%3?C;7_**(Fs z80iG>J1W`jYXyD~KU$3!I=^K5#4Gad^Vk5))dSu!1l3HqDKNT@Pu~9~a{x4xIFG$l z|Gj4It0{SXG=zh}YWMy1nPXm$Dl$qxtxZ+G%+oVOhfV z!L&Z(_OYTv*%!(tzb5RYnb)*9{N804oxHWS8D`oAra;J(E`2d(r%HV+=Y@}DmW7q_ zUsCKki&p>U*#wo3-y2v%K~%rdVeL+oFf9KO5woICcTL)_FHB=Pu$W(cTjf%W6h_yP z`t`N{5Q@8ES5vUw*o0x#(byKkE;-_}(cZHJ%1GA{e>57ArU@O-hJ75NZy09~@gjIbYR5oA9-B~<=+O_4 z4rEyibqU6GZGd6ei=#uXUNc(#a~DDTD_ncGN3K|MM9gvW#*D> zV>gGctZl|h!E%naCG0W%&JgwkbEDvRlMxlmkL~#s)SAQP0A5bL^pE$${{2sI%*W&h zxSj~5Lqm^Rpf-}}La$NJIz_F{Y;+=pYTp?5*dN@Tx`wN$3JA8FbIKo1uaY<@Q=4eQ z-(K2>&~PY_%K8>Z*Y7-A>fd7w1p1UnctMe#jT9JU%I$wfCBZvC{YE!SDE(qAa@UZ} zJy4@W57+QhGVzeX@(LgM_c)!8$yUf*Y=|>JRUo$^atHaDM6%>_3{+I@iU(IY1nEDf z#G;=1d1~e@$*phN_}{&!=tm@I1%P&p0c%NTK_ZnN34~Qld1Oz%AIH3s1tpu?W(BB{ zSv*ONU~Ek{XcR$k#H_pi5MwW<9Y*bzr?dCeDq$wuhpVGp`kC8Fkzo4Yva4*Bkao)* z3|@xU9tJY@yah2NA$gL}N&bkJu$D?YTH<}+d!6mn=9B*}X*#;^o+hsV*#k;z3aOUf(!UAv*X>%`LpvYc0I6gjeJouoo$DjNf_Au5EqoBW|c< z@_o9-KP{SwtW19p+&m%g*zQ4BF8wM9A$%596r<~=SDTuAa3;tMgoMmP@rionyD5UJW~}atiXt2 zBVJhwz=}FaF~xajK6C7ce+{@nC99hgbr=X%5R2zp@hvdGHc%z0#ofMTFe%MHl*GY7 zh=ksr@bP2$6Niy}@xByr^-&qS#fzsV`S0T5;UEO>n*;u_sk0 z<5`F5pMI78ma{EWch@$1P?L;JqEQDGS)p5W7~zJpZEIH40kU-8;M^A7anTu}Vw=vK;^9Sqk@wp~)uY03499vR@zmyP&?KcPY3O+Nlh?XKdyj zV2}62Uf=XRD@l&}qZrdb?Y`nvK>m~O#p!!^Eg&wq9yhnA9gb6MKI=TyqMJI3a4iKir5DtBb}eoTD~&n3%sBz?fgC8%jB z+So<>hZ_Hi$S0CA57q5@uZpfSXhnp9_;GieR(eZr%6pHa3py$E4Ug?&ZeJe#q0DU(FG09F zL|~|lf1jT$(DU~e6gLSEtf#|X!+g*?H_OG#nvj|hQ2%Z+uaYRQ2%s$M#B{mM$NE7r zLnXg3CX21!0d6Ezf`DZcGy}BP%6iPO17r$vJ@f{!LfJA{zqfJoNpw}znODAi+bV#6 z4<-yBU%}z%G(zr&Kht6D8wSx{cNzANmJGlOv~AIh1kT)F&4eHEB>xp9p3r3qR^Xr6 zNjSzKHv_5aG=g;~hxO?}t=I;olRbr$drK~8&=-iOaUqm7Cq&PaBP zRcLCxK9yj#pV!JMr8ST`LB#BPU0Jv?Da+DWQVU-Xp5J2a_|^G|cd!1vxnMA($%w9X z8N3N*M+oAoeik5L%C^+2%^-sAh%tzm7o?l- zE3;(_8HR@*y1(P(BqmB6{-Z}!k7%)sw!?Ef+AnJ-O;=f(o>`3Qw?;c2HKPKG_%ErC z7ZnY2D8_rPwoS+UUjP-m8^6Co84_E2oxY z_Kp>@?~d8|P{ETGts3Kck-%g$_Cda7hfNd>xCuAFjIaO@6s7E^v`4`z^anV=W?;ET zeXlJbO0^&lv&oY$>CvW5c;p0&PFUv}NFz*xl*<;h7^vXsKi(5?@_CW01t*`eDR3U$ zU{jVF`U7O_BDyGfPGN5Cx zEtECLI7L14!HYB{9ENPx`|(MCsGs;=)WBqFe>%!`NjVAZgetu%djd{_O*T8pQV>+Ne8jr zRg9Zb|1pdqSfLn9ME&0K<(klRy^Fv$hUZqPhms)7F;A~~rONXk0tkVf5H|^LEBT=q zIAqK&Rb01j9^AOozs-bJZ&@ev#ZJZFG$4~{(B526-I+TZ_J4;?lDRx@i_6muRgo&nKFs7 z!#!~cutZxJj`vIVns?Z^$7r8e(3RzdjFxrVvPC;ExR>{v9Y*U`wP#qIj8J<+1ULbu zu*RHF4ry7LIv~tchKz58v}vM}oT!XmYIs_g>Ab%8-m<5ZxiX9{?JIi^waZXLFqk{f zFr*b_fbAIAj`neZtoH(A}_oQ^)wM!$P^Hq&GPA+&{D+ z7$fGJUv=oMztFw`1D~5kw;@=#oF{&(}VmDzoSPmtHbNt`fNL=hkgcg?R8QQ~FMk^pgFcw6S)M;z4@se8^rd7?%0{&?`J z;o{)MR}03UDjwex(z113V9)|^IhCy*Z2a-aNg@nXrU0fko2(Y)lr$3EY1zz}t9{;O z3GthSC-_V^>2Q>0P|Jh)J7iJ50?eIa~Qa!YP}sNP5o0?+K&f} z3#C-2J3THJ*8(oSLTg$*84 zYDh^|ez-*3LglGagVp^sULNzx0vNY6d* z?*ZN`+MhoACz#E8tTn@82-4FS(Wt@d)PROd;)w&dqLbi|Gk-|CJ5QwO-{~GyUln@( zEz9(f;L&*`FGX|5ipDX9lQbqn9D)>SN}bM{$Ene;=FYYd4OW?Um^Sd z`^$E`72$8-q^6?M<9CFIZvBihl-vMjGvbt?a?TAaH@T4dZzE!wJrNm*@b|m`T5PvU zs@q&!rRX!`1^^hg)?EJixkHh#XGPL|himJ}XR1$ql{LzmE5wxNL02cN@c^A3z?sv% zvK$u4-H++t>j9Ks{@?KJzYqk3I&Oa-<6|zj(1Wp&9*m zH<=GZMau%;#O=o)wU2*Yc!X0+e^q(eQW^+pt$w>$J?kFs4aY#U)<4>oXlv~AoZb$A)`GYJ;LwCFLG!U3 zJEZs3xF&H7mLz7)j6YozrAc=kX;mw98ynpm(zN)`AYtTSIR<&%QTFr2Oc&~hdrfk^ zE+`E{G2Xf?k@x`AguhoV!>1g&zjuhU5b{%=Nj2)Y!c;l?IYG-#a5rH`fQG}@ma`_r zWJa^U{EG@-DtbaEHO{rAo=b_%r%kh*RCbD60DjDi!#xLXI|anx+;asM9O78vZp<~q zKGW}oTOSl*=2*}8(}irbn+zxVR*7!^p(*YLqp6TpV%Tw$C;3*4Rc@uO#bMj7s1RSJ z*@`wm%DhdmHzp-MeDKM9a<)z+tzB_b=^fzCBdhAVz6v5%nMI7-#w_38dum!9*c!Tu z6S45-w=7sGYG>noH}PG3sWY@~+1)KA%m())mxoO2Kzt_zSH|1sC5asno6T9dLZZn0`7Zk_~%?V7n zJ+lXy!6V}3T}7TQ*%!Mw&^5~N+UNTevh*O%y>YHAUq?H#79evS-F(kvVJxpt%&dZH zL{Y6W7Rv7`xvhj|KG6Gdyvf_k?{l4l^I5a98vGwZ=Yo05_#!1jPZPwitc2{%>hY5J z=~%RVhOcN+>&sZ|KQw90QSJykZc#)0?W3Ikr?o5phdPbpSy3;Is8&dJ99^#MBvy^e zy={(ECP`{Cwua2ODoseG8477hH6=&U8l!Qukq9X*9ZR{US2mNTNOH_L+V^+%Uub@u z*ZeTw=Xt)L=lwkI&-?whOq^Bo{#jQ3CBxJmT!#4Ca0K`ia69b-`V;lSZIH?oKVD6Q z6WPTtRK*%DirLHMNpIu%vXCs<7NJiMTpBFiW49!;+(OctVcTXO&fS2yD!Y0uP*mOR zWiv6_8Ptp1z?P9TuS@R~!b*{5c{FXTiD$JIj*-%b?G<{7p626ZE48_-ZgzW~r<%?5 zcve{EzcnVeH%L+aR)YoUjeRB?6izjgqo@*NxOjf)>W_$;_e@G3bMPrP^0`-DvWw%l zYkoyzS=+&iYVV|5U1%026qr`4N`1H%{?Wq>Q zeb=;2!$VEI%U4mpO@=5@k5H=X&9!R2XrU!J>`fCzWIb->>SBLSW0)M!Q@bg=yE07W zZa~dgvUuYx_oR1A%Q=^ge!HQ?63vX9Muc<*YKBwt5^i_huvJ%4leQ$3>uLV#gNOII z#t}r!yH|!Dl2GY5hA1jiL-I{iC97)=D4PJFYMCGYBjqB?DaAM?pEkVHoAxO7=gCLs z%W3zkh&0^lvPVVxwKuNy^tRqp{JT3_)}PZBGXhhRR~y%*he+DY7^*pScRX_Vv@1`w zV!ovtwd^yn4C>in5?>!eXz1*lrUlL5z@_H@ zBOL4=TiEg~==*KuL(XbsiXA+9hoIXu*k5~Q1&m+kF1CD=+(<#xFd|^j!Xy^ZKTdOH z0-|s$4w3-1D&*k8mFSvY=ECC;1T}_=P;C-qQ*NlUQidsp(^bA~N*74n{J-`<43kn+F;)xeDzXgaG)LBR`HYbPY+0HC5?}SYbG=7c(?+PZ|ONmM){qn93 z9IZ*?@eOo9?yn{u_5d^PRYxdObatAp~1+N|GWyL@%GkbpW3{F>NxZV^kQig|Eg+R zchf9tdh(RQLg-BERd}UAq68z4+i##eI3~V+6vjSfH8Y+JbpeGpB8k?pzYKadS2`FJ1b6qNqUiM^=HDsd33>Gt&s`K?yA zeSAzYlHXt7#mZX@kx9f`%H(cA_w!2JWsBr3LF`3}CiH|?%uL8aPBDsk!h4Bu2(e&b zJKay|LF8>b0UySzkRe9HvO*N`5%}<0y!MR_!xHhIynsLQ;;fIFK9-Rp43!Ucqs1XG z|HW0vA8^B`{#D25P*Zj(Q)zfzFzgBg#l=G2oGTF)rt2LbV9&~tejrqtFCJG8oH z;f6=a4U*lGwv)m;%1>sk59~OT>;7$@Wvw8VEgv;wO+veCequC0(h#d4%>&4 zGL`UH0&|`Jcl0DrclL2w-bm}J6`hq~jHC%>RXb)rU}Hj-u;Jw$kNj=%+M!l7ZT)oQ zxU(;hHi1D)2kx*!snLX&Lv7Qgu<1oHVf}mqCbfK6U!1sNS%N`svCVzgoNn36SnPJRUSNFc_6z z%u#d>YOHXpIh;3e7)zsY4Gr7pd1j8SK&FU~%UEq+=mCg&Ye)}f!# z)L}ADAHYxsJ|_5S*SKb4@yoqe1o+q=X<1ZjeSwx{;6urBQMNigb4>CDPp>Ae-*)Zl$}syPNkypYxq_ zetcuR?+;}Fd$aHRUh7(Gt~uxOe=jeAj!J|I2M32PB`Kx|2lsdm4(?G2G9vg1Dn5m7;=?Iivmzkl5n%=KTd1uxU{B(?Y-uWoxIZ(qmpW#EnRXbu&XbmaTa zML$TvjO7AJXOhDl-7D2R%X{I!pY-FUQl@-Vs;FPjpag^w;&u|YE#0&=n!B2lTcCKl zWa{ORmfWzO>|$P!sg|d%P`#*DyC^t=N)hOJC5lY`t4M0{kQ3VSm}fOoiPOO|b)jyz zVtOUTNPNtqnQe)1FkW7iQXK7xwh-frZRZQY>b660v^rszPClA9l@CB>E_w9Hs_lrd&r;SvhSESmsutNk8wn;jKgHCtIZ$hQzxlIWbJ-~1_u8@ z(*#<-Vup0Kj_pMhLp4<_ccD&W!^zgDOvA+zTJ>tQ#th%z2WgE3Lu%w)+Ytr*5rhg&pD$X%Ve zmB=j!Shxu#qg##rF8%g+VT>QdUEO{Hio|m^p}$((`9kR&k6D|c-sN0%-KRa(??sL~ zT4~F_z@+K#%~TJiOJH7t&-m2#{h9Fywz!=WpTqa8U@8)y?!DUmz2rFPw$RfN2uOr# z$)Vs%Dw*i4`OV?XTpdsHDU}>$g?0UoK!rvhbn)e956Kd0meL9F(0t*z0H3W^n7l1w z9VHz_Uv2n#;tCVt)DKHUl1Z^eY9SeaVa{bgifhhMl&N|JdvhowV4J>VyP(#5FH+`c zT=I?I$IGMD43JyK-boPe-QR5ekpWCKlKJPb57pKgPl?zi-LE!jCSCUHRXU-a!K4{> z+hYZoVHCmKBDW699YI^pgK2M%j{AjjPj?C$@0?f1N)6wYV{IR;_C`G|s6YF7+DORu zxr@*+F?B4L`+UY`)Y-;i)-EQHm`gsW#mjXpUn3Ls4rFQX2g4+)+v{_+{*eVz5SN0R zi{+4^1~(U@@q(oIvF*$crJv~qsD`ks8md$ zrp%Z*1z z?u)e18uVN;^Dj=ztyg<`NU!`^Oq}3{4L|qTjcd_d?>9CwXjZ+~5_NZcmnokV={7vk z)27@vXIt<-^_%tm`Md|4^!nPLgjd&o2r?MDA0AB%fd?f|#9{oa2aOa_H`ij$w(a_K zVlX}m4&J4xT&-+dtnN`Kcyc* z(5NuY-h-lGqo2&eFg_bHyZG2xfO1qwOqp$t9(czzxJbfWj7mDVyj`Ipn=9F^P}CXI{T%K1d^BVPYUT~Y*g z$U&r`y~}I!Xc^Lktp`ER_&4!dqnDahkOfn6;m)9 zD4MvwVlQi$E-9Y|+HB`n)~H=RCE={Zh)7nlT%a2GlfA z?xg#>>vvlHi9EyE%Gu!&Uu?5YLeZ?Z2GjkNGNf_O=~KL+R@fa%v&Ruk+E$H1T|%A- z^NmIgkEl1FgmQ&S)YrFc95p*aaxd@KWc)b!K>MuON)sj zXy4hi#lCDJ_n=*|Os<&En3QtO%&ShPlR=45K5X=N<5VeCLy(Cp<{j%{cG5Jm;2W#v zC-~g{J;gSQKKQ)EoTl&1FWNa~yo$2Do@5x(*YC|YHvUjcBVVam@nS{boC^qgA?_1h zJ5P;=_win~Mc*VwcEuzYWTo418OI--re6#aq;Sp^mWv|bqYTbyl(4uGcoj)5TgTQO zCAgYJh*O{O)4SgsN{sHEPPI3CA-(!wOgcC*p*-#SStF%5yK$;(PE4m|#EiB57o=I$ zmvglusK85h>Z!u`Xjm}kS^Gl$iT&L{7Zev90or=k*QPFjTM-s|O8ubeKe*Jm!_RAbU zJgfE?CFaKayV{SGoaSWPpt1MW(<6g)(p`C4fP*Nlm0o$#^QtfsU)xdGt^HW<>Ng9e zi@7@DQ-Yt)ImHC#EeEufVjW64rH8nZ5xLea;*?if+OiMz(CqaeHP|NZV^g#SGU&KL z9$mK6VLSdPeyPh|wc&B?VSq{1vO6ysv+M4F*rBXa5!2_iCd)#x?k7iI6UhpdDI=t) zt>t};ctxX;NNq!TJJUw5wx7EzFzITMMwD|6Z_MVR5Ah*M&wY2%qy;&C8E8;#=9Ep zfN;~87)ppnt-(tjjoa7x+X=9IqhuDw-q$&g@2AZwXEkFS{Y!%*cW=TNbP`|+70qit z1hZ_W6D)D;M&Tus1X4bAsdi%e`buWUA7H0(2B&Je6fQV!{yFCQUQ$9L&+SAKtoh;! z45vPSuPHFs*O6^~@zy;!2O|_?Ihc!9@Hx>B4*MPTsMHep=lK4qn3OFm-4Pk@QUo>f zalZ!okmsw+*ln=KZk>*4SX8T}vF1T!uivb-V>zKGdqIZ@^n%F);rJ*QXYPZ!oAipZ z2hKsM$oDnU`l4NexP$O+9!{5k!&3-j8V6vX%V6S!5%rP^V6%gJ+%iKK{J3)nWIkknE z{7G?~OHN~$ANny`$Fli}vGL~bI5w?+Vfk|tM*k2NsORQD?8k{}8^h7X5de4pkalUe zjPb}GeV{&#Q~nzh4L1~x%3^TH$cK4T<*JjU$Jvb7+7#3(ibv$r6Xz1h;LL3kG|Bff5~-Y^Xvc9|r9E`Cy;)Z* zi{GUkuDYIqqj?|L?Dn1r)Iysy^+_E2H#1WTcsV$PkDKZp_x0T%d7r)(+NfuW6iO_1 zuEl99`miw#G}nx4yO^DpKh~kH_j%9Mjj|wv=zM=#XZ0^WaNA}Jy@B$b0Pto#!f14t zJ&rPRcG{e+t-P}KcExQoOmT}oX|(Kg!>K#^u@wi?biZ8f*+@?tsI<_@uvzViQaVC? znIzlNHThWMI_{}5XHkVHtLzER!ZsPItp#~tnQ$u|^7Mh|c)8ZFMCjf0%3G!D@BpzW z^EbUXCiQP%7as$pgF2}5i^M}cc0-1wg-fNs_?rllV zONzihqrZB`IqhZATd^tyIyWGBklXFJ;13u1b@#_-ZNnKgyACVs_T7a^yx7#V`NPpyW4EoT z);XykA}~|xC~3gXA;I+}sM4UxV;Ckk`^u(B^*4YpS#zg{osilBjVz7Iy)}+q^V(g` z(`_W1*!tt}*1SVb#{=EfGl1+s&nMVVDBXE-JPTUL2D`oE})N_yrEvwG1REu^rm zIHCy4cz&9vj?@MgqB%uvbTk4wB-`I916S9|nHJVkn9Yd`v*rt%KVtho68-aMe>68H zo-2i+j{35PTDyywZ@;ee$8eR^@`wk-$J^DIuG$a+<} zd`~ou#ct01+Kfiw*~FFrC+q8|(lIolxL<6NREGSm9{s99hpwSnMOhs9?_Vqom>4dQ zPK9((-*8$VhSM|qmNUoc5{H=nO1LKkqoRsYY!-hFlf99THDZNyglQ00g5gxppD~Y6 zk`fj3N5i(?+k zseC*Q&dQT1npwv^w;YM1!VV+B_4Bpq@KtV#ZAqs9j$5(62Fc@73b8Q3?jAE@txh(x z>8G4_g1Q=NT;a_uVaX6CE;ZG-dgAv4E_}M`omW+ z<++)+f!@xLU{pt zVZ~v~!6LO>d>2Tq!iLAQuE&3jFN*MG&E9cxLH3;eh>4dRKl2tH_n~vmkYVy4cupOn z=@gSO3sJNB%XqX*y%UPX@XCf4p4gyi+Jj!?_;8q8Iyw}c;HX@*hMVz`a45hMVw_L6 z=#tv|?1>V}zRi3)`jOHie{XA$J0mOpp4R{;;pXdLa{{NCbs_2_hnaI67)G?eHVwu2 zsij7%1wb^!;vR2mYTQSROq8PajX#2+PKCe=R{d5g(e9V&N(lE+c}mqTPqb>wQE{Fx2HU6MSI)H9+xMX1ZAKK#a1PoL^QHTjJ~X@*?^$2d2~;6E zzPZrN*QQ68>nSndq^YC8Aq5IXzCtD-S9V8DxAvFAFN$LEgW!{8d}+~e z33I_Cg|-->1>#lsb%<2E7a^xHTJ@qFAEpWkD}~jIkunEu{sk#gzlK3mHnPar< zWQQjM8b#PY|0eiQ=UDtPq3xaet@rKQ z_9swLp2$F!#gOopqE=|Pc#V_r@aFn5$mU(Dz$97of9r{;?>XeH=ChyrbkFH zYq?k!;Tts4Wum<*OxA3#x2fa8rfANwxqmxe{8mVcft{P&zfjcB9hs95V_g6U^4#I> z`zsx!XE6fzH^=>-0FF~lVwyNup0;RINq7pX?mA1iVceKu_^6Iq@hE;mjU09C35A#n zjjXD9!d8u00=el6)_hPSW2&b3$Py}AWQKydO!Wq89V}E1eOg>FY3*_6Mf`{u9&g^F z2i$#J|Zg)-sd~y7n7Uwq%K*6+beX+=wG>O$R4XuAAS>P9)Fov z_$}BSUECi^`C^Q7aKD4OU@`c*qV4dv0omN#DJmI$7m~GfrMfX|Tw8_^Y;)&HK!R~& z(XfE?NoabA;KzKq#ZGad^*;$T$LsxS>$KkUPU}gJD!9Hs#L#qlQTF?**>7)>;2{Tf zQFIYy-}vzG%x7!LYvd)MnI62L2vSqfl9u?(-8D&~xUSR#T&5M{YKiVJgA_N?j9Ob4 zh^>_($3YJl z4CmZpUGhDBD=`Mt@5!SE{zcBG#wuj{fNuj(FImy`uqiEQw#H6L$tp~WMT`JfkQSw7 zpw7wW9CF#@S$Eh$Tw=Sam{Ihe%o`q8k^p69T(^s_!FC}R$#+LSMNq3AAssa=8=i>z zy?Yyc+#R?iH4Sck2Mk))p`Ph$(<513Y9R zXx49qS2BuLACtCIQ>r7A=y2gNsQ-jnv}`OjhNeUZ7}YH~dtlLuDPD4QtHBP37T*$t z`5BL7rTS(qPtwYUFL?+rB(rQD`F+?NcxkX-Bumg}AX`6Cd4x`&3akYlVn20Ukyc1t)}i82#>c^~s8_ zIMWt_y5|I+Go#AKRE)2-;&Z}I0)~Bwe>%ZQXJq^Q`@OY9dnG9MdpOHd_bhj4r88x6 zezf0tJr+D-RsF&s6cWKRrs=OqA2&{k`(=AM4G)VIK9j%bEF&AaCsWH0KqlUK|0kX! zN?@$!i?IaT6IK!D7D2snnY!&LHSI6}p3OO0MEAG+oXtseGvCWLwlbfPzBv!|Tl8hm z*QhM8KG)ZedBb}dzx57F*v^d^W@HjhBinOywmbbwSB1UqU;rn}1vT*++>^Xj*wr$s;cd3z4ESFF0w_TO^9A@Ib{1WM+JprzCs?*jdFsU?DlN$V zXzcWgUoiw-X*-z5kSNYp!nO3Y<}ubn%>2?cE%cKjO<(=eT+ZkA;@Dy_!2Q`t6aZq8r_)KZ^%#ZRKtr@J|5j*7ZSl ziY1KA9CQCepzwzecBJ@k#eouW;!ym*e=Yg6XgTQr(=xn633UH&#Eb4{M+VK;Aze5) zYSrWa{_Y!JM_w&9w=}-8RD<7ja+cCN?f{{CQsS5zO4Arp^R~e4 zNak|)TPH)4gz3c?VLKo~_wdaSN%E|y9zRY;;v}FF#7UDn6=7%2Nl38CO z&rqr;Qnq?=8avQt{+HN+iH+~%{{`Rd8y+LqV=|u1r4+?9a~h|e-NU0hGW!~{S8ZnazE25X zJ|GvDx7HE3M^-7xM?ERTpEg^3N(Sv1HKlvB4bNi6=Uv{J^KC&cKNWOIVb;^=&pFG? zDRzD#WILm9Dqp{2-Q6o)iCuH(SsC5aLHT<-Qtuh~=91mcKJe@mwHmbgq91ipgmiJu zyHfN55{vJ{4UWJtGm#-Q z%#d}w7QO7WW9kx*W4kern{thGJ#m!CZq!%|i6UPEH_;PGM}b6Q=?QKktXv5a*39M* zHY>wh;=1^``|w4K4G3v*8_)!noAP9-Z|+CwHCn@5uU`WfNd(iNm%@PF_S8+H%) z;dk+zCzHFx*cuFnH?9=Q?bVZz?T7Rm4DHC3=-+mfs5B<%)p{pKOWhQN;l3K9X2AZJ zC6~`@Ip)k8EjPd64r;%+s!D-*DbswIuG+7W(p+bQ~g+B+RZU%9n61erY^BrUJ%3Y z(u{8{Umjp!JIZu4m?u2MUKH`_ngL=3+i^LpRXh(%SxGOrpS}Vb;Q8v0){ngr9$e9W z4Oj0A1UzkK{$_xr;9J=8?n5^KI!)H`n-5Cr+SohfuCbuEQR=#(Mf$=ii|=elv7IYy?}Mi7G$;iO)XyGF6r>?H3|=C27|6 zZScc#XGlzv{gl+|sqM+mq>?WNY0emH?Mk?e@|?iZcM9cX!R0_U(4_#6bOZz?x_ju! z5W74OJnKvRh3+oW%Pi)#>D3DIVDtS6T<<`Wr=m%;Z29bwE)k--2V{_JUO4fL#in@E z%q07GqWm?gq`Qt!_;;7<5GO!qNB(Jdf$sP7AIlPQ7)O>|7bT45s>Pr&RlT8Cq0i!n zo#C=JACqacZ2|@(`eV6qH-Nr004_v|V(^IVHQu{F2)9QTfZaBVMZ0sZyQWFKaA&Q4ui1y85cRx3OsjCiKZR1}9^; zsN8yM!QoR|M!EOx{XfN(ZNssb!})w~ccegTnobE8XtNx|#jE3STh42V!8PLr`2(oW zBrx>x`itk)$g^`Mg8SzIiKjTOjg8JgGx*(-sqR3;5EP^y^u{XR+8B@f+wp3UfQe%1 z?VCU@=4}M3P!f?@HtssyyJ%6eCXBwG^K z;$HuFHi4jP)zv*XPhdI`4ks*KcS29 zi3v5hYfYe00p$pY6IP2wJ=Lo8}1t;s5V7cbVi1!(RPJgT9-!|PqF!I5T5 z{Ort)zuDWzV1%X6oZ(V?!pxE6q{MTeIi=Wn@RfE5Y|ad9S!SN0sBwq5R}6Ij#{MU8 zr%3|i1AIcqED$sIL36^$@sc?P#UmG^=wbS2x*W+-k-0pr1*3Ig{aO5WiO*LAq@0d) zM05uBvTs#D{!av_v%B6p5de-H#2ElNG-F%=(X?k;IcwjC#$2~hvr_tH@Z~xHAeMzB z>%cXk5=3hI$hp|x=Kk(>lx=`;<4IBw=;0MEQJ6$jyVI3wevlc_%%6>m4-F?%v)Vdm zasA2oUzX138XPp<44D`V)2hr?aW&abU%6XS%*jk_*Czl8r5SUvYI5vK`~i;m-Y2Q= zGS7Cdsw!ToM2s*~zJENCJVtwi|K!y8T-(ufX-$sLqZ0*LdfI?YZV=w54}%#2@#zG8 z{nsGvDOikq1wN@zq5RawQNsz|zMrmz6?VShxqd9q3Zo0NTP@4 zzjN>HNQa&93Y>WjxiBgAWKDbpB`9{38HZgr8mx!JWv93V9FSV3%LSsncLJx8+t}!_ z(!NF+u_9|vhT~ao4S`r+5J1XlCC^SUYMUvh-)7g1G^{=Eyv=xSjOOo~QU}~8#%jXo zeYZ-*?4UM8bOaIS(kW^`%;fK$z*3++DrwM_nl`_DhKlKeg-4fEmek(v0@YOzG2b;+0xqhu$5V7m?<6J=Nze`Z!!0Z|H|+&%dz?TjT+{iT%n^)S zcU?+G8<_vr++PzB!=x5pkOAYA+5}%oHW1npZ#G-&pteo5X&3fw0-XQZ(r-D%zG2br1cSSmMhw;ULC@tIV!WcBe5NX=<4hQcCjaif4Jtear2kJ#dK`qRAbP<)(9+w{}3$3(019{2SwxQ(u6 zDHahHp4s=BQtKtP%2Cq(H_Fwg`9s&gv?yNdaaz@KcJuy-w>`hL-53zgkMSuVZX&j* zOC5tRZ7+<04x=SK=Ppv6jOQ>JAu<3gM6C-Kq{_tO%2NXidZY=v`gY?TLaILg=P`KR z7RhCFO6v-Dmr;uYSI4+(E{T#+EKmg+gdO9i2*o4t?f+qiO?WNF({;wO@rE z)!zrsBOFF>c-G6@n8kd8DRfgbRek~hPXrjmsvUNbjrkw=4OPBvXqj+|pxX#^${%(K zaNx>MFAVF#aD8G!2Iqp-UzqHy#aIqlUv2~d@ZO8cdRrF3p*J`f`$PF00=zxdfOD$+ zc)}-d`UxtMc=W`|domg%u$aEv(E8DE$8Lu9usC+qm;rXBY_sGv$g>_`#VIT({wXxW zN@bcju;`{MUUf?@`BZsiQLui|i2P%gzMWG#LT9q^@llJf_H%l&3?-pd;oE zMo$n>uoD}08Ajj->Wo%2qb`R2*DcP%Ut@39q32ZXT5x;lQli{`8} z1Ptz``W__oL122RQtJkl+6xigpgWvuFN!c0;}S@BIi!b{7nwcI!X)8AS*SnK5o-}& zIB%pHSGJfw6UTG^+?SY5WD{StYI5y5?3(`iG=+GxPLbN}EGUmzOM{4Gii#BhkJDV? zD=EvM(`);kiC;>=!;9m+v`gMvae%LXQ@xQEpo#Bdddh|B*6eX8KO9U4lJ8cY_&TRq zS$-vHIYdZ1C{)ys6qfs0B+@xf0wE(wfkItw{@PzSof4E}CN0rG`v1EozlT>d~ zA>U_F6SF|;e`lxF5_aBc$a71twPHe+a$Tfex7xbQMl$vW+6Z;*z}`*vx^$w@mBcY zhzEnCS}y5jQc|+LwQhMJ&M{Yld-_wpjLW%%<=IFj8P~s1Jxqcrn zlhF)0%__&Se2R*ks!e5|DvaEY<$*5YQ30bt>ekFYu%iur(ZZ<@q?bolD>3>-J+Wb- zeD%nwWzQX0mkMNz7clP*g>?0GyqdnV+~9AGUFV&y;n4wPb&VOivRpeV9B9j*L{x@4Yx&9wid!jbTaPawRHPt)#^(THL<#TUphVqc&+IW32nRBdxR)9EzS z#lyUVJ52Q`&^&`*?_zF_1JuTIwUIu0CH|1U#A{VuKDOHDr+%!9h5Xs?&%b1sj!MQI zc>8NaD(9-ofmtzI+;k=M^i@w;@2QbmL!txvrW1-C~|^tbsl8f-A$#S+V&zdD zsooUZ_)MWbBRN-Oh2!n4t0F&L)R!+SmF(8YJE(r;+IKg{?>HVkQgXy&(##s0Zq8y47IOv1Zkt8^d~r+_hK<7y={8#i?!0k)?S|E#r(Iu@ z=(H9`Uxz7h5^C)MW-Mg{oJM3!-kE~BBk6K@1aT_evaf2O~ zeSEh-=cxMt3q@GU`h+?F*T#0>k>~HtaS+-ErsKjNuV!8!{c<{9+Y?gM&wbS-hIheC zG_~>g4T3os%D3WT#eFvo-IpSnS)3a38BA~SwRtTfjY8}qncVz(^xrkSYAkp~)ffJO z^>7(;B?0?1<1&@c@a9P~wK<%U$e>g3Nvo~MPJ_QZGCxuhC$!1;(T3|Z7?ibQ@{0#$ z61Y>9o)SMI%U|nHDHLCR8GM0d^@n4ecG|b^>BaD7jc)TJjvO@bXyy<;EZl$hi?O{T zF4uZ9!)v=i_TVylu#Eau2~U2^!3t@ zzPC5{_Vp^csy#w1qY#aHa3hlKFdd!H+pknvbc^mCyHCG<4{aVvy_8o{C8f31 zXO1^+k1qIZR_E*Fj{2EXdan!X^9)Xp0{VN>&u1CW1rLiE=Jy#kPcKS`3TK;3^uzD; z>gOOZ7M#Cs+a(DU36CvmA4HhStlRnQld<_jFN}J?dSuKnhKL~%S#Cs#pEZ4dmIv?S z`zfb<2)X;Qt)TF_V$e{k_LSFP+eVeB;arT4dp7TrVhtluTUBVDj#-NOeN^zg`ezcB z+*6>0#hY*cghu8Jqc6DEJbOa*bW8Ad@QmD0wcS5zN15O2it$zHSvxef!U2B@arQlPRT1P0^s|%z!>jgY7^Ku>0g- zsS3<&qL>FvISBRHkiUJ|d*wxe_i`PekoTvf*MhA@Zo4pEq)vwl}(k<)1{uuSn|0a~VMKp@nvpUA(1&nrEBViA!-&Caqv(0*+%DG0l zafbUpn)BhWNe*VJ+t;PC<$=<@r^46fj+smjpSy>q#8)_d{{`EsC32rL6ss0JQP4(6+Acx#4w2v!n$LWJ(J8qRcID>6R}b00mQr{Bs8UK%(ZG$TdvaTdPGq_lUg zf1o>gNvztQ(Yy6=FF!qXmmPH5%!pY5Z;1kzCu8?*>GJzE7)(Y!Dttc%9{&tqI}ud9We$NaVE6zp`U(6Ym>CV}1VVJ~5e!1uS%)dmI6VH-|V zVrrrK!0F!=fZKfwU>nKXHuf1s(xq2&ofLbr1FEh9g%tc!(0RGpv?^1>h2E(tx&hdz zAuG2>I>NYthIv>>I1rHb!Zgj6Ow(;RFR}XHHhfF^<{GM|JO48T8ExnkO#7j^1vNcx z&Vq4MOvA2U4;JGFh=1*ms_EpPJOn!80d$c2k)+v2jX{J>kDh%W_MMt|73zNre?cEo zhK$olTQq8@aj8rCBJb3zY9nj~a9B|Qqnbt6-&Z?-#4;5wS%;NUL3_ekpg|ucOp{3+ z)U6eC%uGY`O=VL^9R!f=A@+ncN%|=t7CfNB3Qvku(oR z$B|sMcXk6`ebDf8bcEuzeovK~d;%4W))I0g?Bq-3^%G~ZNg47p<-y=T#lN&u+OH}B z6rw181)Y}P1rIADec-bG7{wJNmX5x@sLW276cj?e*=NtjjGby`xtu+joa6VmEitmm zkTDFEvHw%16+!2d>ha`Fr-p*=(Mq>G7~+z|D3r8lBAcZMj4}a4-s1i4{f!4eafiYd z_-9M8ymmR;di}Al^%Fr#^FEB+rNCT5Gw5j-&u)~K9H67wN_xJCc~=j-EIcSw_Sn*e zedWXt+-%bW11r`lAy5k%gS0$cBZ~emC6QDgAQmDMU=I6p^1v^Z2-xL5yGfBo_uIeg zBA15`R{hgtvCqJ*Dn;;xMq#2xO@n~j@@J{>DE)blmGM~KrY#_l>**y!UI-+L!EbA? zMszL6zbwsh(KcN+rFiFAwLGZ}3ig^QV5|GU`qF55kURC$^a$FUQKy!JY{O;zCeriz z$Mr(;EgN3>vN%DHXcSQF|3gMv$vzJ+kP#e+@qXrjjobF8UsAa$5!?xH1hpLC$xUq; zrmZ=G*jNU6g5(5cpF8(-IG$QR?7JjA$R*>S&_J$g)CQG_#5--y)z?O36nN_%jrbaPoenreGF0^|3u?K6tl<6K0XEI5BqP;T9CPsg|F zV>GS(YtGVcJ!kEwe%m1_%1(eMCJjbS;GUcip1v_R(GR0Bo7RMF zCd$||cAZh0j2lQpH&S3-fia9=@_HbM!{2k-1tlw+9tVaI{G9>a0mjI8HbaXr8ir+u z(OkUzI%m!x-vA~+$(HZg*AI&YR*<^|$o+8L#Ztgl?jzqf+jd9?4+i)K#QJgdc?^C) z@g%q;9tIR+g=5fcZ|2NePP-%D8zG# zcYm{~-{5B_NlEiKf^K>W3PrRs3_OjN4pm56s1cSI5~iw-;(>~U5WWr%pjMTgK!G2% zvuZB1Axd!lo>X%%Dx@$Wm1e2h-n1FXAReT(|Hm89pOZz-p}HpuZyWFj8cr$Bf80A zhS+`-J%=@XHuh3{wq6<$CTqy@Q6dCyNY_9ujg;)~CW0b2G#G)Hl(jpPb5#mD!V{5E zD_4bv6S)k4rE>cI>mS-)$71>u^{j>)1F6>FE#`Jjv(L*gb=*!>a5+abioR-deiwm+ zhvoCygpqz9lH<^n@q2<%B^cwnsiTbScNj)zG5Y{*br;Q>iB!8pMA=E z?Mm|G3)X`@`kXBlh#y;A%*^j@VK1{hMMYY*xKufu3GzI~NdT8~^Uh1$8mzXVDQm(% z_|1eb*oZkj-%uf-TL?Yy7DQ9G558fhw7%Dr9E73hz5?lF?eA4RpD0@utm5Gkpaw{1 z=peewE|I7v6SY|^G<`MRV1}*16W@x(Du(U3a~6&I$$kP2-|4CT`8Ey=yAF_idn$u8 zlI!dhmslFB`sxnreMu^*vjAo^&Bmt}X+d`?*82GNmC-3=HJ-LmLwrWx5fd9rD?3sB zxWL8B-r<39z3G^{7|qvE+k8gv1uZV8qBcsAQdjyLn4F^L(G8#VyoNwvyd*Q&zF1y1 zmkD0@Fpe7V{kDRpi&9^XxG;Y=I4@OLmyOzkwkDYkkV(vb0%OV(qJ03P>T)cmzR8a~ z?2hIl>`~`^C>6IGf)X+CejfbrEqft08ILP&OO(Du!BAd}3$3LLJ%+JmN;u-?#oAD)!h&xqo!Y-X%Fv*&>@l{2q=vOV4}F#TwZ zsYwm~cOxhK-_zs@@Yz>%eK?01t|y4_HXXM=C5Q><6BG_+fW3RH9u+aj{`YW)tFh;g z7i*D7U$u8x7SP}u9&b2JRa`8C5X5o?BWx4@91zD8U@hrT7V=uVbdj>xX@szL5)tZm z2HWk6h2#rP^gQ2IyclOieq@6Gv#5nhX%2x8U0)7M2x`lq0jg{%K52ykZ)S0~UlyGH zZEv;BdQJ=NhuE|tEwaE_Acj>EHGg%aYz3kDb1Y0*nkorN(!TOcNXcr!R=bf!N$)31 z5=h~9D%mL?*Vb@*+nLp8V8z}%7X5hf-E|REj>d}x_^UnQmwpviaCV7DSM&$hzVMc( z-ryLUAp!DUPVJU+9*kvcNJ0N^xM2KJ63TY+p-i)_z8c$hoLdn@fm`r%)}%@3wYwDw zE>Qvl#h&uKd7HlSPh7u?k)m#|b;wa)g<>RF_jU9c$!>jiXEkeWf2(ZIk|qD;+H{&T z#)x-4O>4L&xL(v2kZxaaGPvu`Dulq|Fll@G-8odkd*48B=m>v zxg5`WqRk4}LslS!M{0n}KoE!5!8ja6)qUM<;M;N%r_J&WvEy+-33cy6g?AJUo?hG6 z9)^ZMsFifRi8<$qQX>Qn3?Y+>qz|Ky3zxI$NwX>pNUyKwno&i=!tUk}lK9l&M&1E* z77fr@-XIihh=&;=LoJhNNV zpLZm{r+ahbJ-E)jQ;p79LCGX*fJH4Jclu6A^MoT1oi$1>*056xv*p|R0aC5Mf+fLh zASOe6OOA|$9H$+vQj0H#yi4{eug0mAr_UsF?G9`C@Ai>wrO~fG6KDvwwvK#y3XM4m z>AqWJ4+`ow5vJ94ff0|P@j5$n>$8v68V!X!AHf+o1_vz#{obSc`6ioF918CVuG9>8 z=Xk+jHTJTlk4;!dqDaX%g$0*Hh&Hf@7=ID8=s1GPgL2)F_UM6R#Vrbgc*5NPMWCFX5WP~^Fjc0`YF zJk}?5b}N21Qs~KKTk>+;#dq9a5plXEGT#m|-C~R4yMD3^u@PE%QzaY*l$v53@0gBy zy+3dNg1D2sm4qF=TO+Lru&X8~6`{f?PkPpUd}z?sFGNx-@D!A{wNgd7C%bM;z2vJN zyqQU&7*<=->TWFLKdhMu!84y6f@-9ddEMQ-IGf}&E8rgHA)NdIq6yv53EOmR)iiXi z7NrvLf;JP~pHO=$K;qa#;pipRDX|cdT3<%c5w6uCp(}I@3_dtCn(#Z7n;v*kB3E*e z&J^uNDX)ihHmo~Y|3Yp+bV7CmMqZyGirnE=6R=2w%|n9b0=i9qXbXpH;!DsD%XQb zwQPgMWJ{sBa*0ZdqdZ`lA~gooU`;u+w_p9x2^((DG|J!SLim}LrlX7+n$%w3;9K>0 z7dZ(AqRUB46#aS`YzTW9C`iFTeMSRNniK9qV`0QnN&&v>X8epUhHh!U^*OE}L+jV_%q8%7v3eSPKJCBEqs>Sw$n!|qyZ7TJ)Q36MW;Qj|%{FQ2 z82+|omJ#(#VHym)jW(vYu@a>0Lr;JHY!~s0Qv|Mp(d$61N3S1Y{0L4;gY%tB8;6(> zlLxx9KwhBFJlII@?yfDyRXFz-7H7K=9&rAl&>yfx@zb72xHH+E`L9g@^HD&D@jdN= z^T`Ie1jMau>&?lxcCmFpWA=q9u#A)gBh1#+;|m|nqPdWJ4+4O_Gzb*;b}uEWfC(wG zi~{H9n?10dog5Il&u2T6IlAK}`MO!WV?Uex5N3|CeRg};b#xci z1E-p%?3{_r2wK*hl!%Q*{{@d4p&vcHA9h9(u(OnVCC4?ZtSi8fhyQI;_yKQe%MQ(P z=D}FIK0CuGf{P5;+^wSj!20{d1(5k>E+sa9Vmz(IxE-13LO3IlAR&8a^z8_8P~&p@ z-_e9_HA4M!1yS7m0&kst{`?%U2NvnD?QqN$r0Ru(Os+0v!#6qC1ZLjZ7I3w8X$Vvp zU^JntSk+VqU1M?ts?idSMtwPZHVK{5w92%BmS?2@Dmp1tPJ33Cfm?>|B`p|ImuUfy8(ua1jtlZ5(T@}7UJ8u?cn_E1-6r~~I?zgJ;AfrXrfpzmO87VB?-K<7xXrF zKM;~bWP{fib00SxK?`_%k-*G_#o2~%)K>J~fPp|k_N{0L7c9NG=;h4?s<*Ejmio%G zb1Vq+hFM1pdt0GKrMWS=QX6T%#3!66G6uxSe|~nvCpwS8u>A|~phL|I5H494Zx9Kl zo>Hu$2goIwt@sz|K2uP}K9E;_$r6Q`ls~R%6BN%ETvjsrjvpaCkYx$^Fiy~|CLFB= zF+Cr}S*Rt@vIT3&J<@v=2`3J0?8R)|t1};Fr3WjTh;1$d-BOi8`I!UziyXDWf@HKl z-ff0crky1Ot>!NJ=h{vT^zEBa&}DL4KA@BtYdb;i@CUX@#0>n`%TAWI&F{| z#~~>ix_gBQrUciojui70g%ondbEqdsn;3in_b+$AHh|*YS0lk6!@gUVt=i-}n>#A% z*Ir@%p9`=a3z$}n+MaR?{2 zz6X(*-dgltp|(trDNV)-@)4hstw?N;34VWrM6TwImR?^Mgh}kQ!I5|XG!b^XNIGPp zH=;P(;!vFLU~=yP_)(er&|UV~+exqX;$qbyKy4P>0bm2W94X_6w;JOy8zPPMolX!s z4CLO9kkt1ktnod=-U^A8M#7?wq?%i!y8-M^dXHfG3olC%2|H(rR5nLML83)b^1WqJ z$3CEL7Ve4e4cOg4F0s!SVfPSR&MVIwe->Tmms^^Wd|GRIoOoM?1pkM&w~Xqt-P(So zq@xBm3;oFNd1aJh5EQi8D+qcJJdUXl7E<#dG-`V$V_Bk`YN5pU!kbX}RA0r` zd=5MgL7FygZzzL%{I8(TB5SL-ROadn}EAM*T;_1Ct*YqHW{P zmpwEoy6ev^{}OX7#My9{-=K^~?~M#TT71q7EyK*pP(r~<|K<*_a5L!Jm=Ii>E)X!P1p|zQ@|4CC~R2Nf=f58ZAHf``!Y4_l+3<$ z(Ais=2`Lpb>VjA%4C`kxS#rV|DoCDO^{<#s%zLa)b8^+O%Z{B*>YkUcNm_GUGsKQ6 zn!-xY<;Rry9B_wK@}-)0rV*iX(aNJM=9E`xoX>8tdp=25>{$zOlC4iUvACx#khQuG z>X4z@l@e9%ndSuJqmRmPWzKkX4jDBhAepNGNhJgHXMgg2U{kBCf~OUO^2Zq^Z9`_Lf!!TeFK7siHM2Goc#7FZdUi5ejk$8uNoG% z8~&ssT=Sn4jDa$H16QK;A1oo_m`R!4(DGjf--$y7uAEt;Be>`!0C01&r{ZXDISHSF zJ?q3c{#)f6b!=Vdt?06&{jJ5>AHb{NeynHg{`Mzyk9Z!oZHGb?sv5($;__ouyAoQ} z-HU_S5ju5`-L0V6(G3mk$bI<9HAAO%wuAz*lsd0{hocm(-zLwA84|&kjEcrbs+X11 zOe1^S%efCsT!(IUBRc0f7LGPYv{$sRA6C{KrxN^>;S^24k_toG|3u2U;+Kzi|KPg{z@a+kE zz9XwA+D4M;;s$Xuj^kv7W4cr8eb981z*Hw?H~dc9flg<_lm*M+FK-{|<^HCSa=eAV z@gcT^;HkfaAbW^VF5ezit~U}Uz3-8o0LLXLbIpkS_YP6Rz!`KS9k-k!HAwoKFZU3HEKIH@k9%j%K zp$Pnl;C_Jl5eHhZPO*hb6tVGtIyy6~fUlH;MVQ2QVhY?zv#dak368KaE?oYj3C=`{ zNme4tt?~Rr;#BiR*n8ZJ2=211x$xd8X>*?m&M!7)Xy707-Bj6^{O}{7}}TbTG68{PN5D@I>qqus}PMm>J-$HJ1jZp)W#fcJqZ>Y z)A1P)-{*}3;~mPNx6=lFsMV?$gP_-FD60$C0BZ`_(ji!`aT|7mk+;BWxP|@NtMMc0b(F(ob20rr)Ip z5O)^K(NPw1-?SLBE2y=AhYtTWBqjqM!|~ej%OG9r;*v^!5f+yN`SWwGPiz1S0qTn- zw_0%UF*F|AVeh^K4)|#3Cg@bAVr8qx2`(k4z(;9Md`VJGHJUe@SngVcN(6hQ-r_E- zJD3AxAfY#rm)Bqnm)VUKza4ycTL<7^@*}QxsQDxUmm}T0J43a_Rt--v`oRgDw@F#p zb)Q`^suk%OpV$Au~=`Z{B3-@>BRqX0WfVv@iYF5Xb4N>jT4bQf1;W}J@7#B*-Ev# zWj1)r`!0{(bOI|N63}#QxX3{BISLj`VmTUS^urio4DX0w?)P5NDHZcZl}?r-!PwimE2 zl^y-Pjbg)s!Rs3)Yu$U7Ee6JesoN z;Sg5wu&hP+oOWo}!?=^~HQ6(oBCw?LjEIOJnFyecFy=T95K1cWiUo?lI80SGNmbFewk9mKyurcIYbMj&3o1m6?8W8!H@XT zPsYx0z~BmSwJ@ZG+N}|6udiYGrf6I1?`=rp2Yk)?Sv5x0ZcEeyYr+U*52#)MXrW4O zZA(vZs8SiuH(IXxRzP$sN0)1do6+UqjXCCm235Fy&KrS0yDAznKievJsGBsqlS;nZ zqh^SE(c16~OYASRm`%)ySxgASTfn{;{0TTypfpTKcWQ~w8`XPz4aEh7h`l3-DH|0^O1ZHthmN+-oHhS727t0o55}l>dy%1ne#lcwuWBX=WVv7bHUrt!!U6L z>w8FP34hw@B*$3t7a`()HsF97o^HUSfjjs;%_W~fcDxP8B|fWUceDq)+oIn- zG|%76yfO)D6U6Zr$RXNn61bBCOKnGejLW9xY01e#rE^EG!%QTn#0%qa zW{8axCu`S+%&tBTwd()a#ai#*Cl=vy>i03Y2IupuS8pU4Uo)590gGk~*jp>=HU&zF z$^;9yNwyqvY5bM{dbup@RK=%KY5WwiC9x3v$WUm{&ECGJT%ilnM1mXZZeu9Iikd z_1ZI1S1uH}C&F41F zziE_XzW`Jj7~Di6H!0IeRJewuZ1kLkf0VcZ#m;y3r7=GSd4}$V-P;$`ZMT~t5rJ9TR^UHDgLiJfX9rDl!0(H zc4RSzPZYO5?JD68@fZ~sIm3N=F^5Q~0Mr9W7##*TPV?0tI3dNdFlw|Hu4ZhUyo3U* z-v8#y$)U)%Q0diSCLE30&dyA}VK?+a&f9V2OWroD1bXTF z>!^1&&+QIG?S^>^2OMFc?+4mZC74eJouSZjL9};>228BaB!OF8x5=`gVuqkJ8=E+> z3Bp>+zJ(0#b737sYmJ_N^nUf7X1vSOH?$>&dTDMjw6f8e_i0TMl z6`hR_66m{Y5Lqe)0AH@%B~iihC@lV=6;6HR40f>IM)O;Np=JC-84JFa**Vv6rO@@<%+`6@{}OFsZ)+~};nEeu*=y`qCM3`BmvY3-y?2>Djoy_}mxx#$LrAjcytewd z`4FQBJYu;HhHc70y|1fzU3tdZ9{O^Kxa-p!jV0ZFEW9(SzLoTvQO>v)xBk>>#Tpx@x1$-inkmJ1AU#SU*;vmg ztu*-uGT(rhaUy5wAk!=nLQ*F<|KgnFb0YCBqWr^;;N z_%yYfp<8X=WRp(K)b^zKz{0jOt%2Q;$!L$2TTT;JNWwOI#E9ax^+dSLrt-f+b~XuF z*Q@yq@Lp11iiYJiS3Fpv;xVz>{20_I=k{ zLrJ25*Dp9ACn1c`w~K&OiK3^0L?=WPML@?|e|_vO5S1PLSU&Vv_t&WKxi)7&mO8>_ zEC~mjz?M|!PXeu+a@rJVKCAR6Ogdh{IehmM+|aHRq+2M`4CP*|gvZg{EgvsF=PV3+ zt6_jK+MEe+K210`CW0>tPI1_8Deyc*3pY|!%gUw$eFV%~vIO_wD0j=v`GXIRCUUmf z`$~=E0ijhFoL4Jf#e9fBG>tw^dm0fsi8AhZnB+QJ$Pgjt#VoquXP54jDBl zZEn-ZYt@W4SMrbETH)eUznw5XiZVBN&V}+!3lyqPkfmpl;lD70gf?A?7qm$K-1LJU zHBrm>Pv@}`9wa)p& zQ(2sL*UcOd>LL-qKp1v(o|$bUv`T1BWi!90CBrDHB<5_CfVIN zilIKrLE2|l85ceuqQcdq6*685al3m@J(?w&-vN7wi;?16A~epME3|8;M{Vi8Pq|#l z6ci<{T&-G$B<6r_>RJ}%9CzGO8PTQsgW~?11+s`?q@Ae6gyLpw<5Hf+o%m+1f#0kH zyQpQuoCC_1=&M(A9>gsff;sNQ-3rN`+~Qo|d)w|f$Z0R$<1?lE-e_u2n%UkK{Z3=M zmR}&di4rZdL2l(;?)A$IGEnH~B+wDLWojYu37@Efg&I2hhd?2ID?lVUk>duKOh;YG zT)jbesnY9Gt-+yOq$VpX%6 z=>>+~`&70dOCuHWZvj3?o=^ql6_QeP+nHx|$ECsLy<2Q&A@t`R?>l`A?Gv zFDG=;W3*kHa%BTO?R`d+1=7-uoe08mt{j0xwugt=17Q#+B03U194ch%cE8b!c=S>} zd35+@gu#U9Qtj3a5QP>#YF#bfm-Mz)G?n$vDQy*GOX5Auc=i6Yzqkdlx!ix@BJ07I z)(*nikci|${O-45ESd!bPvYg;BK^c=_$_AbaanA~Il+GKZ45CvGgqlIh!ef`*SH-- zifObLh_2|GZ7$~p*Jup%vuc{nrVm_<>Yi9i%r^e55|ffvY+05;7?a&Sz5E$muw01u z{cO_}5}CnT9ny)CX3eSg~S^k)_#n-|3DdgYsmGx~$NC zMW500>akYltf1;p%)vJQrRE#&NmErTAXvR=j>z=JS}{JZlIfeDT@!`Ah9NS)^mn+= zqwHVj9r+K9R4i>alysjd(agwwov;-4=h1~@XsYN)aX~%$SK4D@ATXt$9;3w>t~xU9zo~V557?oaCTm* zQuNK{RTve=dY89>5JYzOf%8>2OB zvpa^6>$qE}l^>#(i(B?Jwq4@Bye+@h;_6!43Jt*i`pbb%2s zy#T#Al<{7<;n$dgySS0pq*m|y4fTPVr_S{B)Zlq;P>M#2UZr4{{ZHWI&)k$1j-)3B zWAOnTI-#c_p5a(fcB_c z@g)Aurucvr$G{5eI5b8SVAV1?$#21DW*PYDGgZyXp}e(zfkIp4CM0g3 zT}K+s>h*olny&y=)F-g zPVH0Gd>@+6vg^1{{A+i6-dD*VJC~V-iX&p5795gzy3M`!Yb94n$7QjfZC$R+CQw+O zrr1AEgFnzYGPZ-opehN!lGBdftB392uTqE5yjr7^Ho=O6?z8P2wbCuqIaVc~R87p2 zqYKpA^(hthB{sF4qUVs;FrB;b7X|UVYI+Vc6!InZjfgLA#sNRoYZ5!5hBOn3>=t&` z2+PqjADhSgY{j6Nbwp!dY@)ysE$&i!Bz(O8veMxY}mZ1*c5aej+Mb zslG6RDxzzA?cQ-B!;4`!XV*4aBI(l7G3a(^;ViS27{gyHxqRo>BLnBMA{2303DCG*q$ZH{mioq`N=W+Z4VALiR2oe};Au zs*AS}vre4y+X?nJPxqh+C3Z=5>1sjDskAdXH0}v#HvT{z-Hnaq8V&I#AO85cO#U)n z3iT$-9A~IFD&sFd?Z6Pd@nP#CFXn11`$cW$jY|)biPY_VV7Y8mIzQIC!r3NrJ7LMw z?Cy={MMWHr--HGZ&Z85Hir5wk{kx@s(ulL^M~%3f;qi#u3pb+fjGUn$9<1*z{CG?( z``dIxZu?lfZly9^p+8!t2x2Xrm6zxchNLg{Pl(ey_ z0VoqBrPzM>Cpd?;lKf3%B|1*CkHZ&rZ&Ne-^~~bcg`o|%xiICNkGu>b=zBnbeEmJPLjCIH;z+`XT3A2H(sgnyVR>cB0rF+#aKE))IYlK zif!{!So!UzNKT9M{tgK~S4B3Wa5uN}Z$I0{*vgk=>frYeE4R6W86kd^EQKkl9N$V` z{ihC%K{P&kT2O^?&RsXHQ0HvJs+xW-7U7qfWa@zuKYFSNdxYTFP1TO_IkwB!NK9|I zg*-p?_Nzz*+1Q*xY;LPH(`|Kfx;5WJ32*f>`*%@X$5p{WGO+vf;f~|h2~}ttanLI` z{%|9A;JBXDP^C9GI(pvki_$Ub&<-j|tGyq(+m1TwKQUi)wtVC=*QqJ~RFY>(mjXA) z$aOS5y#V?d`F16vZKCwk8vsJOzpd~i+Q32k{kAZpS7iM@`UvOGvE`ZiGB?zF+VArU z1H@+-s1l^--tzCupRx#K(Ntw4=aDNda|Go?%<>d~Ir2T;A`!1rrVCW_YG`Tw2Zaz{ zQ+a44h|x4y#1qRGs!e0gW5D~u1QK3xB6iW-gM}=(0W9Wi+*Hnrqln(L&G^*cI!pq} zLcXEdpaPB;xB=cXo$=IXHvEg3oXrG|5H{jRoTjU0G_@_~qXLoXA<=wBIgKwGPYqBA zL~g~~H`@!2Reb4A$+e3!FQ>K;=gjd1 zVw(P!h3-6#cr0}dvv$&}aI7-2q-veT=#Dc>4nM8jIKB>C8F! z318OVGDcAr7(f5(h5KkJhibIRr8YiBi#EfS>|7HL)oAC&q1V+Ca06BFQ z5$Tp5L#|u%OP$w{1hXIOERf7ydv2J6vE=zC6VsC9neCU9>}7k(UThW<%tQI;tIuWz zGq3Zyi4bA_d?7H%uh(m*Vo_CgwQO{_(SVW$<{r_pzbe2Gf9=f4%ba2Tbded5j}ycH z{a+t*dobA^xL2N~ow!H&(y|pvWoJ^UG}BQ6*gu$N_~;ZY#`|cu0gD7xTEX~Ns}T{0wYC5MvA{yjMBcqM=UH*k8yrR=v~XIpxw_kIb9HIGmuvGaQVUfy6!jvmxnCcTC0)3!Yr= z*G8+;BHo&lKEnh7gwUfPrgk0K#*x1M3H$67K{SPb&v^Fhwy$y3ZL4eyx9c8+DaKU! zVK+V2!c)OrQCw{}&xFY9p){Oe@{s=dNyur`?0GwatUnR7uaTL}^3v|DV@iCV60%qe z4?*48j5#Q6uSMEQp?69CvL)S}LC(vaY9)3fnhfI4>AAS)+V8Wh#uOw>@_s*G{9N~Q zzTe!%+nle&M^56|d~Au>s}k)`VJm6_ilPNDE{maq0d?1JFiBW|Q9#e`qz;Gr7#g*# zFd6AxPN*KRCcrFnsT2cr0fw^px+-7>BQ}ai6B(Bh=n?kk8HkNJwlWO4!WbC~M7oC@ zE#i%Q40BtY;0JRqt^AGBLqran{~N?F$8`auNmipOm$3u&OYGCNa7oLpg+9UiQ__{t z-W$Sz6&!cCQevfKU=Z(=Dc!xNR`mca+ywrDDza{yqp!ZAS~Au@=owu8Rf~{{L2JJ6 z{g5WEcC&-$q`M;vlcP%8<{_Ywo9~Mt-{(N22t_uqhil;Yae{GB9k8TXY|MOIqJ^ZJ zUT`@wa_hLG_10?H5k|jF?;C~90WG=gb>`Z_M;yZ!`(qclrh>&4o~$1u-B@IR8=QBN zgU(6ZAeNXTMfBUZz&=PgoCp}A9FTsoZXQ1h-pIMX!oM`IoN&?FWFX}7dxkS)d#npI!|x$fcKLTkn8B@4~B`L{8~H;yzKj#FcLpA>=s zy9-?%nCzyhJ^k};IPN;*lk5ULZj63mDfpruR4vi*9Xt+3foT{MO%q>d@h_jJdAc(*-Uq#o4P{m+|qs%w=6QXvpbZUx{mw1 z<8^b@;wYs!)136N3j>cCIoRiQMPKlAIjNX9U%h0%^sKCz?S90jrvV2&#AyR{S_v%&L8$GG}%b#hFFMsq&oKhb@{qSG3}(uwfB zRKSQQ!SHabRd)fR_eh?!Ln{(nhGI>VhG(b4_#UV^Zs1&5WTi`AqB}xHHn}Vfsu=D6 z59l6i5PBd(g<@M4nOTF>hHI@#t4t?znU0~bhFMh3&~hx7$V>eK)-V@fc4g#03rzOO zH>#F|#+OUMCKB|75<4Z&g=Dm)3!6UabYMWS>TAU-Q(y!-;?d3eYCLbweJMe>ceKL+ z{2<(ufvN$^;aX`-ZVt8Ew{|)b6;oGO2`(cMPK-sc_%*5sw-`}ZOOr<8KL1CM6;OjH z*AKcJ_9?IU!F}0sA~MEYL=s#Q-(t-p8RbMhsNa4b8EqM$)RB2#`c`xkGj53-uj2{Y zosN~;sT=glAE?p753Y`bKuf&D8y8I>>fYbdJ-YBl!=uG$HNYxLsIFB)vnTNQn~6j0 z^p-?%5Q}AkI7!z;&Y4#+`Bq`1sRGNT2j~mq{1g=CKhX&SQ*~2ZJ zOk~+O7O@?CKpw0zFKf|8`W>0Gvj-DUy!{OjzB1E9u5Ij#3l9ysoW^j$% z>j4G)8v{j|uv)taB0 zmbwSQv6zZ4c=sK?D7H zv?JxbpGI;?k&vh)ji^jI-$Nm@&m#||zPmBZqTFY`bVuZsIjcs>wpH3}N{)1$r}x5M z==D2uu+uHGWB45k^UvJf3Oy#Er*)K@ZIl0Y#epK{0eDR;p&KP?vjux<&gogu4Gp1( zhjg)o{&cZYUcxIUp(VZH=Q%G9u-Pn+;rin$hAcia7fQ+1^3qc~;ZZp3&9~*$qkf@n z;%#UXxX+00F%0KFQplvAtVz0GCd$Sc!gTw5*+z<*hs_-lY*ELOu<|Zvp^Nnjz0L~I z9P_YW{^Hk|&zMoXYkc^s%G=bOrTC^Co{t@nV**bnAg~OL59I*r0_tHS z>M+ngbEabgFZZ~HVea_iRn`CT2{w>S`J2reqZ*fSb=0Amw3By4*ytx=!0K5Z_z8(k z_j8y{A}xqy@|K$#3Y!S_J9l~<|H`+20uv7|oz0$eP-_&=Uc4IE*a+*DPBwymbalwd z^d=AXz71yrLs0d>@|E_&fL$_)n8N+)v%nvu0g4|lYy51w?g_2e)2^!|Dfmzx=YV9V z-W4!OdOld={JL);5lq^+-_C|lgd8iWHj1-g1 zxA`=y*VwqF$dr22Q8o}sP>Q(`rjpz;NTqJ4qWjK>+B1!lqw!n2i(88lZWG#SaNfaM zv@48*F`mcXqa-}Zh$GCYc)}qnLvgC#Po~ZJ^NbbHH+AbFO{-H+r~X<~Sa9wc?)e8s zKF`$oFP_;I<|Zd%t%QnXNbn3~VO)*MO(T?$^`i#r10)5ln)Ym=iVFK=KVZZ$a}n-) z6bXQCosTBIKUHZp_k(i1ts{PA_X|e|iWbIn&NoE1ZWrP99V9 z{w4>ms5>Ey2TkK&#?AhLbuH6wYQIdZ1||w?9eWL`=kaRN z0)G@WUO4TU&)}h8IzdpLXERVH^q(P9K9~A!HsKV~t7T(Jn#34B?{v=U{SSnMOTclk zr_e;!@^2$)0#QnKvIk-{KLbt5v!m$P<}SZNNqe8b8sX6LVJk1}x6c^q$Cy)i!CRSU zgR`E3V48mxzG(~=H_LkgRH9BmF3eZVhB&W%Gmpm=mORqeArNf1qrE_>sw8QImmble z+gdnFEfDljz!g?hF z+#{1INno~CD4IlVkl;g1bZF?+a1o{gIICO|Vc(WFWueewk>gZS44IkrhS7&dZms*mhA*?=sSY#6CCF3N8MHZ-+NHO#(;A-yM?`u4mvQ` z;cWJOj}woIzE!9eH%OGKj<^Yl@}{4A74jNe29;0Vv^?}Ty96F>%z&X6;aM-{$L-A+>9kg&mOI0nI_jbkgPw`e8J~$=EaLU`U zwL`{piC|*CQd7o|oP^OSvQa&~?gE~_P&=9mr~zwmg4kwoOMY5UokcqMNFjl6Bl@3d zXDTFNdN(d{O2*cv*YG=alrSf1s1HmDYcz#sAMI{S=~QD*goNP9`QMJ&iFoA^mw(>+ zRdCIQ03jCM`UjHqA6sFlts8^(u}r9KpywyzmsL5~GWPB!5Ud@l|16@e59a(-^C_hK z+$pK!H`5f@liS_$r)t|qvspV9Pi4mf=|d13mhjvU-48}JEWam}tGB)IMVkE@ESn@n zUF_a*)5|z+zo94M_XA)|a0o11PChL)dGU5}^XQwCn5@ER8$*@94?(bouqFwBso*!J z6SjUc6-Qto^KlECW)jv}V=woo%+35?b>YdHxr|d%xLaPP8B6u?YY|csN7L`wV@bwe zFKSvYdDHLw_tZ?-Ay)(Z~qc2p^mb|eMzB$HH>DHpTbGbT%|O4U6cR7BS2}Z&>!OwU{`mcJW1Rd!n+<$L3IiV-eYm7(DjnhMn;Z5Pd_csgQxj-1 z^kuWXBj^;~#G;qt#5$?fQygsB8uA<2fAPHwxqIge#7c7AK7S+|3^P|7+`f`fBBnCH zKd(!<_kCoo(B||$nnbuwz~i%&s#K7Mf>*=7;kj&Chq%2Sw%Vhd6b&tNt~@XsBvH4oBQkT9#;Xs0QSKc|hcMremJ8w&Nf>GD zL)z^H&x+qDd;f7-t8>$5uhXZ2V+F75oYLvdyA;N!9=`Lkkm};(rAajvoD?Tew+ML2 zRCn-(wEye!(-x^3YMr58p8I=Ict}(ICq>MpKn^Yrc7WY}pYyU%pN`9c!Yw$CI~tX- zFI9{!l@PISz9gU+!&o33R`ID!02{w$C9flcc@X z%49(K?b=U}G)7&CT6EWDO7_iWZG3{0<3{_lHf;or1V4&u72GLRz4@*Ouu>yzLa^xy zwnw1d*cr?QgqEB}qDu$PhhZEWGL0}&OQ)4?IaGJ@y@k}l%+>HDt&H~DCDvhx1K?TJ z^8hlX%-@*oZpf5ypIG73hF(wE%O3=A3tbdH`XM){sJ%-PVnR?ALg6x(u*+Um6 zQx~#EADgx~@~d?tej59_Hns+uS5u!T>@kRT9hmA4g3I@F?j!q`7b`Pj(A)9`GvN;> zU7cVF9Ve!~2aKAoa^{@J=Pdr(S}`{_%Xr^Z+vu$CXcSbB$W=@S&<`$LcwE{fY4FFu zW5*wKzIH|Ivy0BN>8)6pn0KuHlzDhfna1<4AoCsS)>j&jFwjFV-@LQ-C3TP>5`=pH zOO_%ITyWmDD}jNO$*8(Z(Rkc2$V3DXM&S^QxPS&-_A4-Y027boci zO|5LND)^;XKpe}82z;G*x}k-}*RCtrAy3sN-8?p507Mkm5dOPW*@1={NGZjb=~dPz zL}5U8RaWDz8hZ4bP0*sg&$y27Iy`j86tN3KTy%K7xJ|SZ~uMwS{hLaWViYO3&lD z63wvE=G}NDP@BSm*`=yMM3A%m=mTQOI=F-4ZdltdheaS$9fvxPOD3o#*l1?04_`V4QaX zDZgR5mEN&}<+yku*rzwevuq?cFRrx>B>8SEMHNCcZWHx9z**9?j@>Nc< zC2!q}ov-zH6mtOqaV^519*I&tYN>*#EP z)37$FS?fg_%padHv3x!sZ?)015$mucMzFVfz0@^?f(?y*psW>mP<3xO=<;vK(l}_) zRPHM%#CIGcd^fbMDc0$rxu?X9`Ziarb2260;W5?)4P|LxStLs)+`V#(ro9)m49p{; zKm$@ycT%&axS}{n9%*gs=nT-jEER9;}@@0YEYKnabI=LxWBlf zU+8?UpBhJE2764QXJdY1A`S{WQjRBe0U8aQ0e1P7N_kh%uAgsFqg?y9D%%QPP|x_K zt}UFBx56G~XlzS_=v@vm!2*s;LqY)BgZlaB@?b0d{>8Z9i>2+EX0G^x{9#wCq=~Lm zEq=dnE{j5bSRaDRHjNA>@d;x0SC5*4I6LqYqyxp}&!gR1baCzbDVlGt#uqM*P|qz1 zO{m1k_H>r8sabk7e!DpKozliQw`O5=um-1~vumZgli_t8+xwBIFhMnnU173sT)D)N zIw3jt4&KtM$(q)RFAylHT|OTwGebc8wNo0U2Fc3LPf%e*{d9XT0#5himC^Pz3d;w3 z%O>N~-`#vnvE`gPPNW(ynJRgwPq``Tno%ow3wWv>f^sWm5%Xw>> zGztQ<51e#m?PmGN~%8c8S0aqu1 zgp_LQ+1Ig0xWt16Zw6>AbMOu1_>0K2M@UedkhS(yDZ-}3JuJA6^H`?E(AuKG#d-9V z&{!yKz(5+QqWKDNbajJee>C_M;Pbb{#t^e86ce6t0b9f=0;vP`i8D;p@|mYx#Jl^5 z{W1oGqUGYW6FcyiRGn&yKUh<|`{JiWN>z=1yos;`hpJ>3YJQ51^Y`OO`jgBq7%G`x zjNx+FzOp37{EKpAPl0a&Pg8^qr=jMtaHxK097W70(=!529dhT+jXbc*G?;z>5&XB( z>umGjd4GkXd7^9DMD}!#a0t>hYjGzFm-&aied-M}#Yaf8zxc&!8?GqAh23hxx}3+;jqm4hM%c%t;(pmz zbD|d}5LmeogLIeT9iA8LiMI-$x}4T>t4IGxQCa&ET!odQ_mtWWnW@2#PnL(Fq~XNl zfs;=e?teUYM(pE(_w{Nw`xE|`gol-rN2?hX198L@VmbrG(Z20CIIhY*p3 z!iclODom`lsI8!REf>mdC!ebDbMMGr%oCj&Ht4WudX*Nm7%$_Pw?cvYG1dFpAv>$k z%c`W&XcYFyf3aX^{+&I54#)qaX=49N?)iVlKwbq&?|SKyNaWrWlF0e>%&7qbw}W~6 zbm=n_2zBrbgQRYV?4I>51gi}7E(>OYi3V}mzb!}jQAR5-W@!E9xCih5$wWA%oaC_; z8}HD5HoGrjuE5|_%9NNSBvHi3uhBrzMll^aOFlA64!XT$~q zL+9@?KkI)cLN-6(GG2Q{b#YSao8rcq%T8zEMLtP&RFZhAq}}`Hz^#sn#nY;ts~lUA zt9fpbQ4x$``(N}|tDd(`^no|wq{p?RF4gk)tT0{QH5j)X2B8Bb*F6X_c>Qo;3A=$- zk823Apig^rnz@o-JK-c{5<2-@hK(!&LEGE>VjnB=HXqCRqEVCtBf8i(s+DfN)8}#D z4Vl0O-(u8x8ILyjrMX#@fU?ol+FhfjZOrHlH7l*mGm>zg+~CB@~Vi|ID$l(i+ZQyfNIdpY$tcxXCTd0R5Ql z;SkqKRW)i)N9m!2_BgQtPbRUqo|54mwKN)@TW?j*ihQQ9D?o}YIPyTBpLz_U9z%2| zj90J&LJa&Ww31W15y%YHavhj9hf1kYtw9&jZgd~64k zAxw~2Mivmdw!MP;+X$4crJ7s>Kn{kAejpi+l()e>T}hsIh6Tlb^{Xe~@aI7n)ppeX z$6zhYwJWj4ASfceowtA`goI1WHxlF=koa)Q9qFxcKMc01(aSgFf*8{cyLlvvBj~l~ zQkvxs4NoJ+3y^HmIa+s^Y*nIo#E6~`f#8ALxDCfy+%D)+%)?-uP#E5XO6Cp-^M%M{ z1Y~=(^FHJ5ey!8gY1@jkN)Cg(i88p=g-@uko|34687NC*{sZsYP;LL^37G7%T?{H7 zq*eu-DXLTkPbN6Z^QgsduJlH0)p0S zfF7Xsxq5FY_bo*KRePXV;Cg<}>BS^Gk$!L}%zwEh7e1|(Kya3ub4Rx-j8C>JK`aKQ zPTgdXJ6QMaP)5R62wvi^UZS?-VymL&;+A2=>TNSu!KLrxd#?or_*hhuj}8 zQMqVzY7D{Y*W#98uw>VEviS9B4Op>+a7uX}Y$)46E{K~&JNkl`=b!OiKFbk*-uW}~ z&@FyJq?43f+A03_*N?fH`e9eBDS5!OwFz+>-Np_#8! z69i+C z{JKhVKP_yDl`gm&o+9mtA{XlEKCRc+$QWf0+n*ATCATU zvP*E5eqGJiZzNC!Mttza?SzN>)@AXa?=hkn!8`3bPjx!TM@3j^Xn*5XFkRi=5>F}G zFm0pUefD&a6O7A3z>NrswBzC#^oCLmzb$6^y)8VcAVUe5Hp13dadU*J4^Ov;5EG;V zT7J`~bQnHFT;#!0^Dw{fI9uDg`bY7rsus>O2lv70tTR%1N{P+ZJ#KT<{B^cA7hN;; zhSC8uE|JS}kWhCh0ss!K`;fK)G3V#1o=^Wq@ovazQ1Zmac$CP9c9E`z{BZye9j*p z&OTEbc#0f?;;R8iDVj-yxS0#=%ZIeUFpHH=2KeV(rIkM%mT;~gk6w|M)=m6-jMCs% zUG?e`&mp6SZnF1^7p?oQlKbZ5>Hgp2I~FQus=41h+XtVIy=#LEErOUCc)-tg-FHzm z_CkPCF|~TD1ZWx{jXeY)Fm%uQIA4*w(A>SlMdxA6??sR#VXeR4$KbLE-wd5g><#~J zIJU{|4jbHuthi|0HUAx1v})??hvi%44n}9s3-e;21I<*&5s06wnJ?E}WWJFt_5|Y5 zskSnZuOWNVrr;YwDE!Hl!$(Q$?cm8&sWr-Z&SbOrDQ~0)HcXqw6-FKg9 z)yVgp_B~BMj9P|I4?&wCQw}R1mMOh9+`xJmB)#sdjV1cV?BV`Oc`jD4xl0C)E7~mM zbB0O;pm_`Pd%+X(-S}-Q>y$n{LGTR*cCSD1i0i&&?Ahy6|AJ)((*QnV=3AH_&Cqkr zfn*ua95OEbS9q<+P^d%xQMCVQ7PG?P2;-iPXgCQNiiGw}_dz(6?K{*(ToTp@Q)B4E zOOaglKhXkhX;?98O=~{@t*8xn7}Hg#;9ze>mDu0E6|B0Tg}DX|@{@arHbZ>90*u#N zLKt%M!>D^Jqj|MP0TkBj{)xTdZ7030GW7vmDdkaQ0AXn&1K z+80JM^y8*~?oCB3OAysX7tUVf7VQr0VZTH*mi|mwlE0$=(tnIelGf=&eP|)1!Figk z2OXaGwyb4#Bi*%j%Gb@w9TZ+IaA2{}?QJclhrs!{D*qn%EFR|eJ!&ru6hkvC@-Jcq z-{$?rK)rxM0p5cy&c}bW$W(&LO!@guebfM^Y4aIL9@6g?!DB9_&OrcNRYf4P$~aWM zBzNA)=@qK1A*s@<^8#K(33|Vk1LiRu7w<>*h`3WxEy8{1x%pg5@*00|9T*R}e)`$a zY@C_9v=+u!5H}YrzUj#BSG41}ATA61!Ow@feqLpoJJ5g0?OW;=vJL&Er885`J~I65vPx4^M@7Crp<7I|<{Kyg@eH5i!8|CMBEQcw zC-a~_aPri4hg?JwzSWpB>%K|_Q*7GE1iztdb03=;dMM?gNY?(Y?fCT>ZcY+D67s0R z_RTf{2bpd)-d&>{b^Hjb1>S~`Kr};qyS(xQ-~*XpsMFJN9O|T}p}yaq9Pg)uzqj$F zKOxUT#XPaqB3ur8P8*~X3Y17vg|KvXo%}hss0UaDEC*h-J8NuDvIjk4M@y&qVkfb9 ztQ0WKv{f6c|5Vc56(=|>E82+{cR5!^FDm_lX(E}R-dkw{^&^YOs7ccOPq^BG0O`*! zS9_JG1`XP{yu%KeAKOX@s+nhwtH@6iuG%G*csMdidI)?GUKkI0`5AF8)Wg7L8AuRD zra=Is2vzz*9N`py1-novVmC{&5-i3aC`VjpyRb=tRiihy)rDF3o`}A@bk^)8TJ(l2 z!fgfA!}WpTgA?lRd#qrSpo$GXkNl1NRzDltg*P1*%)iz9G3^+@qJKTu4gZyxEL}7G z#`AN+2n1Qx?p=%}CeqE%44k2j%Mg?FeWP`v2NN(({QfPK^Vc+}Tj^(OW2HxQduH3r znexA5Ce)B!l|8M!P##=Ma)Fzn{zq}=U_W+fIyDl6^X2dBDeU>>+c$FUF9w02Kg0d7 z^@7Ku4lfT3s-n-0WR2gtY;^qHO7LqVRsW)fa{QF6s&VBJKiBfqPoIJx;;8kI(`q7g z8ncWt0Y*oKR1prQC+>5_7p_kaswd4d08xv~$NUQvf~8*D$mb47kBj^{n9D-UyzNRX zU+Z?tp@C;hM@dyRJl%rKah*3EayaKEn`^ zj5qt`lTNRYDe?KasHvO1)zwUYrZL5HCWonbn3FwuXD;HgWgX>K`PBY#;o`Gj&!wLm z`GYmUx^y*)I^ui$f%2TgR8K9ZVDKsiZ~MbJF)d%<0*+4kSKPJMpM~eihL1ix3*$nD zZEh0wntrTOS~tnNBO)@7x2A~u+CklXO96Dzp^_HJpeyI`1O%LM} zDV`qle!t$X*UR-bfMqz^(Vl)=;PB|qyj5xK8nca6v51tC%svy`JfD(uu-KxnczF|p zF_pn(=?tz=^3=KVTT+R049|WQ^-Y5>M_u?{x^fNM5Ly%~RmrO9tTXmuW0Ml!K_UL- z^X+o3g-I9!QB<&S+b0$|l$Y)Qq(DhOjXllgL-?U4lez!WwboFVX8G-5b?4>AE1^z2 zEo51VW>;_19HVCpQ0aRX2HTUpHvPtS@{a;Av|o=;Vbsok{#m?dvS(hu2AfX}HS;i? zGF$R_KQmY5^}I%7E!jVWD@-8S6`LR~mma;%l{a(PX4mvBl3^eG)&5c`LAp;;O%PEy zBuww{4|c@J$z2mBXn#Hm*sh0THPUNAlRnG+5;o6UO>>C-h~f)qOkX`?v)n@+UO9Ol z4)H<{QL#z;sv@+*SidFwWPxKxrDqU~7%fj~Lz(ID(4r|NUI{m1ji1I(=8SdUK2cph zci)TyjDZUtkV1#EW{Oin=KGCjf!=a=bbAnrc_Gjkb0aJ463QH-h zj|EqL_}d>Acu%iR)QyxshR>Kxl+Mx$#W*P4dTJfb?Qi7<+|AlAz1`KsPYlaV#YF!b z`42R~KaX?de!6nz{}1Z#9ds1gLu4Erw$nQQ$rBVq?72>b6NssqQr8u|x4p7b=93}m zedfdC7V20Y1HZCSkYUomX1Xx^9jcX)TC#--n7`l2dng3>yq9InJ~7wr7t|4J98>}; zBlsmm^&Al?#kRn@)KQo_?ea&$Isj&hpfzL~l)%%Q3UB;8rDyBw>+0Ula1-*vEc?Xd zETXkDpYe7YyyKCG%i7POIsDB}C4V+ZhJ}I7eqxpd7QlPkh45s-a{_*V#|8es~FZ|p+%&HJZhVDl{)hubV=7c zl1HsTnY#*Pu^8|VN?vrDCecukkn4q7uILS?fMU;A*5==L6X8rWYk-~eD$-bjP@_IP z`if^iPHR~rcQ)X~BP|!Pxp&^va63kVsPG;3a6pCh8i0o$<`P zarcS}!0W+Tc(0z7oL-}ciu=>{QVaLl37GLgZ{z=LpGGnKW1nVU>W`vOvpLrW z*GX2Gi{=kHMyv|8zP#!qX9N}U6BZhgzkdy7Z!^Bxm}!Xs$)OpS<<0os4`Z-y^CGP| z%iT!#5SUD(p%_c?L`T|9jj#pbqWfceX@D`}>o(;v2j1@wN6?aBBTpI zIIzP{QX~8Z2kJYFnKblliH8c1;vvMB%`SEdM9y%89)Mt}x2~y~Z=Su?4xA4cgiw$8 zapJ2(B#9+JJy9x##2Baq4BhGfsQbAL`-SRHrag+gZIR06Slp--b%s`V5ey`fAJrB{ zY0)K1md1e*+b=L4Om@~l7qwoxedteVH-f*8H+gnM7>*5o6Gy~x+~Ax#d7~@wxe(Tk zs(F_%N`^*+@&|j0T%!6D8~8-c-2UH|9amsz`R?5=vn!5bD>w`_8U1Qo=|mEIgN|71 zpiS|vF)o=$#8cqQo%q8MN&~VtV;`IHD8Mm(W8?RM5jM_w2ovj@#~XW0wOGF}8STI%NH$&G?h@z>6hxizVur(joCU2e}d{D8r1 zVyQL86IO_F8@m!jg*pO@Z8IYM2pme4Vin9Y$i^cGob~GC!?tHwwcKS!aUSN2RyuB; z*DMz9eyw>OKiybsUQLPLzIHcKo;4_0q%%c3$O`$mT4-?7Bo< z2&l!Ni&06o`Bg@K;)QcZl%3iaCv+B4S((x)L9~z~NIOeNJw>S}G{&-oCB5;fLC+2n zBKl3-Xr)WGvC9Pk^O%ot^N5hKsMu-K8p8t$3VVccQwnx3oOOgeQ3B#nGD8UqvEUJb zz*V#$8iodm1s_}jI;7a1YM=;%IogK@ythYbHc=1x5py@sJt<%U zlSoTBu0-lkUQq6M>K-(PqC^oLltsTk;lH%L<*&>)<*`zIqyN>z-j~ckHl#c)iu_}m$M&CZM z1LZAVd%G;Ir}_bF$sVvnCQ8 z{`gfkQDEXzZuP0TK#P(0CH+q$4xXgcF|bx-t?Sri$fNk_U}3Zn{B`ns04A!GDN<=m zdIb_c3xoI$R+7Zd`re}kIYKxE{-2hU8n~QW3R_zsxsf}JQKdM(cp$bt{Bid?0H}~! zaUAC)vJ3KChGu7oFXlMctZm7NQ!?7A{L`_+&mCr4`=lAfyNp%@9Mok4Pf?}X%+h<0 zBY~4Arh81x3s1PKJ(&&QQoj1RpniAB@Jd7tM34;OUpnTm*YpKSC%%R_N}Ig`irkr; zqIpsXfT?NG0hlTPmCYSSg5U6xTKq<6Nct8@ez|E>Kp$RrU)94)%Y0rp>yA<{YupSP zJTFb6>+#0?SGL8?Mpmkz2kTh-ao0wvhfW?Z^|@*S*!AMnc0O86`=vdr-Z@q9DeJ*M_uD3Mh8U6H|yc|V8lyGc4 z+smEP^R}ElJShc|#TL9Y%A1#>I10YiwOR zTIM&!TY|xGwr=!4?K+^6DWx|Wy=qFH6(UF=>AS8+@)!kgy`BOkLrrl_3DP=FTiogo zjGX=viM?2Vfu^JH+Y!^cI0co|%QFOigC~+zHtUpcmH>>X5L^o14dqLnF--$dXJfa` z6GVX>Y$1c6kae~ZMliEw{?u_Hc7C4CJ~!UdNwZ&gr}x`CX?xWL1U;FKdYM z@a==b83orG&}RXiDwlGfOyK4#O1wlUz3jJdruz^ko3;L^%$2H$!=JsXdDP^QuEoag z|Hd;3N!pz+ILyxqR*?~~`{q;Iy3G(#L7zdJB5$mAC(Ro*8XRG0e_nikDaxc2x70wG zJ3V4@L=PJ67lz}R2lB|IWz@^e9?XU;xan`TFed;L%)~YPKMuLpo%vhBT6%#daT#6c z6*sjD@q@X_o1|*mJh|uSX(yS@Z=e>esE5ilYzls+?{>((@b(v8q2Pb1-Z(Vf9AN}? zD}xK!`~(4??|EopojJA9$qz5&`<***0egRWXilry2Uc4C1tl8Z7iat^WoJM}_yc$S z056ZSsvpyEnGvAg@9&g7=b~`VE8)=0KedQC@tv>tNrzeC6|4{KA3AV`y$aj}s`7kl z)X#9I$}?W`7yd6SO1Do>3M)@Q#u4un&hpM+8ZOyelTc_U~RajN6`yOhE|`Me4eD zB8RwVjvHx}S3&r2;IDUSym*)c2c0Y3h?$#Bki#%3zKX%~i-1Qt%G^YZuj zX4>_AYNhMhKiGTBsMKZ08=%&|GsmZphCHe&Q@?YeBl&GUH-`_f&}iwsG>IGPSJt|a z@lgvL{`z02A3{_*Wsx+*e2D&>x(Am2f|1O~>-ZTt8oJ+Pa>&I#q>cJ)wCa14qItQl zVDfoQL+vX~){g4ztA5qnK+yc+Ink)u&r73s_A1`_3c*+&1?=a+6r44k34pog~JsiUNKrKppt+!@r9(iD67Qn`!z8UE#= z9i-o#Kb4!DW|v_u`@X)KrU|*spiff4>Z2O%sS5h93%vTW1}k!Cw{LG#)G$6(Y{SDQ*dbB(eSGs0zEarnWrlkKFr}kX5cA(M=3&S_9 zmcE3H4(F=jr4cMpE-#ZeKp$U5Vc|4WAGQ6GTIT)KFJyn=akMLk!sWiCoX$poux9-j z&A30)<6Q(7s|r&VLjMS-bhy(6FmQ?2*X~d1Fg4z770{z3UmBfy`^Zoc8Jby&BSU2f zEVMxUCY{@t>Bq-48R@oiL8c&rca1xEo+I|k87P?~xmZ2Y+XSU!NWrWIWXP%-1a4A2 z1=*Sm0Y&!oagY~NJxx#|ze^pvpx0gej(c+PbH4t%kVB@F43@~fi7(XX^!|gsZrP0F z0y{-DxH6@~;L0>0pMMjg{QUu0fhMsqoq3wM(EYGd!eOpA>YHqzDBx9j{JGYL zM8xTlvC7h;IF97VwCbaouj!T=wB}C3yF4`ZFOwz07M|T|sJVxE?Z*-h{^4#7lq^-LObp`$7)-U!Il7{j%rt4d zOb9bS)%cw>>||d^Ke_2y2@*PE7VZ|Wi=B=CdvNi(?EEoZ)3$rB^VaAZpAxVsXyg#-2uNwEbb8$45C6d3^ zJ7KNf;*K~@rrd?~<_d2<7gT#hB*Y%Q)6<5HNR#K>wS?j^8G8X&xXn)6PjYsnzvvQT z_8k0*ZM)60ElQ^RHdw#79~bB8hP#lb@})*YU6$ur1O;T_$JyAMPEbL^uC44Z62@U#6>BULholVU2vKIK0A^8DrMTM7; zjo|LaY_@Ix9c44b5L%`p7xQP+;-_Nrlw-`>&Pn`&%{QKxb}BODM!C3DMytSJkz3Du zCyZYZ5NJ^vaNwUMK}A9uDfki1vP$NwoYJYSwoh-QgUhHy6K_fSuhk%b`Ysb54f#E- zOBZYgi&*V74cHCT%8h7bgWl9d&MM1V_+HAn2JbcoWn>+(eq$pAHHtr!$j%|4Ht6rWnBo5nQ-&*1BTi$DWj zbWBLQyzM$qJz05*-h|{2`f8vw^mt%YO)^H*ot?xNbx!5!qgB&y*IL1rC2cq@iy3I) z4%$y-mG0Tj}GS81x4}9du3x`+y@f@T+PYLl zVdeE8-s#f=0#>6B#VGr~jU!z%9~vhsUWsjDOw>{ms!bVZ%e8B{YVU!!rQ73G)vHr> z7j67PCX~(%%Yh5i?>XZzC^-YPus^;WgoN;s7Ai5d7bLf0*A@v=OkC}#R&{*J!G`pW z*zTe)+oaF4Vq`0f<4nlf)ECKW?v0{O!?fvj7>Avq#@gmA%h0D&=pjt41Z7H=;9xiY z7T^(Mi9Asi7Po3GN)qM<6?QCIN#B6G$R;mAex|&%)n4*}MlYRH%oOS>7p<#ao zW!qO59&IB?nQ8EPyIM22%g@3n@V%>grL+CkTRT`%u}vC;>soZ3ika3H?bB_0uFQbL z7h*jY`Of$f!I7|1OoghW7W9Gbqm(y#zkA`MC)E&fvV2kR@ zY=cMhR(+2ENFebuKmyri>O%Sh?}Vw)Kere*H^MRR9Ik(Cs%&U(`dPW|?0(V|acS~R zywVY%fbg1hUiolBIFw9K+6E zZ`aZR&bJfHN`vKC>v4;H{>{N)4=Rm~&Av33+Gy22b1HRJqV8;Q zT{RgkA}r}229qDDRki@8HX|wDS4tVdo%;RNa1y+rc+-4oB5`zdsh(|OfX|4_Z6Sg z@v(AK_>gnn@*_a2d2)Zioc(GqOaS5;W=?fjvUK6nGq47)q{8U6vq1k=Uz&AIWZx;Q zGnpF@TmG(gTP&>=G%(~h8MymJ*ecb!CQedw3+eH>`UqsEXC!W z6D-AZ#y>;p6NUBv7M9}Ah?d}gW<@tSR1nhNd>A5r^bBdX7>3Yqp4rV`L!YBzBwcnd zwgXyEgf`o6^|)AfgV!0MO&|use^}a=h6Mg{EHaBn|EZDBfN!b|rtkH7vfCy1u#u3Z z5eTg7VCRC?Ttu=(O6uCChY12abU~fEJq$dJ0?9M@|>_GPUzpw z_Ai~?(z&MuA*@^q^ECuU!6qN}>)F-&A5xb<6N6msLzjPA*{`p1qWtNdd4%H|<53J#35)QR3O)zks+iS(KK`Kgn9@v1Cq{g@n*FA{l zc*EW(r7t=LR`?w<|1(&yx2RPRFjmxCzXGZ!?cC1wn7dUH!5@I1GC{oZiPb5FEz6 z?96AtaWeu_oIcQnUi=iCCg0(|<_y>Qa3#1NwB@KKd9822;bC@5R~Yo^ zNVC(&);H8kNfBrxni`A8LD&NtMo$pnw1dR$P@x$r`?=%oxsF>1oN5>TpCLSzqafv{ zTMCG(Km@2h0B)aYWULN2b=^|qZ{TdYeEsnc)menBg}?R4wBjwd$)i2mUSKCy?#az`%*TK`H$6Ei_karhZ&+Q!m5)?-q0$(&%CHw=|zUf)yZrO4v!} zq!F!~WsW9~=}%Bz{eCqexFzc84I+`y?NDldMPK5!vcC>O1jF5ouymonCk*P1bRQI% z77ch%Y2yb5h@B-%FEKZvIuQv)%X~#y8JJ{4B}UmRFrQ+MT8E33&*f&2W(grS{wX!@$S8T6wE- z9@s3ePVgavUcn)Q{WkG@&1nu#G|la?W4_%at8MDN!WBO#Y0fN!Kt6gW5Xi^mi{s0q zh=hyRS2~-Ry(ewHcsOcDXsUIJMvM;?s=O3zLBstN{bn)UQRs@UDH{h&5CdrAr{rREcSYOG0p zXvE~t|HO1)41GhAOnP`GlZ&)s}lZ{M8TdR!vS zB@R{;!rJ8y_W5|EueO)`$a(egN7~^bePz@zni;&u&Y`TOg5lvZXj`C8^j$788@6`9drBc zhLE9Dg}hIqyw?IR#q|AdF#T}upI%T@c60IZtHseg3VBeHK<&W`+ZYhR=BH$N=S zN`)Xf{wsKd_6Y9bopU6Trd6Oq{d~>(N~7(DEVY-kUl<6XDhc}lw9c4OlUL%bG-(0qdxId&RjsZHb2ZCHhUPHJ=$Yf^g79a)p`zL8NQ1EA;t);Zr9_YGpdWg?6?V*|mgq75s45sMWQG z#h%cc-{KLp(cZ9rN1g2YmEsj}R1@&c`zp;ti%PnYP=N_y$C zeVYZ(w}!}#)vS)(SQcjuMEJ56t`Br(8=BDhU zgrt9*((g*;9!eUxGGug`J1o~krMRz4}*zB z*A^4+-&!pQVR}iSUf}CG-U(Z{>0G>qjc#iT#a}XA)Qzt5vHN@RM-WwW`VyK6U-0Qb z&!zUFk^F!0k>~HezpRFy%O%AOblls=4K!AE+R4~a{MWt(=BsLkp29X_KY19s1`~Lj zT$D|_=o}RC_P=ln4NA06>zsLa1~a$t+HNti57<`5eEY#X{N>8hJ#G7_llm8qbFTV) zPH-0W8K;yXNC^^4{}wP!93lj=(p;Q(nx{w~#B_QyxYheAHTWK_9F9&~{W7e*7hW z44xJ6+meYSD(GxS1T`EOckFU&BqAElYi!Lb;Qz^*PTaDsio9w@-4; zX;<^bCH+?kJ~pb$*7y(VF5&68ZE4KHR?#m1NAI)ixNoyuH?JQ;HJ`#DhL$!jN=fTN z|6FG9wdc9V46y_kMKw!dj?FH%RYlwuC+<-teEWA*!50;zKL$qsyE9wGq`oP5l)ZRs z28=jE##r?|<#%5+Q(Nh;bFV*4ewx!Ou?wX{+I>6zYL*3T0gA64Y-a%4)l}?_A#Xuc zEULuQqMt=MW*jJ*y$b3-y6r#AKE@lhQuFiqdRM2o7^2ry+fxM_7`x}qXltsVWlm)T zxI2v_kxFw))=wjIMJ0u!q zW`8|GlvJA64Oc61MllYv%b9&x+2TbAi^R^I9^=*F8=K#lb1k~Q0(Ri}YG0OGW91;` z=Be$~MVzC`wc;MMmPj6MJTtXNtd}i~Sh2#2@@jfz^t(^QYO?S-i_@J30u{ulok|gU z(*dHFRJ)(M+vV(`T5(`;l`CtL+uYfw$0A-pFOocf#EQy&evGaA^yYH|6`MTod2uR- z_cgT3h8xlF);vK=)53zvwB;1)-<@l#;!Beetf#f3=f1RF?@wbw7nE?WdD5wzqoh%; zrF`M4+{H}iu8oHj=1M1}*m#GDQO$%*9H;9w(z&`dgPbGUC;-=2dqRVP}9GeqRd(o%RaiFQZA4SM0Rgia? zXeBSw-Q4clvZw}?Glti~d-w2prT%rkd!6JALH-`Xwf#g9$W8W>N&CT2y3+6#zbGYd zqumK4x^eXq-+S0AoI(2JRNby~??}lYgl9eem5k6aC3Hb6B{bhtLRQ&7K6=uy#KRa!xEh zgY;;SarX_29Q=M`+lr1y>BVIK>5$uv#Tp`Zp*-93tdFw*dqTIwT7SH~FH^GSIreP} zZbDsJ7+BMAF_#(A+*P|Eod$>B{$d27$EDJ5OfZ#=&Yy`dFeqbN_wu;3e8WGRAmC*! z`-`a$86KB^Q^Q+xF zJeapOG{79S@igWsS=o#I_UIEbc5KhScY%qP2_B{`mY>Dj_dkLq` zM$x!$O?t8Nc{$HagmgTOg}mWxVu1PJr)IIM{(U2hW5nmL_SihHM)G$E8+tOchA3}` zG;r%##To)A5vOZvkHJ~y4~f|h3iAI;hQ^#|l#1CIeA-}5ju4K{F!qtK+&#og{nN)@L@uIW zM@tLTS?JBpmVHEV-XG%}acsDkw5QdxuCLnC>0^1DK`(Fw%Ku=842 zywU3-IfxUM%RA6;F^1H!3ObQu1+5Z)ycO3?V5}T-nx)G+(YpPDL%zmld`QEQJl&&# z+F}YKnpTXfZAniwH4{PBY@d20O>zr+YRtR)ka&=+#mLj|9N3Sw-8RujoC$lBNJ$d1 zR_j)Y?YGgw`v`Z<2ej-C53*(;QnReRSpVI^q7~SpyF)A%&Gbai#yM?QbP|?sWgPm2LNMwn-@9RYZ z+^?^z%T{G-0xcp73-m#nFaj6u`|?NH%y;iJ)z=VPuT9OWfg!DxzJJg@EESp%L=P2O^N~NBAG5A)3%{wP z>He9z#m@Fyc$yx4jZ?VL@crR3@hsSEg*O;<0P2L}BLz}v;kLfI5!;Ya!y&6m={CbjOnST9iygwn&5s3u$b6aF7mxoYAzi7G#WWl%tomf)w2_kIBA`|5ElhL-0y(etLV6T1jo+G4U$iG-c6 zKT6&M^*IV25Nl}!x}MxGspzl2V{H1|&wSCB%MNRAHaK7K8uOlK1&-UTujG4vn-V3f z_9MDyC$aF@v5?)&{H74RB6^lhF+8c)Zqp-t`{iwNsU zq2|HoXtmlkhm7-#?OhK+-q!F>+n0(WY%h`i7vz~&y4fN4(!>{T`=y3yy52>cgrci= zb5#AzwS3B?Uy|q@84>{dSEwLij=PE_8P_!)46U&=O zTuiWZ*G#XMD>e!Y?Twkl<4z_>*n1|yPf)jUei z+6Ry`aewuV5)UUVW*Sluxh>z3dZSw{ke8}w`f%i~UMwlSFWV5(o<1K%W%9ySS%%41 z?yr>IjoEq9gN{c@AafBcO~U!w<;9{9;9Gbj9qNJdHjLT(&Y!82n(1lJU9qT7N{aLM zFwNcRUd)n-1=EV==3~{JuUo|!-y?Te%?BP43MqRwJa`NnKlI{iSZ#`C-kKk_Bt0x~ zFayO&{}_M~6_u3ftAj1}zyB^ZncAPXCVQd;pZp>JreNy-VwnG*DoaE&{(rGlgCJww zrf?Ri`a;s#MiaHZ3ws$5o`>!=`9E3X^>2ho%`wslwY!*KoeIhQr~i+RPK4a}Kli1Z ziQ4`LemD(OpKph7^F={|Sr(Dx5fJe-gzwdt_5S*1DOy1!K|0yITXNH|bPpO`Z)84?SJx5No;{jp>V$M}x5r-*5RQU|( zmC}C>&fUdk%0pSpNgoR4sw>H)I9Rk`{-ny;_tnY*V+7xu* zdiUiFa9pyr4amwUSZ3D49>@ zT&g^Yr1ZfFEki1b?TB%_3m_&=t>YDkH~1+`JCa zZj(3S9y%FUzEn4k)r@&px@=RI+Rh4GgtuyuIW-6oHg$x8b4-G%6JocG+Y4|uP_z?epC{Cfb0i)>DTUmXaaJS1}Y0u^>f|z zm4JAC3XIxjFaurzomE()ySnbruM0`(Cir<*tVSzLh0Y<0Iscrh!8K-P*)*`QSRh3p z-=JVS{q-sS3dAI+b30M=erLw*d>w-$NqC~@c_3^(nH zXJ}sI)|}|!9Cwd$)p)MLHmuYsHwi-7Yw<%q&)~YgHR^HfCgil9s>pcx&lhjuIEU}x zXRCbO(h(Say?;)C0^TH`WHnyB?yqh<`Pe)fIhtsGH5p0GcdD9x%(+OVv5La;^bbg^ zTW5Vni^0f}Ca#7V2X!5|hnaY5;hlNfB0bWMusRWz={DorP*!Fb8^de6!P4Mb4e0O% zL5Yn=YKfvw>L2yUgGm1#Qm02XTIY~Q;Ct&c*b=aL2t&HGfLP89{?<;jXEacV_~VU` z8Uhnfm?S)2o{6{m{T>?!idw?~Bss^l-_Avi7XYdH1^!?Cg|{rr=9w#Bd$2y25;s?n z{KeI6czyq_5}s*L(y9eSD1>FEVSXJ2qk(xQD~IZ1FhXc}SS6Bmy6!Hfv~0L-rhJBm zd8F4W71m=5pPBz2F+~FWQLl06>3s!dR0`Y6BN|C+M+du=XXsZqVUnKNdO&$ili}*U zyiG0JYyI2>UtkbXnU2)wc#?aaYT-pw`Bj^xy()kRJTef>#^g~>#JY2(p>YG>RGZDi(vha;7s)BgHItZYOa11ufrT>17YObEY!ukXXVctSg9SxhqWV|q>Lw(Ht z*7X)hl4!xlzNle@Qtbw{o=8e7u1SC#) zURA0n=)j;x;}o5&&{rR{as+A43O#F(`aU>lkp>JFY&`PzEK91iDE~iSP4!-%$!jq% ztBNg#fDV=Pj#((v(|6DY%3r(La93AWSJoU|nSMLnO>!83VXArrN*BI=SANCrc{>j9 zu0hNo-E@0b*mfpp;Ugjc-jal^8u{ai@)1Z73vWH}bUoISI<^J6u4;AcJP<$kqB7$g z|2YKA=PT0A?XlgeHe?QJ5(4z5MmD%TEQR@PsIFifz5sfm^bAA~)MO4t4qOiC4#dcA zHqz?zotv8?Kr!+N65Pr-8N!lMQf5R~=yT)Pj_m9_y8w?L^?V)eM5mbxQ8TzjM~F8# zI^1z*Reu-u9X*RkQ{GHEG)La~u7Eqek3%M_Ds$}eSllL>OZRR{Tk_cFdRhM5hov9l z{y9dmoy2mtkI4(5>7WT#t66w$+~F*;qxG3@pp0pKA)mlkCX>W|x`{;N>JmiCHCj{( zZ{md@seg@#B?x3hDaZ0=4QjKFBWV4l(MqjD3-a0|HIIm0L8t_Of5d6}NdG3h{4^wd zm~&W%rMm8^L1bbYN;DR1d00;!apDEHEBAK6J48K+^ys|lOww<el17#N1K2 zALx&q@Z6#(sR5MDJ3NB5k?obS{HkMk=yf;cf}|4unnTOEr~mr?%ErBou)hZ+SuJSd zzP-OZ4e%zZ-6+a&Ov@l%s=y23!eq2Yz~6uM#s`IJ&WCrU0_<+?&&mEh>xNkPqpax1 zZ%roVM1ueRQ&#H2@!&i((uxCvb!Y8j^ZU@*CfH;4_kO+nA;hiX?<0nU#23TtKmUS1 z`uDr|`%68?w)*GdlD_oCOYoonpL|ZQhUTAdfIfTU!}u?FlSP!2+^9tUy-5$eow`r{ zCwTzv{ng*_+Wz)V(tGpHHv};9Et-pqhlj_s448fDaYFi~P&13%_lq7R4`8aA07dIc zNZUEAj@z@~yL6Z|hclV3IyeF3 z;ec(5Tn3Cx7_y;;B@8D_1|pJfy;yMcngtFfoD?cVRs0F)qHqo^0VkkP8UfoToRdzA zjEn?rCsosK@p&X&2g#9#i+i|l3A5eMjb9ueV|EC6`0;VDC^#$cKzPClmLqw29!CdG z_Bvv&I|ayA{LcP58&luK4sskg(8=<%{deFB-^;{r)cb;cHIe!j1mb&!BY6yDFM!E+ z`g`axrFbTc%c5eeB$`oM@k(brO1n!M-c-W(&FcG;&l zB91DRzZ*q$4HVx)ycVcINXQg<1?GE+igr^AJxxVAafO-e)20U*<0d8G@RQHeYVmsG zZvlr^4d(n@38caUAC0479`U}m5FX---H{@8bFT=1I*o+Tkm=F;nitHBa40*?&XJJF zaPc|O!g}607&AGt#C7+>d)S4ucCRXagT*Q51zy8;rLe2*W}#04vEY(Io7$S!&~UPL zxITi_q%e~x{5~nVX~S^5ji9R@afl>HNlQ-?fN?7frjJU1OZf?d#0Z%3XMK`riM=i- z_R0*3v8G$%?`7y@t0qZF&Zl2~v-HqK+Lji%wC~*Nrl?2|vX$L(^lSC#$Y_T1eht<; zJuA+LZNwF_fX-}o?WH_>`q_Xqbbh&n>sIjYH(i{|yM{pk>TZcxB8wC{Dg(NQ)01Nu ziJRiU%2-fvfQOH|IA@H(z~?rK1D8#2?`ltG7JtGsF(rVv)`-yBB%Cz^@{FmNvOi1Q z2j(+^Vqk*3Gxq%;F~;D+{IfAbBbVGSV{AGVC8jD}xlkoi;q)uR z07GW*_ODG`pB2O9>pQJgul%+PLX2sZscLorcC3CVJSn0VVl);OY%`2R$k^308IY2c zxF1AKHgDX(ZQW4Kv|{j;kP)6$v1bJwOy{T zMA|UGt@ZRuAE9-(^~mrASdLu>Y^*_jV`Da7pG-#B)q9)> z*(X^-B~5F|)1NOD>uA5rZ`lu zc**=KvSKE)jK=eyoCErgrmj*UW6Q2vc4zo;;4Y??0 z3Je%It_uxt>*qbPULF=o2>)WKV_-aXws#E;x=9M`)Ec0Ix_cdbQo-OQ&3665Uf$># z)%K~JYv_>h7Re&q^t!g!EJiB^`~w2e`z6iGj;N)L+13OzusVFz1i+XIuF4U%!q*#x zTM>H+xy$>W7e6`>P;rkhlv>UFh-H6`te?I&H^&R+$GJ|78SKGg(oWHOAmF10Tj_84 z+#B%FA`wEV_dL7R!YwM92pMAMIHJs-Td)&h9=wg~*EsgkI8+BO1bFX(i;uPzd}gRK zg?y;V<^-A2klluEfazUt3x|;>I=_suZLcwod`vOntCReNDS^WM$oTk&uG3G7p4-D( zR+VX;7)8me_w(Yf6$Ndn#uM?Usw9eLbt>n@OXRQo#GQX8UNkU}nA)GkG2I5KUzR)? zjh=`7U2rGonWo5Kij0vQ;+0vlYCPnTQ?u-LwjEJcgt=qB!)WjnDdTeMTk&JlT)b=~ zIL!YvpR4<+g6VOc@im}a=zt!Y?Swg_DO)zOqW2-b&u0jbw}x8_J*KasVDpyw>F>5I z+(P)V%$-Kb%$wKMtCQ%i8@EORoN6KMG?QYaL_qAl+<86MKInSSa&v|;yfD*^-Dquv z!&ZmihY}(8vw^b4Df5!N)Oi`6e7=J#5cN(SRl4eBuYCr-gb|Hn8&{!so6}jFS ztlwxpvjaG*>K{2IaQdJ9DnCwt9qE1&NCmn@s^x*`&(;Jj7;&apj{kbnmzRK`D?Wgd znQ(c*9u@{$okcUP30Gm)Q#s>U$J@E)&agDYKk*xapttF|5*u|8X9CYFbuyW&;UYv* zTd_%dguf(`!t=p^C++rvgi&@bGScH7t=2Q^I{+T+Io%Q2dGI}N+TB=W-<_c`M}swH z^FV~E@*`Mx*qIZ3Ux!_bnT@j6aY3%oFfp{os>Aq~Q}!Jezr77qfM=nXEe zJlcUnxE8CoEl6OLgD&wOD}`4+(u#$&WgtGBYO~|=xF2mEkdp4^3HD+fqjqrE;1Y34 zVezQ`nBXS<%AlA1K$hy^S?tIeyUjWDmd>N1r5sp9`o&Epy%ul6SF2rcVq(hCaoNE$ zK3OWfVStMhqs6Wrw|Le^rON}5h?TMn5-)y@54`E36kcf9L^%6IDLigqB-zv6zjKFm z16GpR)YMOeH*4{^n&2(8*c0o{ecHeUZPsxhGULOi>uE_G*F2d{x*t|ui&am9s?Diw zVKF_OG{B@c?v-jO&$C(sAwYF~3d?uUUzdGmP~Ke28=l0cyVLnXMY<($i^0pEMN~&( zc6CiwQtzqjn4H{n6~BDMBbNNaa;xX1;y72u<#9zCB?|`NfqB7s0f%q8ItrUy;>y6I=58aY&4t7RRZbUS$44l>PPv z4IZDM)Ul?5WLM&iw_)qb@{Rj<^;6aO=y@R$q~X3d&(foeeY?f&z7whCi>P0y0Ey4D z;LpFCQhc8+ND@W!v5hg?nlY5dyn9rF?8meoxelLM9U-4(Ys<}jsg_p9O&|2$=;6ylh1kqRB`vhteTG`eZexlQDRl7f_R#B_cs+BF|;BnIBLn?piXpT1&FxqeR4N?o3No+&|lh%d+*OR zbQ!LpRYN*&rgv;X`LNZQzh{|QId#9ET=DTQT=GYnzJs`|w90sKG7|xxRwCT4G19HD zG;F7vz$)PBQa=wu`%_Vvdx29VWNly~6>*EqRPc0sHFCU)aSl0>Jd&s5?h*mxqUvbR zY)cqmgr=4_ar#NGHKFXuTPKBE6BAZ=Qd=OXHo;!qUJ;YL^f;p#`sqU2^!;YDJ7rcoA8cL68!i-ua$^K?+0DQy zo5JwgjZMrs@JkBW+MMs&x+=(*)L`S;AG5S%)m$^Sb#P!k-FVl-xP110f$fh6o}OCa z!j6cfYicPF`Wef+UJrvn^qRcoD;k0;q)*7u*)~M4CGx~-Ns#T&WtM>VUV?lzw`wqE z=7_)hkW`UoU+{~U7AdL?_X8yg+wwKe`mR z=JSZWGPPJx6La9=@R$Aln@`w%!mtZNoqDAuT?@IcXzYJg&s4qClS6p;a>D+~hdsI$ zw{LG!K3dU+&RrYL+49@A7JbL2UG09T9!CKV!`BFqvr={fJ1*~j0Od_Aeyom;lG$x| zQ?#r+=W}gCV(=XM22A-1^M9_-$BvnY*Fm|-zuBfb9^n3Yso*KC1h;rsMAR5}cVPo- zVio_c^-+JdNA;jiM9(3I5No^Cm`$Ru-9!^KVz=IH`v_~DqwyqCya>^4p4&(i$aYiA z4@a@;#|A(1b=`FzH!9*3)&7901JUC%lj4xw(BSs9eaw*4Fz_<+p^FbMQD#xViR3_9 zU&2{7e6JOaNf}e(RP&YjU49lIGP3#-t;u{yDA)LIsy=b>M*sZbiQB#%Y@B=gVa_Bo z?(KLR@0lUxvw~bD9kV8kkc5gqXY#~RinU?+5Q(h|paajJIvrVqg;}ugURwgm2DF><0#BTWd zQiSJ&o|#Bpm$o|yt`3gB%eS8e!ASN3Nj1iZs9!~x9yt8e*0wKLmS@x)`6g<7#!m6m z|F|(Qa8bmArs%ZIhG)73GKDa0^>!m>bWR4`W9z$fn^E_4&>oCDJMjpmDwp~k>sfhI zt+hk+KF?1r@AU`;b7#iZrdLEB(M#iuW?BTG zISQ-qLEfrz8`(~|7pOM5ftuBGO62#g?3Pn#Te5_YDZBKhntC2m*Y7TwmFzaGA+0Gz z2~Qek_781>-pP^+>j;LD(7x!Ww+;e@LuTujZ_K3NrjHvI-9n1T6#|JzmJw{F70j>P z7&RMl-j&k1TbV}>)RVL{ikcNOH!ky>Il6iMRWpjuo@SEA%`kIt_+9tf!MSKWc>4WzL!Z% zy@^CFD`BF?N%0pPk^4F$@SB(5Rn@be@pG_ayvBNaq6>4lBF>k#3iY&hKe0#wkpkc=#~S1Y zJc{rIERF}UZeL<-6_GWr`k_uz?n)K7&0q>&VWu zHz!LinLe&3IiF5KR|62y>CUK$7afP~^rU+SH5jLzHfDNOq(eTf(s^Uk^=awbiy_AV zz9Ja+pWVtB05pekhrG+5UkCndwpkj-``6!+ru%RHha4C1|5=VBOo?mw`gNY^&(8ue zX*_Vy>ofdf@~}_(2|m2Oicxf3RbsnK`R;q8qq!UAAZ)rHhDb)INxjj(MM z?5o+6hw;cuJJB{|%?^w92J4Re6h+Xke?p!Xp)$c>$6IkD=jU(e3{-%1OB!rog_*3^ z*4DzgbZ;VR)Y4eBE>e0sW}{VP8inMSLE2$#45g2@oA3V??eE`t=IU%I77md-$bC+U zC*zp)b5ZxcB0ytTFuA-}U`wn(=n$ss-QYjJ05dBc#S3lmf$;KKyk}WhSct?hDyJ)N zf{c{9;h2ckW|ug7a?VJle@3l=Y@0pvY=H=Xys8ly;O+PhuWdHiLqx0KCIC`{yK0pGNmJ((J`RdL{5=hzhkJ zS)dyss)XtK7Gfhoh)1w-=wtJ&8^ z*L&4^)`xd&-x9ozw7iuW^0R!oOo`CPyBZq+RZ%d}Qdq7&c6Wk+hsJ{kWEPEmi zF7h%tCI+THL*zo(^U_8U#~$_=eT!5`$QRollRqM4Wa0|;b44_6)>PHi^QecEE`E!$ zguVf$AwL0_G3QvBt65l!l!m}b>7L2>enMdoTh@yC_KMcw=v@O(BN3kB zeYaC%UG{Ybh>)@1*nr#(U8_QfP_;LdM{}bnNT_NNZh;=*^#4+B)^?+=-V*>0&imJ5 z_k*!_++V;Tb}CS*~r2n84dF4DNaKh^z4e)Z%``k3hLL4Ypwd>w?mMtc2SCag~j0( zCfw(ImL(Hs{%BY8@JQ;;Cmp-nwvC7*TSp)^r>K!4;@Ojd4{17z&++wgT-GLK62kT1 z3C8XQqMb04XTl1B!%J{U?= zo%7>ss}&@_X4n$9Wm3;YB6{)sVL~NoPX8tc-AN3@QX^2GLo?qbWDe{N&}<# zUZqh)JugC)=>Oh?LbiCl**X^u-;XZtF30m5)6re2d6xVgQiZKH_3xvpCo9% zrBprHCATVKRe%g$10IEt+yAh$%8mQ@_R>`qKr?d`RlS+vE;v%1;h%IEr$&Yu1*WLL zc_Dy}YUh|iTzI7F1%m?Rt@+NpxZhX2qw6hpU4Hrd6av_jP5TPQ9z6{HrNlTv+AufN zL4s~=r7i(}W%K;k9I1e-Mm;XWvoHB5fqrluPKbD5a&7OKtA{*;zi7o3MlnfKppc`M zIiRM5s|4r^5{F%j|6V90LjrI0^|kq81Zr7UH%Isxqg-M^L@CNoj!D2zggfwy(NG`E zUy-Hyi`R z5e+p&8$6`af&U5^L%r4Ah`>(?vrKUzbWPI5{E*SQPE^7bShf+_*GzdAvd)dVaYo<-j0leN-vP7(5g7*ko zuO&N51qaG^G33yVssZCb7BI?!*h_xIt`*@JwMyj$aP_Ir}mE!KBi>M9cx zCYhsJq8T(=*th0k1PD$EhZzuGz{}~GFgd(_cG(M$LJ=hwd;4Up0(B@dK zVGq3wzy0ca&`#-Or3XdVQ?%}Xxg@`;7};FTV{Dz@oCba=CH8AtJU~kTmdgu3>^u}~ zE^z5*!usV93(~tjNZ_`5Qje>eclUjFKPKk}f4#^9&EOuOP`H&9@=e-(S{%rWJ=!;^ zf(6@O?vKJ45V&()&7)l3LgYc{i+=pQXciq_Rg*n9=vMH{=iFzb)&&zUJ*G`v8e3%SJE-`sdOI<(l6www3o%-7zdUO(Q#>t4jRC_D{QC2mCnR^>IvBag{a({s^M z>U&GeiaI3#tg z{_*fWb4LEjsZd?{Z4>J~NH!T=9_mE#1Nuw{B&8VeAl1>K08Aeq+~~4F3bPlF!!XL| zdMLt2hJJ$U*+B4}BQjouPK1?-vZ=X^V1l%TsEK>P3%! zbBgrDg-_{wx4Ue+cJGmH7RA*Y-Nf$a_~vehoRD$d7Q`r*4~>T;qvKsl&UF|u`U?!6 zs~?eqHJs(tQibpxrDN|YP^Yq=T-R=baF3SUq*w&h=N#*nv<8JJ%s{tzzYB1bzK3l+ z5E5=RT?cICfjf?Mu7~{+E+)7>S$|AMz38?MF==G;=4nQ%sEPo za!g*j$E(wfXW!3+bmm$VVIlRNnf}=$o*0uC)3Q?sqq3k5ZH2*l|DutJulHGmW#5#G zK}fy-djKt@#%q!vU8wtpbf0mfj+i@q&rXl^7hH}5eGc6=$*j_D2W$j(i7;Ot%TDn= z0Fq0t+x4Vf=*abIQ@%L}%VM|+>?z}OPn9Z2Upsx45`#D;^;Zo$6g?h(gfHX@WXRle zp&)HPl6*kF+d++=GKj`l{HCey@{G3^zH2C?lPq&a8aoIU5mRw&z;H9nnSv`dd-v^G zOt%5=-o>$NA5U3nu5xA+k%!3RU(xhAWvX;*oD?wSBKOSS*l>90;lbezfARg&N2_~Q z6#5%c_iI@obl(l5^RM>F_PxL**wr#`J8kw{6|@h*cvWAIRAV|G$8UI+nGDT*Hk{T0 zNiKJT;viHglq%nd#-l5WAu>0|=k&ty7*wzW0)8HW!uT@wbv6$?1R3+^GoVmlWn<_h zlvS(q9(RjGDsLb?@KY%AUQ297@CducAQBF#ihDvlO!gQ}=m`(gu6owjWkPiAB+i%5 zdv0wc?t&cRKO*Tun}Ad^>cGEY|6n+I3pHmE|m(#2pzpBru_H+ zs{&(z>{;UO^zPC^e$0Y?-bV){c*y%HYT?unM)58tf%kcJPdA6h%tq~A; zl-z<+X1DY){`H|H=VCypiYB}$evRr@s)aaaT|fVSUTC&eV4~Y;3#d|sORn#cQvvxy zuR+RJaS3@VITojKeoKoN3{jf(rr`X=&LH9FfCq#_v%bQa@ESZQtigduT1F-)4xvrnK8Chn ziId*CsiW9JOrr1T^trUBONLq3Bc-$ck6QzpSMS~X;j(fSOH zEb{Hq9b>xyYx@MYWLH`$or0?7gN?$)Cj5YL1^@!!I4l8Su29lEXRffX`zD1?kB{`*svv)KF z-F)*g#Jc~r0{XXrjt5wi6f{-45uC6eeilFxCmBvDItK!%2-p!4UtW#u@Xak9Y`(?y z28u%-4X6$_jkWegb>3@Q9aD zIWy>pNd{0U6;m*usLA|uvjb*C|NBPCxb30DwvP1KZ2@ z*GUAPH2>7R=hr)$nedCI8oNoVYQ-X~rY=KyX-jHijLq7-OK!wPGmEDA=VYt4Dlg9R zz1P*(V<&=ZunG#}d8p36w@CP|@=&`3*nI3LdA&x|=rAtWTAE4F9= zjS}I-0a93?yR8KXvbtMiN)op+Ql1*u0zI7fJHp7q8~248U-)k`QAFVsxuoeSH0X$F#EmaPOvQ(zkzFnjGs}% z0m-7pYN?!0@D5vL5bZ-8mt9S@93`4GfL5H_QimTmXSd%8&R6|KeEBGdgJAVw2%;JG ze|^LuKD1afWRe|_n=}kQHOeEoLsQzbI&MZek2w-3HWIWHM3Q*$G>e*feV9-ziO(jL z;sO<|IL2)FtJ_Dbc%rgzxH3TPh&f14ot{?D>2z8BT8d#7DF zmcUr~MSh^&85+`oEdZl_Bf$iPvP3=jZqWv{Fq)C!Olo>NB(c(+;+-oQi{F31ZsvxD z$=RLgeq>sUPijAV^Bv-NY-nUOU|b8f&%B($RTav*uLm`*o*re_95)2^X45aq;r0|Dz65gyF{sOY^i?m*-1Txbg0z#-(Q{@ zecZ8q*5=I4RGA!jZ-KSK{teL_`jD6m`_xBb>*@M!-g~A?TjPv{pERi=*IB8T&iL*o zU0=CJ#Wfd|%NcOIF~qV?_+kI3WozHgp<`;3EQ6l$UzK1+Zgw@Z$U{Yr@uwaZAm>pt zCA$9A_RMvLs}A7Q{pHCUh2d8bBI&jQqFdoVT1<0h;Jy^>tqS6U7zjkno6iGKHWmTn z>mvztqJpXTTBmloq`TCU!b@@)l48ziD@#{zY%P>@J>SmY=GmEk)V3|O`*we(t3CYj zWLx{WY*c|mYy`S7DelTQm-I-IxUQ(zf~QPi`4||yWIR&u{I>sR`ngPM(A(wk+=%Q# zM>Z7$%|>2H>FLRLeAL^C6wDvZml!tOy4BlVn)_csM_Tf{4Y&4r=b@e13$xWvy;hC- zIkRkz4H$Gjhxe_|WN!5S|6b1jka@v>UD_~aO!B;k4GUYAo>$D(YxMAyDR zSY6$}YnYx zTaEOwvkLGL>5*E<_qzx*wJ zkDva|aC@P10q^*uYq@i5{CyRr0zQW)EG;z3r;I^{B`>4%=`REXR)4wsU?Q5pLPF-{ z5N{jlDZ?>|@r&73d-fR<7tMq3X4ZNQX6i@}xvbt(C0%0INy`&im^k*VV|y}Xvb@uJ z-d9Sg?DK{Np&T0q+ArVm#l`l`g3pdrV(c#X?sWIhSP!#TyxH$53pyFErdjWMd(Wk< zO|~^&-2L5LA+ptDqcd0bSRjqX#F#52%AP7j>exrG)olNEP~DGziema30aY#!gR1;5 zUhB3k1$G$fb1&S1D-M^v=c7{IknA8rK3zyzlnnjiB8(rv{S|J$-%$C-!gDz{T!!uD z6?_(Ljn2N*?L5KQfvi614_AXTBq#+h$1SDW|JpOfqH#IKwhpY6%VgiO>|*InRSUm+ zo%AOE64n^~;lt*4o0B{|3(p8l;$v+VZb-%!CgV%Y^P!({v9#6kkY#lJBq&+zuukYI_+X>C=C`~n=M6fl7o&QXb&K{p{ z;P#OFNwP$(*KmoK#wwOeJ|cyYvEz+9=kMh|>?6{W9qKV1N9QZFFJ|i^(I{4XEh=(X&8=iG)_Tm+C@B{HO!RC~%?epvRD6jJ30#kF@Cf{?HFLJ$k0meD2q0}_8L*QjND4;ruCRRc!JT9&TKa~Tk4|iT#V9P*LY_tvvjoT6$BnfNfVcu zP*&>H|4uq~kBY3D91=OHmrmF7j#HxQ8K!+akbN2!B>QOb+K7%4rT0C$5Q^H&DdzP> z#lxXi%8d5dK?Z;S*x6_0Z5tW6QoCl@S=W_5k2u~Lxt|ozZLgh0^X}ZHn19kElAqfm ze8&!5$G+=5eNra%A_77IXm6;f{^yHv7ddAk!Z!W}gx{S!v&WDTf^vuYn{)qp=7*K9 zAR=YF&8QXyP<|`iiip(Xi0qgE4350faR#LuUT|TnA-o@meWe4By;#2W3K2x{m5EN_ zs(=j7hNR4TJ9g2wqy}w=B-h9MDX?>&6z>s^ZBc!HV{ z>0BChlbC62r>ThuN^$oXJ=d$Q@AzzmuytBl?A9%)F&>`_*Tj#NtErv;DXjk5x;J@~ z=WwlKYbIBV{e>Dj!%|PJ#);m_i{nY28pD0SKHDm7hzc6x&Idn5zb-D9{KU&u>CVYR zC~sxG`1M|8SZ&DIWGmG&-G1BXfM9FAx_6>nK}V8&$%%_h2#r?TqsY1T57JUGn~oZm zThE*hzpE;lwKFYEk=bh2pIWqq=ayagS06BgH36|tE_Pc{DpfppFCD$824TkiSJ3>b zKd})e|kkw%>PSFpFBa;8i;l9#AuG5-#Dm?sBT zm0*Oq6KC3GxBn&D50f;S!v1_sN15U5t?Pa>*48Mth;@^8)b_#+|8s|0*Rtuiy7zq8 zf5$u#4QyjBA2T$%Pb<2$@Q2=2N`^LP_)`*pm{s)2r;87H6sr8LJD)V? zp?jQ6ZnQ^ouCzVoB#&P5>pW{)Jq-?=l#l!(U&D;3Fy@`yF>Ey>jgR ztAZFwYr^~YzvBkK?o}?PJf!ifADsGdU#i?4N1|EvoGyuCe>jq5BRW)o?{0?6^@x^E zR>Jf0n&aoPIS%qSoNSM#-*Uvp%T`OQoX>YugoZk91hQDwyHQ)X>8T%mW{e24+;sUc zxQF3%{FQa9zV1^&bIphdPHXLr_1NNi!f;%2VR2pGf5AMBbj=d3!;SC4hm+Ck__;31 z3Lo#TWF2vcC`;@JKSCsejy~Z6ojv?+=beyN3OX$TApPO3t0-3NK`fgDOz{dsFfr-F z%phmec^rbLRgW2Aj<^Mb(Drw?sOCVLt?r||sD2|U*ozkr)qV;*hukkX$v9sCqRblt z0=JTn)0>b5xOuYAnBxMpJkNe9TpI)jS+HRg6|#~Dsh_;)EfPe^qr{rQ38i41Rj<{Q zR^_h$&)(#B_gXv-CEa`BeMj6``5^;7R;(jW)vN5!PF7j{6ptknbD~ACUD;)hWFFJW*KKFoRzIxP?fN~2 zaw^u9{@_;msiyvAz?e&|T=@}~p+oz-<$)JXU!?s*t>eyUmyQmFKa4l&P+_47abt&& z@}w$9+}badsi+RBQF1IG)i`)x5tutW*Rq7uewkvN!TVWe?YEI{=d-ZKa~SSwTP9qQ>==p7SUWa*9>BL~ZMDI_ zH1J!MM>`|X)=W*-yu)4$`;`V0MSei^%UN2_N_`*QCc>IATA{5QjqTO9?p)=bK`7;IWPBl=3O ztZi8xS`FQ5Q_79U-*)~+Ly0wk+mtX&)j_}-NhV$(u^v(Oy8#^~dFx{*j`t=PF0hD5 zmq3%ED?(GS0SmD87)_R(@` zT=wXFAky$GI<6$O(_EA9ZVBcDp#DIOEjtfRg|c(8YF+81~gLciEDD_ z7w$N{e9v_FFp^Z4Lnv{nPhHIIq*T{4!prlv^?Xg{5%Is;Ar*sQE=o+ketVH~e;(_( z|Kj!Z`27#ERc7WtCl~yE@1`Q>#9*NwDAuC6sm(iTEH zNSJvA6ppGW79A~O4wGc%cr&QNw_qmS0WOZI%JDaF3cEcFK~-iKVB-d@+!h==l7G3q zHac~#nu(4x7@818FK6`yiaKe)_U2&lH3;trhc7a%ehw0N_&m;gs|>8QI}u}!v%$RI zD+yS2nX=@QVqlRM@fVJO#E}kN>lSElm+*~0J}~g=&(~CjRJ9EFJV3|z`!pyr_+}eW zicq^@u1R&c^&7s|E({)XxszQlQvy32Kt*<==Ifje0nmr%eZ2HTG99As5bhACLlxpF z@PpJQD=;uH5|Q`v_}eb`OQMDfKF!OO10O=Q`z?=u6r;Kv0h31Zyc`!~`|&vbNsi+i zhuVP}905>rl;E`x2`rr4%07Ty#E>ZYd1@ta9oGchGLDZ7Qyo!P&&xRg$iSeM|2{4< z+ix1Si<(W=Gf?p&8mLame(y<0!``}BgoSyxD@m|${_B4y;N3-GO@R4AW+sU1B>)+Q zSYq}1S>N6zFvZB(@7W_*!Mk;614FnR&^see1X(wEND}930Z-2z(Ng+5+z7`LeceF9 zTk`Ggyav6Bh%)ug?hNF9xo;uD0rv<68r&7W0q{RchoLLtI*>5K4{NXLHuV>UtNcx1 zI$2kX%A9+eO%Pa@YI%|@R0Z;z+)4sS=88N3zQ7WVv9Mk|5Qw4xAd!<@)LVmEUft~z z&z-o|S?-2Sui5#sA>F-P$w;Fo$v^*7uZ58i59}muVd!ysWvz`as zJ_BYi=iC(w1M(5)o`8w{NFY*7ngtzi!aa+Jl# zh4=;liJ(FVZ@G8;p9~{H#~ZH{K>s{aW)`d4!P6bif{CM6sQU>s-AW|bt3sUI>1pA# zHog9nhDc>HL3eGtyMacR@px04zsmvnaF_U}^-?d5>0thclMRpaNW`;g7LAaX{`mpa zHoICqIES=b*T+bY~37U{tJW=b}qyELQgnyXE-V8o)jFo85`7(=;>i}fIZbPoR9DaX`J zc(45tQW@*H?MCyeA*y{$D)?=;TD8#^oCF|G4qZ;`)t+=%?#l|*eaKJR(?TM}*K?27 z+>85uDp!!k+qR_y`Prsm?=I4HE)d%;`#;2dwZ{KC;A(c8&uqHK`I$Q3jF{&$a8y@m zUh9w3%|s}ai0O80JUZ3I)S?^mJ4A3EQ-e)UkC~VtzMRn;EbTeSzR}G1{o{jja7{HRu384t#ZoT*Bm?QT zs!!1yqZi%D!s;LC#2NF3H0bpadAsV$b@{&}|CLp3i&0H3=8`Hmxynan#G$~<%ZZZ# z&DgEj{hh%BVyq#@%|$FA{e6fnfdxrVNU!- z%b(xwuECcNq!)&v!N8oYp6jL$;-$X@+Q(&lMNUrZg`Z@5-t1-5jVxg8k(*nkNyY=h z|J?egOliKM$_9F0B^=*{Dv#Ut$u3j-UXmE&NV}7wJe`V7$O*7~ET}n`RTR-Mxr@`@ z^fEkHwlq{Y?lKiwP1Ee?NfSpV7Q8gV1=^MAmeY;7wDFO5linb4!IcRi@zsYc}m=IRlQ#Im}`onf2;U2Ka@kx-0bn$0B<4 z0o(_lN{IszS&`W$c<(vNR%D3=A0s^2!aL+4^p2NphG*d>S&O3!kYr=MmgKz5usaJH z<8)=)1|L~)MyZh-rGIs4M`w=Og#F$8_15@80EVM|=>oHBm5cO+?HXpEE{b1}O}Ffk zzGA}bcXF}Qoqu`;ht8gn5UuA@*$3C@C6`*~-5N}qgbVe8aW%>S*vpVl^0xf-4?V3 z-@A?NDtI!dZv2_61vm!5)R3dt7B%zd3Yy>`h;&r5Mi%=pkf%Z%FDJ9lKB<-O@gK@;`zB(*QThF{VwOG4TXez-UGZ2cIba#`40MqljfpzoEaF(gZPvj`~}sy?gX0J2kNJHiwhYz-ziE zvRrc%CR?+%6}N;s$@qi5zH_NCZ5A!WOJYj(;1g>3Nu+UM0lf*$N$j%&@kSRMsvC=R ze=5X;Jl3G(0Hw2)6J(y4*W4Pz*XFGd>zLkm9<(ORxmxe85M$oZ^1 z2*Q0mNQ%uR4h&eYQwZ0~Ia9xRlAiofe@rG$c1;F(JY_BV&;0CyCol#A44NeFi_64rEr~niUUp~H7B2q3l|YHjly@W zn7SWng(m&zZNWSz&Y3<4d$;FDe<>?JozQDR-H%l%$2eW1DHT_Ru{g5`l#Dp6x-MlR z@F0+c#8rtFo;nWuDeAJtnWC(;8%Xq@vppZBfBIG7+`nP*)uJOS8*%{?y<>nw>u2otX0U^KKK(->)>3vV9 zVq*uD5);pl_vpC1pS(8E{xbor#@yr^Ls;3Tz6NV-+*rPQ4iSju%q?B3ZEsLbuT-Tq&z!B{syj$gFNjcf@=!aGcl9C+9 zcjM|2pulmuQe+`ajv~U1h{F^wt*A25PV`jAWNWY-`3PIw^vgS(H9$2^GbdNhyN^n5 zP}rl_7FuKF7_!IRX?q(dZNh6TN91^^s8D|du@RwLPkc~96cPz`KTtPsu8B0xHOb9d z34DKWCK+tKe8t2(2s=peA-=*jf7;OshNtAqO<5c7Fi>8p7>~YC$S1S}-AS9ULHR8v zMzo8_oWZ@)Y}R+B+I~$*_H~b94V}#!D!SYB$r~&?Ej6I8$cyB8kF%xD#D{TJu?Er# z=YX=z`@Pe2e|7$lGH2xhU5r8Un8gYxh{yus(k&8B7Fh zZ}}c{&g$-`ix9!9>LWY#IgWo=cSrK=ykX*x27(_?=(2?Hq~>lXMve^q0z@t^CSeBJ zk60+(X?_W2Mov+N)=Yby!~RBbC}$xy&8Ubq49<6o-EZC1;$!@fe1S}I=hO?>Wm5_( zH#D-N6u1M!zp-jpBrD_U-&tCfm>hvUcmd}PVj}YVwe^nM0)8tO_%yF^rjXDGF`L2H z!_;9LWiAkup?@nP=$L&tPmO#(caDBhxc}{< z>C~H4gNFjD4RE#zh!Wc3FiXELhP)p_pj`s_E$hcbC=V)WAtS47J>V>AMQFF7WCey40a|qy}eb6dP_WriJFdh&St5#drJk^w^};zMvRsZ-3GO5?2hBDU!yq5xw9x~vuOftm}rB@PZ8=hy1vQxs6n)njWi5F%x8a< z3PEmET9_-JnrFdaQ8`UDm62f;i~#z>kxAk%)_d>|f*#G85IOQkQsry{|$fIgg1XgI1b(4=EcTJVCFnxMrgyUY&h4K*@A+Iay8>CfNfE zoU>q{FWEJNyIr`2pLa-jzIAP$=(2TmP=)g=x!XzkqSQ~`)}Ndt287x zHzD`E_^8{THO?(Ll#j#o!Epix*UpmXyvzG6g8s#Z3#1hlBBi{fbUAkU$vGJ2{mOZh zOhI4#o?Kp~%Nb|AeRPr6@sECP5X&);h4Z|e=Q3Iai!G*Vd_VUOvli*iWcHWi6k9d~ zPeY@wQs=qxhU8-ZT!W7#3h{5K@@yGfQjorl6RY`*^Wu@EZj~*=v9�*RC9i3L_g> z>s-DvNxLoQ6IVg>g76<;Aa}}}$A38#cj(P~KC+`dQDzyN2Mi1LjZdCRHr}8#pHO`7 zsYOgrB(~PwUty5m>Xju40ka=QSrr}xjq>HFE)p;Rx{?!etLciH3HPCfaBu;1_B?eD z9e03JSw!^e(lOe+hW)a;C*8)&I!~i3IQB|;f9F#4WB*V2hKT>wipoCVKkeXoK&`{O z5QW~{($WD!C2D|l0R;j+3^g!XZ2JYmqK1bx8m9dn!&<@N3FKN#&TS)M##2O+NdmQU zRxEQV+-mGE+S8TegPpQTwiURVE*@Xq?!NLvWc*0O;fsqu@+g!e8KZSdRx^O&J96fY*U8 zb-9i#vJdQPG!dJv58%loXZ47bjynsVNkaktJIJYMT=rI%9X;ROcg$1D2te%QIui_` z{Q!v~Atzlp0B3DLN9!M3vb*8+hFe)F*v83^c%;{wF?`4ywfEdlazm+f@rBXy89o{t;i~I-l zfUi%@X8^MjL=aL{hs$6=rb#-`k54B2$h7zA?E+*@xCO==iw-rX;Ig&_5}yurJvSOa z0ta(aZkZ_e0Yu#j{Z1ApUXQw@VbMQh`IeR)uBZ%6^JtI%@kQgBOwPIWrq zEU2WX6fe|{bumBZ4q=c26k6D91e264sIb}) zO6nftS|(RMq4`tym&t35i|4$=M-l~J7f~Cn~>sc0_HjCAPl*G zBP@36YM(YM+hQQ&%?1+`agYWg0#fY@M4E3MBe=%`F!emFzY zL-!FgJ(vMGGgxsG3V_#LiNUw4hd?LJ08}@ZRbZzNq*@Yo%u6{?LZL!-!|SKE*An?~ z@l2GJJz6A-*6+wnAJib%pz|UBNG*%Z(jJ;M88Q4c4|ERaG-ye)8|2&?#|Fu=fId>v z>=V*57E4IoJr?`>4^%YAKI4;oL<@IZX${|1&Wyf!rwER5Mu7D=GjJeX3>82vs8R55 zlG~lHGG)`|vT|nl41AH7VC*2wdblupuYZpBnxa0cLayM5%)-jb%GXSs0|4=S%9*N1$<*dS}M?3K@kz*H3m7vk|eX=kHz z-TBi3-?Yu;-&OkTz+A|PUByykDl$jHsGTl6Xers4y!L{ri22|~en}~7CWnWgrH3vc zM#11PyFzo`czPNpIGC;Y4e5fdV00Y)1)dsdfLrOpwM_D<2LN0Ll!W@EjB48*`U&Nc zGgTir_rO{+cC{M%p8kDd88^D7%lkxUuJGVT34Y{rD3Fu<1L~dJ<5(ozF^hT_kl?sK z&yIcxt`P~k*YrT>SnXWWz$~@K{`Kh-e$q(r%yizFLu#+-@Ar2$BXaO_qX8n zu%9vDJeLj_aGBCy^MiXy`7lY<-Y`7k7)!#`N$BqJ)vZdn{o$MBH&bOC`y@>AX)JsI z5H9c7BXSlTga~J@{eewk0XB0h{a1#IuVRyC$3E#Y2ctvt2Zwx>1>oIWn*?@}WodDi z%D%QW7Cr-AE;~Kqs=|H1aHydjGnsaH4D$}%hfelb6Z!6fMWqF-e82pDT(#Qk`~l~7 zIy+S!*LV0?<87=WJe=pcty6BS_{BlCH5)kW0(@u|YUMBuSbvC3%AFjG3r#iG@+ALO zD;4i|LGAZ5`*ASS*@W@V9Xh%A?hR@jv=eZ)RY)QPs|LRM@&vm`LmF}7F?5#g#YNseX6Jhhd~ns8D1Lm?8dt(I>1tY8#&3WfY^#j-_~kLL00y3=BBeY$uDJ z{dvhr&M?jjd#!=Dt7xk8H?SshZ9%*VnOC-`OIKQ#JqfPErI9(am+L1*B2}yIaXKjA zv!`+p@@0>6A0OAGo124!>}w{l=w&^GFWUK>W}AIPbLhG8ahU%-?{A_pbp6&9kPOP) zGGX5Ek)gl%0^cTxS-q{`O6GZq{{_DHTi{1+lY7&(`I@E933nCr{x*_YT%w0DLwu=3S=6~he7q_sx=++tn(7rHapjk9SPW0DGXZlm?_l|6S|9TQ=mMEsOkv+Fr2GIx9b#7I|2N+c#tpD;=*G)fa8M%(`4zIqNQ+ z>I_ed1A}Beuo)=St@cVea=-j}(r(Qp7boU3_T{G)ETk&+;ss>l87Vs4v^z-ztL{6A zfKs2f-*}yN4#ubhL-Jb2#>eKhyK3+-2|$UQ0mg9cX!*j9(QjUTkwHHL?h$|VBi1H1 zKY>wx@K~}x=DJS1!4 z|J`YKIcq+rQtyg%(SD&N45I`=!1*%Cs@h>gZCl@J{15nGz(6(<_@;;vpq-DSi5s?42LCOrAS<4YF*vx$Os zTmgtIK8hx}Dw+){zQ2~L=|2!6oL+|Pbe*vT<37EoF5%TGw{S-?6g(o4_5NI<_a@;O zOWrdE{po1kt)SD!pBrSk+cJ%MmdQ{fOTrLZ#jh)pPF~Fv;^5U1jzp2JKhW>}v!Z*25{S3oX?s2RxQPA6fC@#GE3raj>-R6VQUju`nLyUu?Pv?n zC+WqwSRN~mbx8z9x7JS{M|9EM4B9BS{w>8RF2HL(#;sZ7SiC$&K7^Z?uqE!y#IMPt zmOmeB%B=TYmdw2mbdQVp=a%1M-@_W@@|g4Xl~_(bO!sjCryRnoC2rx)$WoS4<-k%F z=}qyCRM!7#k#Z8EUMFc7MxHV$yj|R1rfy`!5a}?x9qq8YpEw>u9X!yt0L7(l;Vm-6 zbrCpBDVIQAeP!CHm7&}+Sa#j;%w?4 z?T9$QcDl*GpKs$NzG8NcnFX^aSlHExrrA_9Dq({w0zp;pNG!A$4_&kZ0~zA|V0~XE zL^ylh4ipkqVxo6Ncs27xP84Vm`C+d*WL4pgBqca!6PkKi zul-|Vgfa}3(;?5N>wJSgn+@vg5gz@jlc>YK@$$@gpPUOn%g<}9^CMRWY!hTAfB!Xv0;A{;KA)xcs&kx9IL3KiI)s?n5og}VW`j(H zS(Mxu$zP-lKRn!u1H!>_#^Q4ta+45c@OR{-uEOwPr+@WM&2wFE`t4{HxM1ggiKCl) zVLxR!4-X3!4=g+uBC9@b;7Qarm$B&9WG6m19GAG6uW^O4*HCzRA9@{^@tcTFc?&jw z?#B=bynw%jc-!GJ^u+0LCo`lbEpXKacFuOr^5VF+(az+- zmLT8$*KlW6qlGg{9yOy|OUGhGKLhPOHuMvWNp=2Qefd=y^e|FfX?GIi%E1*+_1=x& z$_;SvNe+97eYixuW6|eFz&k~Bx zOSepmlmCc(x+?#2?JYd16gsISi$ZVb9ll6k$g60(k*?VbtU*dB;vzxM-463e)g*KJ zcjBK6Ae6u_PTbp4Peg2#)2yfv>-4prRwecg`?CdTIg~bDnlLnh5=crM<`^ z1PHRVu`1#;Wj3>^D5Atm-fD4fRPD;{{4gaCsH$y+?{9fv%@}1A=JRWr+duM-t5k z7$&;Kc<>e6ZWEG#g-{Pe&-eDdX$A{0l-!9R84XBNlg~CxBF=BREboGNa3YAtUmpVT zC&sPWS~{Oi6rI4ULbX0LOuLg*p4-&m^WD-uqpy;J-6;)_j-tab`a{Gc7}xr;0yLi<3REtbWI>(RD2i>x1dK=5i*l>q01WJMm{u_;|y)mNT1VS)9hrWdaU<7 z`2J7t#X(vH$2W)tLasof0@hf~X4x-WP9>k?#Cy0Kie7&=DCH?{Kk6)&v>JA31stR+ zOXaOqVBN#Twa+aF{zY~@; zx3ezNNyO_6qbPn*GZ;Ni-{`q1zrjO;cjo;!O~7J*49;F&&ezgQXSdB;)4KQ3#p<@+ zzT9%`9Rh`LLIj64b?V&#n>nqWi~y{fbQW7nMZYH+C)EbZ)>9)Y&kh zSKN>(0v8U?-Y&X^19uJdV?tD$%ahW(LVn#h|JEOupw;^vR+##S^is|}&yXgo1akuI zxCat9;y$FbDRW%==axIr#WTd*L2kQ4cY;ibD(o@<30l@4TT-tR>ciuW!QODXT2DV9 z%8iQX*r#oIgDl|hrd2?#^2jqP?Dp8KV||-VwI%2*moYi=PPkTf>rY)4NYL^a7|sN` zp2r0FeH_?8KO2-~A%F!=dk+nif~wK(+gm184jTn=MsJlK7+qutMwcVaW(f|jRVccI z%o$Q#tye6L!95|}cd6Mz6_CWjCGdjnGpnQ_z_R_!13oCbJ6Ha2V9HA<%%W4RKgDIN zFK=tFV(=G7tO|VIX!7CvuxGaiFaH6H!E=Y*Hl^&hR0Q_>tdR*D1g}7hsGeq=(j0(M zk8zaWq>oYe>;16(Y(?{TN)&rsQIOjuCw;^2sQbNFs0ijwd`(8D+O*|fef}m9;8X9` zV}6#X5yX#nyzRwIy7`rNnDviBoMZWqI;5Bg z-jR?$al#h!Zsgv%7c@yYwCRsjxI_G92YhleY8!WO1H-fQJ#-&H`>aMo7}#HhUiwXs zKOb_-n`R8)NG_Y1XC<)TVD-8c*dL|Mk30$TPbTj1byYlKF|4@syn=;$SIGpV*sz_; za>KbSbWf_pfE(7og+O;h*Fxbgy#sD#-O^{f>*K$&;n-1xUB6ok2lA&FwnMFI`%gU( zHI)X36e<^R7&iM=jalevoNtr^e45i1o6vPx-B%yHp9U<~ig>@1yS4zdxeN%2t6<&= zEi}zlZa_Anfytu#_{DGZn~?mZ_eiVUgeOk~3_BIX z+#6GU9tDC;IcVJMj=^p$V?zEFF~4JxZU=LY29hQq1}y0QjUd;2;7m2cp|ex%{}J-| z6hVef1;G3AHr#GmF`pLy1KTv#T4?x-0}Zr2RO`#DoWXCCR^t_SKm$2orcnxjS{h(1 z&TaLU&5i44FBY~Vl>Q5{se?GIR(iGk;Q`kJWF}h=tzhPK)uOU#BJQtskp1KtoeUQn zp$-w^*zv_PF{PFhs!;yaFNfm}lLHJ4T!5CR!SL0&txmt`5)%572F$-^*!Ed5Y%T1) zcz6LC6)a=H(5WuM;;jbSZ|$cW;^%frOZ_)IhYaUyeFJCs2SHlmy32~z|zcY6udVn2Ik6awQ+R}~LPpN%~B)2#KCVG_FupX2(T>8gv`$f>#h@2Uqm zfUm7dx7pDbj9aq4jvjZ^Xgj}~<2YQ2F4yLM5kYbmZ1Yx|8h@UOJ}@+pYO7O(?!b=X zRdj-5x^4Xh#(IaMpAXZ-Lm&P1NWA_H>@30?%^RM5{?_n3Yl=B;gxN9hC3Kgm3FBVn zCNBY@7|r-Rb;Gj3hlHO$sPVfRz`m*t!DPtkeZ*zC%?03@9Vs0eAsy7&50L=0ga~Ws zpS@wR5eb&v^fA(9@We#o251b!i`yeFuK56S;;u%E6behN;jhC!0OxrtCqh%iH@UXq zhI+JKF^e7TaNv?m_zL;`56Fi>;F7MYaaW&?@d2$kcJQx3`o*kE(7_zhMZJ-vll&2 z1Fu>tS`{e|ST26`)=t(ugQEWh^qeRTlQ}ZakT9vIPjf>52Z#E9n;-LkW`5yG^i8y0 z&JL6WVa7>rYKDe}wo*GH2eY%YG|&aXTn0Q0sDVEhGKwDIb$aP04ld#Y_BRI0c(!gD zCQ`_tik!}zTdv6B0nY!T?Y#rJZ2Q0QO5=(oqpYHmBxFQnHIx}LlbJM78QDT5QXyFl zQ7N*DNZFKR6(OR?$X?kiO! zuP~w#?})ULR%>t$cW$-)Qt1AQeS%iJkC|9blEo&Vp#9PSHiJj2V>M29MmY6^bop>T zAZ%R}yx>A-p(Z*yGdVD(;=%cURU3TNNnPz0l`h2cGx_6)A>TB*P5DYAz5)pJEtBT4+oJ zqTvdL*TE690Un|uq|%L%Fn}||Q3QFN?tPrr!_*mu$oLs3G(<2k#izrdL1QA0~a4C5$KXYy=Q~wV|}qHOrsjD~!fcFq;x{l9ZMyfwDa;n36^axx3|8d!ogJNo)M}%dY0< zeRs%aE2cO9FX-DX4{d>MfzgeOfooXbV05eA6x#JSeS2&kiyebSO?+so)n|RYIYul! zEsMbR#+h&sM*(Qz7<0FwxVK#XNUBfd)F)A~pIQN!m(tKQ8dmJNTo&?U8U;I;o2yL* zFK({xYFfZ(EVc66mac}3k(zDAYK3~~!mAot=)?>2*;`xw<4^v{gRA0(Y}`QWp5yzK zvf~)GQ8g?!j!d<{^L)Ddd|M1&JwxJr?7Dl`=_yQz>N>s z@eoKMtZquwtmSg@V4?HxkA=7XH$PeVd8a7`_&lI##9p}`b1_}HQqnG^zyU0@V*~J6 z9Y*0*cm5APQD$>LCJg&)=&j)c5eNG!L#)c^-`6xc1n;#RW<4YbH;L1=Yn>RPsw2ZF zjCb-|(OzcwFu*0im=44<8QTsRM3K}wT@Rgq`s(6FaIZEPBsL8s&dHdeFIP^y3t6xrptTJ>4H3*Vl9daP7$fzgMs9r|#*}r3LLU=>@)|OsvxY0~s%} zMuQ)+di!Zg=GcdIzowSdAzU<#nAY;*@26`&(yKg?2`&&xjEv9V{g+=u$n$2>pr|yy ztyH}MN578Ws*v+GhA->EJ846jP>3(HU=Ncuao-*xNe^V<8cUrwWiht@Gem8&~OF^jAJjvCAMNLgF+NZdVm`U-%wQNENy!xeWu2E6*~!rN)h zuxg#nq<=5IfBzHKw?R}9SK+05_h0;XpYu$lef=*U^#8V2Ba*uq$!s;@d*H#b4lE`e zyBMM{v7Eh-@ji05eDdMf)!}={$o=1qqKPXVM%Th-g~b>p)vR9qvFPtyvRI^`{eHy% z$KFjV%+kARB3IBAuAh(dn(lMS4f(Ip~A+~)E9735aiVM^+$VLq&?!rIl474ttV2cw0EshKlYDUhI zePN^ftwL=r9SVBJ__4 zI6McFECUc8kf;!{Nn`ix3wwa-a|swc51}BOo!>C6JPM0vO0*l(ak<9JBT7GnO6vx) zp*AJbUCQ~26fEsXnhv#O_i0C9k-j)O!1T~Q&j_6l5H(^*MdUk;gmBWaf#|d2kPM7H z9-NP8>!w^B6o1nmR3jvHuo1>p)zo4bF*Bjgz|Dqp<$^n{2y(QQF zURtXU48jvgjMpSL8|0SQZemDg(cyJebjKkFjbHnW^3tM}*^z=`qD{p8MPJ_Gbkwc) z=c$%NX~$^}SIE)D$qI&l!C_jJVRxJrNr1S_h55hM4$h!Jtp8F*b?J3To6(_5Cd0Ha zS4sMx=Sj9O2R427u;VhAI>j5%YWwY+i|*PsuUoBvEX|(>0@v-Z!y&ZQju+4wC1mho z6fS~3N$gtzHc(Q#eT(R-hC)Y-sA?L)!-(kFhZp_(Etcj^b+ALi;B*8$8WZ}GyvALmW>duXC?!dx+B*-ZO5ROCqUz3YOQ z#8!oS{yO0;)^YGVt1MisyYnt}Y$Fjy_iAH3C@-^O8M;T!EVI#Ya3@4qVN#3!{sg#H z20&7EwCV}#$f4FKrV3{fH!kSmx>JSz2!{w*;1aff$SH{K(!(zA_L9eOimAhjk|G0a2kyu@YuGMR}7%>yl zbeMYzf7RK<5h2RMVb&rL)Y>xXnO4BGY5z`I1>a9Lg1M9T)rd>}S;7Ot6L!6bqRObjbWkF zOm{?{BZv>OM8{`#Hav&|v^7gjXHOhsp|9s*qv>_QPehQDsCZ>qD9_yiXoif=1X z_HZvzXNDMQGZCC-HlHV2$&B|xe-@@2PFmx%XvdtUig)Q-wfDl7k-@*ev_QdyMb=7_ z7#-BCuE|D)w8@3g*TRrZYEq`kBGX{;k3x`Pw5LXeBnmrlMXtLc*rb=Qm!51vX+s5CK@Fx*0jGx~+-~30FQ`S9Hhr`GZ%siNFZWObu9t;yY zoF4p-&!3JZr;hH28_{ePyp(N54Es?Qo{V30chw$gL-D2bBzC$GFEpxYuKifQX48Sh z)nEOpQMU<)9#hlH9V%q^N2kGt<~8m6fyk#QcprdN?aDjjI`Q=s$>83Ew3sUj*uQE- z9#-#%2;Hpr!(&(8?DYbxP#}t;f_iu(pRejLcsM60u#UG$)N7IkTS)TSD1Vgv3xeUD zSuenWl2?p`>fOla!3D9LX1q8B2+M}Xcl zD<8Lxp|uirIA%CzU3uNs3$Fsgu@z1wQTS{OX7f>d3oqxCeMEk06?PppHv>Hp@#KdG zcN}=gK_9Ojci-~1=~pIj2_YfQjNN`&J6>CfOk{AH#-|XTZ%XN-;Csg`0nH`GMfPZe zs2l{L49?0^2z388-k*Rb488EdCx_1CxW)Bu2MG}!AoCW(YdDSZlJIm_3)^-IM{gSV z1FVwvu{iG$vU>zaKYp>xkKj{rRlHNUM%wQUM4vi*-jlFO33YT-=J8Up#qhb24H52O zS|imfEQZX{2eP>^kJ$L8>hb?Nv0GMIB%cF$rxc&AM!EsF$$YyDT7d+CO}|UTy$hw! z70GRo)Ey>ByGD3MmDk00SObBVa2K8Gp zHUy}pA$yS{8zNjzz+|OlMWBXj1N*O*w|pftGY{cr$cY3iB4?f04ib-XRDH!#n09Z% z;Z@07evv++(S5>*7gHHj4B;vs-=~h>0=fv+DoouKBX@hZ;Vz(#B<@G(NP>tNIcTT2 zE(FvV#(VXW;%o}zM@3NF0XVE1koK5KC!}{uc^Jg4QVK59kMa;fFk#_Vxc0>7rUV`# zi6{=iA?hyE~RrPpcg$52%F)awXs zvC3sT63jMI_Acv7OUwe#{fC#v)(6sZy7kYFy5I}=xIr>!9G|U*h+ijOTVqX$*^egz zewfNwlMf*ZqdM{Sj*NlBim&#>;Nk)w$zaE|T6~~5eEZXa!onV=6 z4R=`RCJOYN)%|?V9OiGpSt}#V@%MjE=PArTb6A@4-(3!K{*e~F0>TWWt7>UoT*j(h zf~#SN++2cGQKa&?ok<^lc#`7qrM?&|;7lIEFe3P;uE9RSM`Bq##CMS>tvNxQ3fCaZ zj~{#R8Twr9x&467DtIr;8H^F>c^p805zsEitif$?ZgxK@HBMi!z>cX-J{Tu@{C6vo z8~-iI9J+b<{q4^?BhbgLcN~i!NhIc`;;Rmg-Bk8P=D@YOXl}>nbkhY$cXt<~Bke$S zd*u1=ja_Da(6a}j*6RsLeW%7xi9qH+pc~3;0a-5*C-|8njS&@|B zlHII#`QBF_tpZEwin%xE=2K~#>{3#-i1_Tz6$V;aLH^R(NC`n=FWGa4Hgv5``5w*) zr7@-LuoiUz^^XXge}2FfWwnu@Ac_Ylogi3sriF&`bGqKBPY#B?6Qr?uu}s|}Z2Z7Ib-rc3W~5wtorvfYyR{7L+4^eke!3*nb-3eKvIfKL?} zj^wf{C+I#FA+~^A+qUTnWQnYM6?&PKh=G%V2qHAT{xitwIU)1jL|$EzYm#Z-jl;Xn z-#fx=a~*aibCSdXc5Yw6E2}_+0=O58m(UB(N4h#x#z+BLP_4}ToPY>sB< z?M`Ax^g}hlhJIGd0#DaABwU>&S=<6XWS}AUoz?M6C0M>mv-wV&0qq%Yom^p8>mP4S zO`A0>Z)xlUW^e<^V>70fl}c9Z@2vo3jh!&IRU$7)AHqT0jg3rQ43=Y$y4> zlGk>-%P}V+c5CQ`$N7oe*>M9TbTnqW^lW6i<+jQDL395oQRB#2%1;#+y5O~ zDoFwHk>rpFyqMVxZ-Ey*!Yip;Hh~98mz7NO(1t1d<40m@m@o>2A&$m@aabp+b#_0s z!b^jDc@yZ;{XvC@9lIahTxP{@!|0psp6|7^5OeV3;UqSIQNK80x6$A+@l_z=ixRWt zvCsR^n+gNs_k-$LF2+kP6P+9Yw+>=n)b+7tM?VQPAwZGqI2$`+;a9Pk3+=6Mr9N$}2C>9HIObJY^Fz zjQc3xjYg{X;_g_QM$HuWmfYoI0?u{?&D1Qrn^se^m#HAGC(2lg*a6qHy@MW@lFby% zQ@hldpcEGi{1@wf86sA2F4*jA8oV|Nqskvf?}Qzs7pwIeiDB`W9Xk-QKK=?Q-5E7D z-|jrg0aSY(=KGYmLRb9&p9sBkHD;S1r;rP+a-#1fXP7v_TH4vM4eDAX+C5I+LalxF zKE;OC;^5l63DnU?QAow#(iTl-r-?%DvyqW6@u5k~`|dic_USm!D)VE+Pk~j!=H3C> zZ{X?_1D-^oyG4?_KZP*>@P-PeJru~4@f$A(>N6rTbS+CQQRBZ4a)KIvxXqd{fKCp^ z(r8d>Hg-%tP989uf>>oUE#$hYBsQk4y`KKC$3)u44Lfhqtj0f8s4~tn+3cemnDYfw*#U0a5=uv|K=JG{@s#e99j6RzRB? zJdTq9mUKFZ^8Q)hLWz5fcJEciAty6+)LZ<=%3Qcz%$X&ZvI*p%1!4-VAmxcHRAO3Za6aGW;?XkZ^~uw}V_8*uxLU zoZ&>mSa(?=wP*`>y^rsFduKnMq{<+lPyS1+E?!~cU61nbJ#XbJD}H{; zO+iG2!=2AhOfPtdpL)tjQ|(MuK((ew5Ro#-48NDSo#F>ztbd$`1IOn3B!;zHP^es| zSacG@lHY5KI+pvYo!8O{gF5+!O%EJ>mp(fZ+&VCu`ofYwJl|5f?~d>L^-|OFsRIg* zX@Z)Ga%*%3F9vVl(zk!X_XfLnC4@38Rhz$Ph#0!J-!RcFyD*QE*P+1ImztD4d?mib z%Xc-CDBwT+*YA|be7z%Ae0~S5oahVdaB%Q(P%)<$XA9|vkRBCv!6!53;_;Rl&%m>` zt=Uck#ug3fw$*Jokm&{S0V=S<{7ZwTni*XIWj3{Y4QCyY^Eba~2n3#uC1w z(WP^ZSSgZ)jB18F&7wdUjIZE+tfG{A>4dgl`SA~RioJb>>wgyp8><%-c14+=2Ibp2 z;o$}Is{?ybC-V&{DtX+#UiVQP>jU;Cf%a>9Vm-xQc)v9ZklBbsL5F#p(k+M|;v)~~ znu?Mb*B$!A7AnPM>QGu!7x+7#1nVMEq}QP6 z4C*=im$(UOtUln>?nqZ zUDpTf-dKGv;2}FzaA<2A44}q08@j@}rwxsVwzq9%p=ItR{e9@U;eikaeq1Y*znRNH zufhMmo~;2HVLfr8+H6B2>UH)mA(+V`2D*f)Q~GAm!sc=w#Lkhq+yMpz&Ae<@R|Z>2 z(--49jVqOUWMhE5`FGFBdxw(A5Jx==V2ARv7-P%@dnW66D-QO;Ea<@<(JzbH zYV>UBk8otO?1w~G)?Ht$d*@5h@%fn1;5Z@6|60GCaaFGS8J!xLPtF+#xalEwNBaKhz|el*)ZYCHtFl{` z-lK2w+^I+ObnBAFwRYX$$FHE`#zn_=(Qe&h3ePbS`?HmnV3*Rn0r-D5}z>yPFXefrB~o9 z`d?tFIVgOZXZgve*0fKj@YDu-l13k#hJ@$z6&p$!C3#+75(eM^An6Gd)ZN+D%KYI4 zYSQ;*96{mY`A+1d=!qfzFfWyxeNE-fhr(|>tfGwS-Uo^654=O&sk{?e`p3bak=(1j zZuK`#VFg~l#kz-0?+6CPxlImDXLGz#rs@X5oh ztEGUt&PGHo)UipQ21l0Y%1r0o$GmgJ7%nWhZqD+dakHp(ES%&w3y7PVxPVAlEi?fc zbe@`OJ!$d8ir#Ch19PuRVz?(Xzb38nRx}T(a$+2G&03foztHz5Kh1QHjk^%W7JIP2 zg#Xaa9SVSZ*A6la)(E{2csSG|P91w&)Q$2`(_0Xd!Jy`OQ`Az9o z8OmlPfP;bO2|HaDp60`pr}^VY*`^cw_rEkZ&_@xsf1BoV4yS%*QH5U%so{o=h!&hP+#b)~D z*UnAn&1HStz%4-LVFZGlZKME@gn5&ryP!ezeq1#yV$ME$!bUkGVvd3@SkfdMs*4Ta zUa|^b-^nH{gPLGn(WN4h!6t?)Fc#^DZPb=eXRW3B3KrDTqASdGRrUO2^PZk|OVwLn62omx>V%b~m1>M4LSgNXi*^31g2mpjM%mh3Y{G`j20uX1QUZc1-q^C{^x6l9 zUV0XKEoDRi9ZB;5T+qX9o#?x>HTs6Jh#_kR5$=&X;lfeeQ+cQ`Mm4)e{~*(?3`Ucl zaCBcTAi|SGpZNN9_-`H@y(BOyQOv*NZ|p8omPYQnKeWPZnD%K4$ASei1m|RS3PH{5 z18E8eRw!eZqgj8qP88&moa^jYnOCc*OAmRqWKQZ3W1|q8w=K@gxwDd=*zH?nfcDEj zt%fS5+lgWoVlY$tR|I_E*Z|pmP>G~3 z9+1IE-~p&H@<1zVTv1?Xy@?e4#brZpS@`9RV4f%$EsWC`j*Jd8HKn65@({N#zq`Xa z-RcY4&4no@%`@j)Ur85T?3EyVSYaf&<}k6HFEA^(L@$q0pSD&tN^NNlHg0x&ni>_- zU}E9wXFJ=PL9vcVJ+yMqlH@R}upaHLRTuOw1bF5LpItUGaQ$TbV*9dA>bAh*ENK}q z_~oI|@FSs>0%owe@~I-Nwl%Y|qgh~BZDbt}GjdvQ?0%&ty`aSU!cp+WEIF5POC>+a z;#_2axDIU&j?IueSsMCW<&gPAq@~6pek?QZ##-njfu#SiTBH_z`htS8fo-}zCc+C1Bw6C8P0 zraDL|K2L^c7o&{*~E^eZ<#urW&69?4|!c7*U}+XyQQxSnrs1jq&>1fh0(X#k3Ey-#n5G!*r?FfBhbsohf;Mk|Bg!D zG}de?#lg}t{}W`2I!C=Ag5hzY^56X&-Bl@;!K04IE%r1#S;?0i!S0RF+jFL&s%QLv zN*4GV>aD4G!V;IyON6@etq0*32h^fWgxe*hV* z7oN)ir{u_lS1X+60c+0W7hgjAfEOqkv^q7qDB$lsfcGXAJHh z%4{Tl4e|0DFud3&4clqV_KC5|GdW?WOvHUCgJK2R2_fHd95(%GkF^&HV{wqpA`1=R zH;0$PUE_g=4k#)A8^?tGt^bxhQ1hrLd=GrNHlyyxi^!>_Vd!J>c&PCH!C$n1`zsFp z88;^Juo?ZZWqk0CrvtYM&2w`~E{rP$uw85R-dnTd`mjEN*KRhy7C%~iJD7$@YbOQRvCLw(Ojj=>MNkqWSHLRwRM$lz_UZ{#%ucuc0}ie z=DAbNt|8o%vCDzgOv)`+7JYvl;U*mI;&|_omD#=IzuG3QwnRZkSU_p4R*8h8$PZ+-Bo8oG zLL9K0bOte!4%?LR0sA>nJWCcFlA?qHR)rgR3Q-DmH{p_{KOTeo+++9lZ*bB9=C@nn z@_UFMJ#!4p#oqjUoa_-A@G%|BU75J-wM~DQYsn6&AwYtM5iM;=@`MDrUx-w>XNb7H za?psrv5bP`bOyN-Q7!e(|P)Td$p04mE)^ras|Z?Rzm-$o!IGm@rUMlCg@ zXwf%hlq`5~QS(SIwnRa@16z}N8?{R?hE}hrTXhOeHmt+MfFEPjt@_s zmoT0C*-l*(uYht|`7ED_(rZz@q$f0_9K ziuzS$(~G}H)OeyTPGd`p!qe;N;PFgr@E8xr%i`Kc#?}j4pT1CgX^=iqkNb45(@tuU zwd0q-s@8(?;~!-%27fUa>?nS@5?BX6fmAVjGgQ6vP%UD!y3AOJ@fB&pfDPV(IVDr= zOX4Fmsz2w=Yy7Eq5~A9tm7%J(|MKMfqwo{f}<5BuvW_Ix99slE|3E3z4*l zeb@es{^#}8t}j=?!J~xvLg?}OqYms^Y&24NPEnnacea@1^5bX>g@mDt=|rCudFGyA zQ+6D8hk3@KWX6C)-^o^5Wk&DUyIZRBtzzDC)ou^dXh;-@`aX0NXvsfFady6HvJzGaJ}$T)=p%kD}>2BlbJ-gR(NV^dQtVToj! z_fn~Z@p|CZ303q92>@aCj@=r>?Ap-(BPLFdm)BKaUF0zbs)6&-x;nwN7)X`P;wvgb zhElivgXfS-V0lk&U>()+(U?K}g^~+&vawoK+oYxrKN;y$H0zwWIx1cL9(kcuo0)Jl z%trWXY28bH@^m03+D=`_BcbguTQ}tK4v`Ud$A~(VvS@MK0Jf1&Z?)zTRP-N7h;UxW zW%ATDhu-g93SYzYseAP-T~iH-HXMA8vV7W2d@X_!`;&}wNHsW&1NaSEOr1|S?b|at z?`S2xmz3Uh5%pV~8VfUw*cmtO+kZisnCkS%@C^?9lC&Rr>A9#X+r{o91#z{2)rw{W z$9?-rjsUz!$gsb5`2s;=S1`>>Bj4(QVMv`{F<<2J^73klnhP_x@sr z?ckQMlFrjR38gN!r%2%cP8UB-aVEBO87<1H%h@9 zmC!Q~u|<3d@0|r+nN#xV_cjY>gR5uB6pe}#QAO8U;LC4vG+mbzi6Ev%$!i0C3Lrc& z9Vt~y?Eq5bzT4FSker~n$=~+Hy!;`Bm(keSaVbU+RqfSFdd*U(Y*lfxDlv=g(4eYT zf-#9y5u4dvQR&eaUAsCMqse&WKA!6LIcVCETHmbHbm#??l?l)U)(By`0eE`4z4s%qu@I Yh$|>jkjo{{ z+ve_>{0!^5sYmTC1mEqnTY0aQ@fN79cGftoS3U&N`@ zGh3F&K(TcHXcJwb^~y&#GwW|ZF5lx|{^V-Q&gX)fNn+tC)_e44w5Dg+%ANOo z8#@}+pBCr-b!lg=Y3EZ<+*Sz9JI-G!r_sn{J>@2~S5&1KvpG4j3BscKrsH|rDpTp% zRujxT)RaDzi8t}1!aty+%hl4c*092Fo_bJ6c?2J^H6$T)x!-#Dcn_vTJu=GDbzoV; zOCW;yTRX<<%zC7x4&uC;&@=1%Oc)g4B)nItEHlZyStTtcFgS5W!Ik4m?%_eHFVhQ4 zzixZjX1H4UKc98FP}38 zq^@NFaPla+ZDc+81XK~9w-`L%M-9A5>%I?a>1(r_1X6}6U(KU<@QD>j;Rkr0UY~d8 zk=aL1se1EH!_`*!lBl(;zB5?8oP7MKkZk{Ndw28UL4}b*p$C2O_}-pp7q!OyZC*F2 z8D9(QJis^f*RkA=0avb@caI)OA2*PyXYm_xxtD+Iz{jaaht4KdoLU*Z`Dtrjl%x(I zpcv$4t*&5EYNx=c)qANvoo!W$;L%q93fr1}U}?uV%iZouT{cuuQU439wSRYYmGA;p zbU+l{HzFZ<4j(?>Qvj#FP@?%7bNI`g+SD6W;UZrDMcB_Zhq0f3%{^~9()B169Cb-< zR~&&<9|Nk^|6H~Ejs8XYJ)8X0-?9943po%zPV{#O;@_G|E%$NBta_QfCG~WeX`s=_}eIoDKQ~#F|cb9AqcL|Mn zM?F4q_@zNe{`o7K2b)YiHN;jv@@u@pvlhd{{jXSWgE+Ji$95?Gzb9m&^I@MDo;$M# z&bh4fR}*+IQoyLAD!eS4g4N!(Id^}~t6=Sek=3P=&q!W~Wh2f~G4UV5?K{BiGY^3U zl6<}Dov*#)1g-X|0A0u7y;;*5`bXQz@x`Qiz>Q}lPWT(wtCStsj>Nc^l#s# zaD`7ljyN?cGjJ&7j4Y~?fR$2rk;L9U=_xLKYB)S*W$d@E?GxU?Zm6NOpJ`}6^Tr6a zhW8MlpQMb-a%>yb^_+ku_gKtt?q03zp#rs={DC1a(=ZJ-zw$uUu1hPV`k{SGY^38p zJ2cp4{kh=qdFT6aFM!Y{eff)!CY+nR=sk&hR=oI`{9+wqgOA~RPe{dJnma}unsT37 zr$MTFb>bUF?W6iuy#78sXPX4-;EI({6!!TY%{Hl_v=l3$aoQ0J{d8|As)zSVO>1n@ z^9R~1bZ{z%ONQR9U5V#%gWO^JoIF96*iMhp=4AO$3M+xA5z)E zL0nm|SWHgT%|5Pzu>}y&EU+;+QwPNK-gt%j(!q2hsY%ROv4nCIM8BGuEn-po! zujV^X`U$=YvpT`r8&_Ep=du21H=kjM^8iy1c`!7F5?F7E9Myaym_6ue%q5NG^V6uV zHp|KS0p?rs=woUoFo;dlFATW}4@VXP)Us_mX%6mY2^sO(ejBxzO=NF;)zpc3swY$F^?HzfUyoeoxg%uAvymXk z?rUV->bi*XO7Bn)&?*w!nsf0iF;F@CYI8#U4LE&_c^rO^{s9^HFE9Cgp8as6cZ2B< zl{E8Ly>p>vWnVkFqkpq%XJ}sAE_hidZYa+A187xJi>dol>0Fd=m1}-qmHyB!<2#pIhZ;)1Fxhv3-uE}u`~4%*Ic5ZL+hx$PNT$O7u@F~~c>T2! zi=&?LMZNlFC{EEkEFbT0o^B9x>FhR^>5C<$Q_{TP>uOBjT=~1PnT-e%`3Gyamhk1+cmJEi={=98@t2b3 z((ZHrKLo>vmod*u*1&|tfV6wqYrsvg28Bh$ykhMXuq+T)Wf070S^OE)91>?lVvmTt z61)jupWx+a0?!~^5a6`T#?HHd7x1G*1|#yKFKAFOF4sxr1Xr!g9X^WO_?1)^7|J))mza#RkoICy) z$~I#Bdo>tEnTddx-#_%hgJ$;KReRwr`;U0166{fMs=a0l0cCg3-h1y+yD8PIC~W8^ z>{#NpWyhdn=7z53YW(&)A#qwUrEr?U-`HZ9zSd>94RT`(I5>-*`h;~yDjL%H!X1}^ zTe%qABm5$0CTj_g&n`v^nlvUp-F^5BK+LOP3;~fKs8Mgw*8%eV1Ciy+#nnpK{^VxZ zuSK{CO2LkQqZkH4b${b;)b@}q)V|-g5M@Ky;HNkteRTk7M=>V?y8jQ=5^(E(D7PMP zK|XCfCf=z{p_%_v3=G1>5BYCDNu|fPdIKZ3>Ju>pmJJhn^d07lkF_E$QzSVQ!PgHR z$so$(Vi3x>usU?sEQ9u8;&fNVIwCjk`}9mDseSdoe=q2VAX=^m_vy%sbMt$~0AnR} zs1co?m~A!0S^rSh>|Nkz^#M#sv2fY8;y^hNZz%$-BM@Nyt%>@{}yf1^NVa0927sO(GOqaLrdN9;^7jx{$p`$)dt{%=IsklkEg^`)iDQ+#Hp z`6|0twBm}W97zbmW}^Gtv?6`*O)yUY21FV$>06#xaT{8_E-Z}C_@RuUTsrbWe<eie8*X1DEwo!!Y@z=?Y~~= z_dSLD>#BgW6v*_%Dw-k?Ge|XG2OgKkgWF$Z$YRREp0ojH8a&rX7}O0xlk2-KECwt5 z2Xpr#-odBba!_#Yi#}CC(2m z@h^odA&e+ye-s!Z*W~YL|jkcZEBRTTfkUJ@_h_a`hD4vOuF_of- zV*LAw_{VL9<_l7AY@f=gq(+0p?d;#fbs?67BnGbeLkLCTO@w>@`&${vK?nIJ$(55u zlbV6OUTp}DwOnFz7-_aavC{L5@t*#}&W4hIKK9mZFmkrwe~_U<8-tK&n^t*{K3>rm=IoxXy)15 z`#(KDbz38H_o5so5BR5S>#2@2V?qSQDZBqCLMOj7_!48pfl#*f!W?+&L?I{sAz(^IOd_$P`Jrvv5380|INecx;`rO7g=_JgoqOb^ z{ose*5;nUSCiNQBPyjnyF#p5F41%Tx_UMr^-*6zU`K;E&1f313vHvWNtRQ2lB7<V*zGZE}h#C8umX_=?uT(ylHAI%19g%mg`FuGaGbJQ_pSls6 zyY=9+@3)Jo%XQECyKagfhsXXO>UTBE^ubr*43=V~&PDx$^%<|b>0iZmI*(1?Ml5H} z|Ig);hQJmOUrVnuZ;5?r2dC{1ZMM70@`xq~$~ ze5_Hx6|S39zUzN`Z2YraZ%+5blrdfjM-unOjq<8#4X1sTxAO3tUGpLHmpPi#n@2;n z;l>X4Gon@dQyWY}DXf;P$|gApW4A+L0QSt!WA(LTYEZiEe-JM_S|La3^=E3La#^hu zD2UnHvxqp?ez&;>)u6QvNKN1q{6opQ2kdArteWdMFhH#MhYiMt7sa<&Y;p8u#s?{4 zu%N^FP_00Za-hj@Ts>)dMPu9kdRn3NzA+f@lwyPDHpz7(-Pgw~rzC{jIdoO*TABIS zI7fe_bna-CO8nZdWX^U%;yv2JH5!AKe@eR50``LKTCE+Uw#Efa42O8Tf1Fhf|B%(c zCwZ&?MOOc_qY&pX?#6Q;RP zaPRzGyt~b*5AR~q&{%QpD%0M*rF$!A{zl1uZulLy-9VU!9t78 zRU77qgb6j}T9+RaS$F%blB0N*-S@oCgX$f9=|{fbx)rf~t6lkSHjyKW!-~fnnhTv~ zP;HfVNv$MK0WNJU*Y;W#zq-gDe$A(Blz+1Bya|hj*wW!A>u7k|OyyQ>J7U^OzZG}$ zrrT3RSV>uoc2#2MJ>C#;t~eim>;5`A(d?t=e3~XU8?T#MzT@lJq7?qP)~xxcX$9UB z=uGlGOvk+RQ9ymXx%{BSIy&|go827Sj_lILv+lBsfxL?v`2;76^GRhBZgPa(a6nB zy1y~!HntM33;SRTfC%C7B84LZ!J#o^VSQMT!ekCLk=xnx>Pf4 z!NIy~-ddt>uebjC zMz1C>rs2y1`oA4yf~$P(Lsf5LmKxi=eKvT?UHhNa#=O5~#JouQ$#}cVj^6|Gs$#_%SGZJy9) zl(O+3_E8qadSSX&_QopGpZ7ow-aspko=>OONc!f2rt2kw9Al&!sG8gcqMn$~#L!=E z(hSNlEz$PR_<7+dOK;x1d65ptnYV1pmBC|s9_Lt+WtkUQC%l>?J6{>hBV&Z1q~_aR zKF#gl`zOD86Wl_7pjEbi(s~vos113}6-x`977VBI{_6{y9lY*#*RiiI5d7PkwyUkG zKVCP8yzXM^m7AkHhLJuUqlL=X94%t}#>;1)ESggaUW#f$84u9u?3r1n&+ya`IYoVh zvaBfgebKymJG%z8l;C-IZ$8!HVt)p|ckTQBcBL80_dXLnQV@Zo_=6v zDUQ6*y-8@jOU|fks_w9MgMX4GQN@?-ue9%_E;^5)K_d`5Tl-%H(AZL2&bud|Ub6RCkLPue@*8swy ztr`TJOl67$##_XDc`a115c%V)?5*OW<5hY8`+3D~G83p%s5h+OD z_FBDZGZ30m+nL)Mkk>Zpv>DdrVSH|=-px@AXog+ooZpB#z4Bf6^iV_`wu79mETT9Ftu+^D0JUvf8=><4 zu~F7_`KzmWxvv?XgQ_wv}eFPLuZ z94=@kcGuC}lgARV_i^voby>D?SrM(FTTmg-V>cg8@p*{W*kQo-84nKSpX`OS*1!IJ z-nw%a#ee;9ZpF@5?7x24`PaP`+Fw7cU05-=_}33B7HsF|9J6~42h{0UFnjFVLl4BW z4b*2j36kxPSmWuKk$O%Ga2Lu`W$X~(p7CNs3m^rgXqPYsm*<>&BI23R(TgXyZe|`C$Nzc@+ybNq-mJU zndkAs^-uxCK~_&ZZ*pI~?s1?)S4_vbHP zVuI;aOhQtwzUusQ?DRE*h40GphD-TM(pqn=6&4OGzaygpXjfb87yvOQ;9u`z9oAk0 z;HA=ZEPTm|Sx^eJfz5~=eGcfpcv}#UI){$gmPVh`b2=pcL+n_q`zFp6oo_EE2S1^E zHWbM*q2c9j&d?`!s?JB!l+&_x%yVK*ozKR8IhW6yknt2ROwypuF}CO`qS-08M=ZMr z<9NyJ_9`Y)qQ6|2zVQCdn=IWDcU0c1-j$6YLoqDFg0;x$!@4H2LoJ&vs%fy-=w5bP zWo6Uu~Wo`-YKL!x*L{Fir{Qrud)ZWs||+_-t)0= zC#r^!hj;#qHHPK$e_idr=8I2UKH8i%|_g2bl?Hv!hf?jXY+&p4crkf4>Vlg zIK7jZsKClr!1)nW3qF?;Ks06oV{OlVUDgzqW!iGeD{W=tG14}TU7c81YKFvyVLeeN z0s5|XG1kZIZYOP_k1TP08C^ROIj{2VQ(EgLw-NvB$v2nTYtrfN5fieU+egs6k0L%m z6Z?4=;U!JwD0j}Q^`heVOywcSIhbCSPyT%@zjukWq>Ig(yc;5Pg5uk3&qiTprJ<#k z9buCfL6R1_&`910ipgk9SkPYi*g)I`4a;p*B@Zog1op2oEMlG^NcgOiRYQ7U?)Pse zEURPb`#)zLC~Ft!KE*=@dhTyP({GzRF*(?hl4k)IgRoa;s@`yk{k$M;#q>l@7K@#7 zxCg08t9@J@m|l;jG|#X5nloYS3bd#j3;V{Yqo6SiyH7)b7N3#Ly`Mw6_yZ1x?u+bJ ziX$~J(h!Srib}JZnaG<9m7OF8fW3<*R7s?UCa5{ptLLrIaJKPQBrd&goYuxa^nB%X z-)yY=z0Z??--cl=Z zs^TA*GQq=|=EhUe^SNR;qR!y9xV5fUWb3v7JbQX51X8Rr+E<-GiJ)1OXM(N!F=4CQ z$4;tg9{o%!mUeKabH|+RBjz|0JjVy@7Mtwe?HNjJ##c&8)|bF=^hndo-oK=vSDndm zTjC+IMp?#n^a?HH7K_Br3As4nz8{FxR@*u1MiIzvJV`jLil<53 z#DLeGfwt-%7&C=Y2jGVEUr!4SA)Y@Ypu!)l@mf5WHDkn~)_wG4(}V4&+n&HI>Dmkj z=UpP{?~!v~{lev4gwz35Zv|JEsE1pvb%&mRB*@B24pxCC$N~?K_1D+p5V$RdBJc!& z{+@^mu+iT`(q-^8Ngg^Knhan`6UFgB$>*hzv0U#qe;DjN@ZyHs66qkNo*M(_ z6y!Dij!7OItZ_DO1QlD-<>su)mJBacuj)wg%J7R~>9-$lR+!4bqhzZMp;cUKzc=U8 zHmO`Pgo+!v0{-`HvH-=}$uYGbO#L?D{1E4`-YNGaCBXpDk4xS#bsr^BVI_{Xqg@(0 za@Dxtn+?;2h-XNRvx4ivL6J^G2XfpUUgN85gmyam%!)f5S#H@IbEGxj-x6m#n(B7I z(AK+wwRB|2NfC7CYN^Ix<5h0_!pF;3Zy(R>OL?O$P~ybbwDfgRk8!Xu2SMPZVy3LV zg$RBvk3=_6oo;I;79$>Y<2Bl#ZdgIuBU@Z2m;?=KLpGJcxP0DvUwT?=*vIh_7g&#u zB9)20k6b%$@1B@fi|xp2M5yJQ!tu|8-{uFXt=hPHu&eFm^isz+0%?lfMblRc3ihar zZG#QXkJd5DdwMVvXJj0b*W))XRkxGL8{lSbHx2SjDMr_`1_mK)UuT`AT2F1p*t^DA zPX6E^*9AA>PVCsBi!D}hatbo1qAP68DAbSWFX*jj8fSg(mvU3qU6OmlhT_)eyqLfH zak!6G`sN2IN7H*VQT z<5A@`{TWz=@auwtVo4J4wtdIYCt0Q!e0~uq_Uwp2sdC$`Q?zMUc@f)8@hR-HHCc`Kf_?B6 z)7}(O1q^!g%Z__s0M#z##l8+R$9o-@Jgich6OCEur1Pl)2S2xmFXaqyJ@w?y+eg!o zS_Jv7ipz4m_%Co%+MYSrJ4VH^Bh3Zt)2I8+jPuwzpNz8n5GoFF7n=w32lyt{K8DE7j%tl* z*|+*G&(5(kxp+=mvs8H%vD7o{`ckBxF(mNm=ti2aO;>M3n7B>Y69}3!xKe9rD zBx|kAH$_ciytZkJW{e7q&h5#1JM$Q)X`+X6{%qW^))Gt)bj2$9p7zQPa5>u~U_cxj z))f=H$b=~e4M^J;aZabkbNHP{ZB_*< zi;X)Jq&Unkvfs+ErN5@2e5>p*rfDK|i~-Nf10J8*rCaL@=%r*r;I7;7`=ym?l&g&MK+qiQ)O` z`VHYT&O_&T1kR@jjh*Akak#LxC2QA|@JVBjuZkX|jO3U&wX!T-T`HIQpD0MvFh0A58AYfP6T9NK9gZ~eHNIPru^0j{>j}OJMO>Z+7r_@pj9{HTfsG68rOWtO_n>{rL!iLD{OngUS7|Xlt=H<@aUs_~@ z>5kg>xp`|(vwR#ZoV@CfrmbWRYlEq?WkZ~V_}ggj-l)1wzO;N;dxV46g zBZ7aQL^EF67L$O|y|h;6TC4oT_{nvKu62M)InoNY&%Y>35mhwbg09aF;9GoHS9GxV+;skqx&xLCE0t5<;M=OR4ldehte(AxhbC9U zbJ|mdhR(0k+kMlyPCfc4Xu3XtC{m+s;|CYsS^H#kFb84N`Gk5Ef2`$65Sed$BW&id z4V33j2=K#elExH9?T_|lWW}TF)(Vd-gC>`|MmMI}>57SHC+J{4Sah0G##Q_JN2eDL zEO*BM{r-TlbB(rndYKs{)gn0%_uU$AJ(=D}`2{l+y1I8|-K(|DyB@K75SicvL3?!= zU2}tV_&_nX+$?IJ#@MtgAnY{hiL2fUP_i>X&rnhIzNkj2JKdJ}T_5mLs@cFQ;ZBFE$Bq!R2&V8uH&XRh zzb8EdO&`}l0B%E#7m2ui1o$g1Zcs_k7yc3rVNh0urO+bUc$SGR+n=QQk-x>iC2!_* z0#@7y2x|aW0iu61L)6IeOZ`!G7!clsR!eZDV^C0e_Q99+$AF{OXiqNG&&6?UG&)P7 zs&7r;^wbfH)WW^>9dC+UwTWhKLaArA1LgxqzSkO`QLXVJ^6N)ntt7+^mY9DYfR}ML zXL;*>*<4JP01kZgD=YPdVzlZ+fb;Rl)myM0sXQQGm8hZ?L)G_Rd-39{=RD=Q}C%i$QKn zGUhZKzK%!wC@g9HE5zq6Ge?;d-~Lsk$+9w;T+HJYv0lTzri3(3!>+7El#xOxl@ThWh;)jKGBfkgB$Z7RJ;@%G zipu6_*ktB7b~a@uM7-boDV@$c&*wdV^iiJkjNfzruKT*b>pJ`4&5b_JIJATP2p7=O z(#YYwBMHUzL)6LlI0!{|m?g0UTQ?5Bg#P6r!1DJ{p_m(_S?}(f@bQGPPo;~(*JuTK zybeNK9+UYDpYdt=Mkkgz@jg7nSiot8=Dy`ya*0R^ErhX4NCU8FD*Ab!$vqo59J6|j z+UgK5`qa>@!$PEn{5@}U=*Tem=wk$6l@`gxdAJ{Pu;6h;LGt*HXNa$T2+E+SLBx=? zi^D0`hN#0BZ(Fwve?biBafB-B0BtdrA$kF|xGtH)$vE7JI*Qp8Rktl4kZBexCc|8G zfRJ>$+-VWjPkX91Dpd2zwct3~+T`=DdQWh&&?{TbmX+->>LVr9z%VFEf+8D4xl@Lp zEuSr$NNPL8IL>KhInJ(T(tL6W`7ziE&-WhlVz%@z!ghX4_)bA{FGDweGy8t}TV4Zw zH$jD;S_rh|w3k_ML7L_-V6(?r%GI3wgZdg09^A->L(6GhskDw>>qqQq?aT^>%VvD7 zuKFx#oF^sU!u5&MroYv{Y@&R#h~kaGzdi_&FkFAP6%$Dda#p#|TC{|OgbFc?^W|~I zal`Ae*uPb75t&w#J|$E`G2C3$%@q<69Z26&_L@rVDhj+#;(bS>B@Lh2v`94yXg`p% zzOqk%G5_10$z@9l9Zzz+l)1Zd)v6-Lp$*2HdW~#`T6ZHU@7}b$EcX-ctY%w-_&RSK zFg3yAMKkeHWz(!u38(pmJ&TI-Sxerw)kqXBTfqhh*KbBG?OOEAXVlfTW8eA~E%24i zhT{LAw*pl+OMPThjXn**HCkvcqF&I_DZ6P|h+j>?C>ZjnMA7a;!{Ln4Txvyo=b)<% zy$lIBZy#Ww8+g#RCCvR{+ZMfR_=D}|AK(A_pskF7*=oB)R(-`#*EJ6*cDCkw6+>qf zUxzU>TWOd&EvPX07#}+ae9=YVA#;EE*C_4^$wUIJ90Xbs3Fmdf4+!`Et}vhiKxy-L z%1*Ri6|?p0h0|3X5-Adspk8~YA1W$#_Oyk6j(5i^TiC zC6fJFQ_^^Qv&qo*0QrkDYt_ba@LW!=epm(Mz+Rfm;rhD z{2JeiBduFdUCMdH2ojVKFbJzm<$mv2>4}iWJ>Wq6s_bxvhyk&u%CHwWO$>B2s%9DF zP-E~~Kh#Ime7JfC7Bs9+@sMz8&c7tn)BZn^0QnMGlIQ;PD-IDo2>8cu?fB6@QVU~W zA_X`D21#SCftJg&@^g!l&S3x8aDLQ22z5eL&u;fN5?Lhg>!VIui3@d{)OW4U&S9sr8rnFTl5XAogz7h=JJ~ed=(c!PBP+ap z#ahU11Uc8XfbOHg{!00FQ%-0F!*AP5Ne-kTqSo?(XzsM8bcZpd@wY3hrW>^M2!u1H zb&@<&hvaHKAjQuhOpA)G8V5*xJcl#>wx8en zYOos5DFQ7z2p@ioBdiM55S(MD%uq7XeVGgQBiJd0BH*iYbun|tH?JPI{YVH+Um-Qw zDMR-h86^*z?MWXSJlLV69&=EDh3dSZQdh2J-qkD${Ux!%_`^{(G6P^2%lhC13{?#u z7$Iu#_rxQwO&ZKpJGpkyJkKfgIp)R5fNrh8;;4z)UJbcbCzEOiBl}=}quYMSs6Tc) z8AxCF9ACq^!}^bmuF$j3lLz5`0O}$vd0Vc@UQs|M6_samc&E%(ZOLFs>sEyX#?OgJ zu?ZD-#o0R*6j5}nSeL`(m9f;SdaH$}x%Ds^@GRgS^Ubc({T}6CxID{WuJQV03+P%0 zm99qnE56h|hiqmN;;aMjZ>@HIo{rmGC{#9d~~jJP4ke-r~i<( zDhuf9BT)VEfALaIO@N9^NT{ebb2<$+6p!%sD7eKvSpKWf+#pritfa) z3Txfy6l>)-rWxC={74iSy}_(eAB>;gHs<3Z%}l!?**(ighE%5&62yIMkA0v6!j(Ol>Ywq<{ ztwn0n83UWQt4F3Ly*Xvx7h~q^7{0}ap`UxVXQh|%tm{wGh|Md!5~32|ErVs>WU+ZUD6JlG zTWfdH*>P-7j{jV5l>TA7H5!0Y8%mwSW_FVA1pv06mB zWE}B(C0}9JR5=oOEiV0j%RA3<6Ud3VpJQl*b46ZclUNinO`Zen8}-H!fl6i z#^8X|grJE^b2qO_^)DHAb>B`VWllTE%O?X`6hCrW=t$ykfc-;&ryed4avW$J`Lp`S zQ3C+>BB>>7ALZUIcT+@LYMp7>b8hf*&pCnmXYV{aTsJXxIrMroTohf`@JwS3^n$FD z8cdzrii2{wOT~eP*FE zd#mVYg3&j9mWm%`h4Pw@3Yq!WhZBhK3^?EJmNKz^r?#tf#tN?%^=@&E`?3jcwizF8 z3PsyB)J6H6Oq$9#;ne1SN#LTHL2Ikr%bDrXgBjiTU9{D|FnnoIHOXCJHg$;lY1eY< zCtjH^to~Un-bQ(UqMF=+(B}~g$!`f%ZPrM$;+Z)<+_E)u(dj1pumlEOBL|rq&)c8> zygos+%CO%S<~I$yV9}I@-{_1Cst(6o2K=f7IZXtj6e@(CWNox3vx}B(<*5aj(F+NAHnd+{5c}!{GfWs-JVk8uNp=HGKvne+qI5xO z!fvEc)xoXpgd8W3vVO`1u?yk7l>N|5#b2DAsd`#=*T&=#<<$`2XwmBaQ%@JRJ62CJ z&E77onf9KwOs-q)WiKyIhSyOU&YQe3Q)!x%w=&EU<-#dDvFOD2yLqEMcVbF5ePjyN zs6dVuZ=1mzGQ^zVumhhi8n&)a!TE%hm~0QJRL`*8{P7eXJs7p7K2K>2&hZq z|71@gg;YdR$-1}0|L#Xk#_^HfCHW)nD_bTd$Z+^wlj|=%aX?RQ;9|h!esbEND`88}Xrzj0bGQWs6hnHkxUV@F$@xRq*s zIz_rs*sw20QnRGTHFlI0C}zM>V8GhUMW?qmUOo%S^RT-YqL}z|(*n8%mEiYesu|t$%w_;9~CY zgf|iUO)PVu|HIXn=%aU>!0i|?P9#uwHOwF+ue$sV3Y&-K8f9~IvvNG5a=j4Q;b+1Z*weWc@rA^PCo65OYw{AqrjFAQn@@FeGPS3J)$9Bv>q1p7 z>5_Ft&fhyFss%Q4MrNzSU2oSK1_ccMp=<{IQC}P{#oqVH{b-H|?@5-5v{lt!J(R_U z)Jb$V#>!`NVMnQeBrgHYbt3;nV^^MCm-?2>;Dgs2I@?7}+=6aiZ#Z~kuKO8M5oS3N zux2LGQO1t4>HBWvcI}dqR#)b$>6I&2_F$y3e?-S%M!(1rc70vlar@!ZJPC#~Lh+6B zb{vd*;~Tp_^5pbmyD#k6rkV5Q6isA`l3e#k4=6_M)_F;*7dedngNs#eaL1i$RB>@w z+LaM@IF{ciBE@p=Ya2bCm#e5h%5M=m8J?ZA_NF8*MSY%vpY94?nZ-w8$n~(}t%n-s z$f^@LSLfGV6~c^?Jkl51@!tR1DbsrBJfAaS1&JC{m(1iyROu7W05`7#4u^BhOQuGx zsXn$G^+DnhB4zYur$>F&rgDTIVKp7No&cIPP+F?boGA%ZYk8KLv41_`lV3bCd?!2V zm1uL&#Cj36^E5$bvS_Lq{jdF+2ZUIwcjMSqMr}%hFDurS{y^1k3y|9}?I%(%nBpZfEho}-9Tz-iPl%C9+e6%J z+0aBBuk9)N*t(Q;OZY&`=EuUgym^0J@594WEYq5rb@8m{1oHkg*-Fh@jTSys^GvRm zhOw>nqSV>@4WD+b)0M@h7d*JITH3nxlG^ zv~_7)@vBc6D;~L;o}oW#o$}boSf;W_Yn)@fA3nr#A9AWDhpYQeZU$}WqsW>1HWyP8 z-2+kj*@9F>&m|bD5C^=`Oj8k{l zw5VLx_f{^!{E{t-%2+`5>UYKXCKDHjG}13-Nh$Z$i0P0~4y+nqv_2-B_MLV3bF}Pc zfz79+wg5b^DYIVNl$bweAC`J*a7m9YF5Y7@IkAneC4}!&OKv#D&~0RJYVd1Yxn@)A z#k0_Nuie!Zw5G}aDtEX`Z%jx>aoXVeK#JiIQm?ll$gX0aE8C)C#cuH(3!0P2u!AFt zBeT}j!9Nsg7v}rkv@X}rhzQIr9|V!-DKm1FZ)YQ@&Dd5tpzT zU3`#b&y0&@YWqo}yom`59KDm(vMj!8%&(ReVIboYY9jYB3N|encU*ct%uFYx)lCYl zzVqSPu*=tENbSLE4v>Rnj3z#$l1?h_MSGu?1;keKxw1Hh9Z5%MiF8I=#}a_>Yi6t% z__Wt#(r!G}tnFRbZqKxZbdFvYPPcx;*_Xe<%xP2_$Gj&vc>eN(+*8Mfp)Pwo;zS(z z0SChqvA_OcO#bCMkY3k;&=)_2jtY!y%|BtbJ#@dQO#iL6*Y=oPU-!8>qH1jOVE+!) zHjjgVtAN}>8O)xR@1xa+kL2QGjdwFyP=^w_TjOE(GDIN>srho-V*1Y(^qr z^Us0e51hptUu5$EBBU%LmDx63|n`yFH-irud0ueiXyo!KPaU<)b2A35s25 z*RK+YFungB#{QB=&wU7+K`*EnogY|hn1tC%h@$R|bd^0c&l&{93iFB*ZIeDDW7o5M zHO9aYaV^d+$2Ed?uv8CQ-egZuHxD}a4mru2;2qMAKeU0SuFWqf(1J`BFtro6UgTbe z;y?l4#BFN_6<4iX8IPGmfW)&{c3HR5iI@v!u>cvDCsqug=s0ECeR#vL897IgCxd2; zsoa7l5sxRrU=Uj$6n>1qD{kqT_5fmL>(fn&i& ztC&gW9KXtLl)f+$;ckZ@iHVlrY^jxiO-t}{heqK~sJMy@Mv&k%Y;6}{h64D9!YKv| zyrSSA>hZGcQ>)w8&Mi%ar{FY9&}@#tX!HHQC2L>@NgJHcwJX4II>ihGqi|Fa_+(5m zNZbo%E>O&y?6(44UUo*%u!XY_y;upnt?U$AHW=5=v<5t`CoNE#vm7F9zV zzneG-e(z+LFjXLZ;hgyYr+Z+|(=_KcVsNH&TIg%eCipiBss!}z5sTc!B_)R!Wag6j zYZJ7EI?#O8Xgj?)S6}rN;0FN6mU4q+Q*ui%JOMSRM-zo&@Sm>Q9ALRLT)A}Ph7Ebe zNK^`4`b4=DQV1?UeJLQ$_nunw6IOgBv~m3m~T8YysJ;itcX|)3rxW% zsT3LlNM6SDSI)XerWxacS&*5*(PUe)MH{BvzrZ)w+&zW%O&g)oL~WY5A>BP4OPhe~ zM@}y`nsaK=3>kAKryn*kd{cB;c|AZ`{0a7Nhkb=~lf6i}&@@@vd?RGj;VWoSqs%En zd&{Gb;M(j~)mqQ^U%ux#s|W4Nn%By#a{O^bnpQC|*ur-pumVP4VG68Th#c2w0DH4A`Fb%H#d4Oa9!GlR1;2fMbp8|zAdTkrex8BaDj1adlrE+OtQnw#zKFM7`8 zMswv{>N(S~W(ru)VSEG8ip4=s5CM0?GHZChb7N5VwzuE`4*ak~9ZJ$qkG8}|(F|Su zFP_%ubpzVbULd$fv@~Wa)k&&iOx=HPe)`|O7KP6xzYn`UToDPZLc+dJTTqc$V@Hk& zO63fnj!F0iAeZ=C(LJvNAz93m5b@l;U#AZNj6rSrJZUgGQxVrM30U*c13EI6#eDNm zbC8D?@0q-#&miJk^W~wg|DAmxLA?6j7^mUBgf}Z1!%~!4HE>&F37H~RQ`6%(Zx?uW zbrPr<)b<-n#(mklsI7d)JNBJggA-XSgm22Mmi~8?U>KrVC1|fv@Rmo(CrAu+!51d% zD)7!ROmV0LkVn`}4E-+nS`fFpuWuY$Z&lj=jZ<*+lbs^-{@}AjJAzF*1%WN`u~$U- z`SXEa(@RO{q13-5Gm^(N0#J>Q5%tsfBpG@zd2x@~-*pelatUW$tz5$NN*;BpeSEy` zFEaIyR*8N}jY#ot`9aTP zh;K5*v5mM<&{?5gX_6cXJ^J}%sB;gZ6ar}UwgRRkEyc)1WwcG0xJ3|KP3#j#ywfo; zN&#a>BLIDYIxhq9KaewJNfUW{rxPn2R10?fk5d!b&O;1c5hSQ(N(Oc0pFT-X*WS+OHb`p_*cQ2qLU|yK5GYywlJF4!Zf307+vi%cAYqFPHlrbIOEo zW872iom-AtWRSK*>4GA;C@8?SF|-ujAi_?n!Ewh!<%2hy#gYv^8q?ex%>+3dNC4Bkc^q(v;_wt zi_^sVJ2WysPT#nL<{9*p*^s_4Aai|pS=jZ=4X*qL?+bgYgPUiMKM=HO1K)D{-YR$E znvUsxpJZ@=-25w*+2T+WZtgb^Crp0eTEgUejH<8v*G#@7jmakjI$`pU;)ahdpZ(B_ z@0AL}N9+s>S+Gmi479w2j?r$ULj|4hPje-$2ium^_6c?-f47uro*WzbW%}J0ZRiJ( z&KU)5XC)j@0;5j#sM^MRYXQ@$MxBOLKl&iYstt_njxS{iZl&bK9*r}-&^KP2>>I!I zX16}uT+E@llFs~X2uF*ymz#%MvJ7oh8;k@@U>oP)a1 zyJtgeAmQ@m+*dIDrVwk0g=(P-?ty_(>-^n$x;yMKS5ISI9i)iNRX`F$0t=CU|8QsN z71+YR`?i^N7p}ns={N4`Qa`pmT8Bbc$>5q5bNTw6+>U?)J&15YHtohE{kxFwHy^IR zt?9$ie7%xD&cMxEx1vbUL7y5-xs*kuVU<9TSI3H>2_yf(g$5AD*c|=yAD=rL)55A^ z=-1z>A^%Lt=ssXMOq%s&DqbL%DL+f*-q(`XXjaJu;bu|kd zZy;Lrcq~ppLiVu=zqn%Ow+~i>lvkFE{pW=hmB2@$*J;hkp4j%9)CRr5HV=NwV`}N6 zU4aW|Oc;FApD=qOSjhsipyLDstO4pk5`+^F+bOo=hRUy>3gVAAXmfbEC0r^&F&S^Y@i)QL{jPDva}~Jpv8+fmzxhq#!zH(~ zGjGUX*H-3V(g|#yVQy#znwiAdQd)??&kJaoFO>!PDV3ZvrU~fNI7xiTMZ1$jh>|C-GFZY8V9w>+8K;ThB5fOPRm*H*?~E~Wo9rPlVtug`ZB zMnJ^$-F5waF%B)3$Xav=DHwv2ORv@qZ#qlamjf#FGgbya%jT0Cjr?DN7E{T+PN}s( zKa%)f|3{((z6`bUD^oApPbVNFX5-}B1qZjzj>W^Bip`R%J3d5L|73}%5cT4w3^#rm-M&U0-k?oW(j-VElacz9%7%Z>z* z{q*~Pzj>Q4d8E=obF!XK-m=G7G-o0*2odc5RlZ6tlFZ43v;)#5$~&Voq;1K02b|7kgt{rqq&JX zk2iZ;_{z_uF*WHUhT-nJTi8o>W1p|;3Hn+~yjvlxe(n}{H@2?|1$<@}_mL2NS0MYQ zXnk;E`z4lR<5QdVe3iw-JktvSTH*5>|16C{*9RYL?Tz0$zXrD9f$i-y+i(na@&gQe zA$64iWhAIx;7f)>Y-w#*jd+fPEa%U`+$o(hdnYw20Ph@nUyH1!#PnC!2h~s+2KPC} zdmM=FtV}UE=$v(_1S8^w=MW7snZ0^k;2da1do;SiZxK|Cgh2yz*3rf!G?j(|D%8Xr zSexFO|Lg84@&`%31X!Z56+YwqKUCx>HaP^u`!7N`kyp(4j>^4RDcu56Oyh&F)oZNd znfJ@hLPO=;{vR#gKWzAgzfZ=8r*QgCynWqd=umH*m_G$wqbPyPny{CmVS%qDg55Ih zGEpj`<3TVl*a{<>xHL*j4c3X>H|j&>~90_16oBo7y_E&m%ege zJ+VgjlYmp0>7gPb$9v2Y*@d?TZlw}}(F7C*yl+Y)8AxRgA@^Lz$09$iKqAhyel*3) z1&O+!O^%WlI-gDot<+Eb;U7Z(31Is9oBvOTeZ{9|b{owZ!9HJmxmdFu1opS|~Uz9=b3J;o-%Mngk;43-v$prN75prPHRd2k>2 zMo4|D2l$WQQ9{#E#rD0Ui;=x4n!J(Y#}BrSA1vNcI-A-%SlHUUW?^SzVP~Q=cXa&d zz|YER{qHMSZ0*fh9c*t_fV*IQl-6=UL&G&f{kxMVl52s6R<#Zm7gcpl*`C4l7&g7Z z+*draq0j#HRu+@lz2Md7?Z>-E4beyeg~s9N$H9-3m2|f^PDca=jz-!X-XxYkfBGz9 z=B>^;nhgES>%Q9)&v!$#@^$9PuIY)VaDIDOaguW`G)wu%-^rx6TSL#&C^7q|KE!uLmN)UbclqYoRbw6=sY|;{{H@k z`|~a5ogz0rhlln$JmHobla*Ev9zSmXbO$|S)RNJ94(=_IlA3zZ`+A^RKSj_DPeDOp z|M*yS$JR2AMXzAi00N0BPJTN=D|FaJvuP{m?cn4j;p)nJ1Kf1+=NJ4c8}dOX;|y^V z8Vb+jryd?2Y~D8>4YxPQ1OXQopsn1Sg^S_z8`{PgGP?v)-9m-}6LGTvBqf$Wztb`@D@p z6;06n^ux5%xL!fEQjvBgwp18tOGoI7g`J(p?v#!C=^lqzFXa+G{ro9@wPkSIx)d&A zv-SRIq+g^y>=p^XeXTWKY9KQ0h1~i5-3a~WFdqK9$Xa~-tB{O1_d9ahjSW8<@bD0F zv#^xS>&msldP-fdaqHJNbbaUsojE5-bSDlm$4}bFnQDdVn|7UHWUnU_tC%&vH=E2v z(aDZL-EfR0BqS{7!pH;)o-u=2>(6H0?M}C~D)okvmhC9K&c7j+UMi&IjrEL52u(s}?zSm}f^qr0c*8wve0?}K{BoMyb^eaiHa6dl`{{N* z^dkjyo$A@MXGG*G@k`^pv3utSOAj7BQUwJJIpl%zLxyt|HM|E7d0r3@7-+b=`YtMSD`KQL0Z+jd1w_lSzgLJ!e$UOM7?mVfkQnu5z({uc@us z2YvJaBs5_ERANX!G|^k+;^JaqHQBb~_U23^`nt%IM@!~)tg+Exro?8wPT0MrwQ=uG znW^O?=*`8Ne3~LlW|x<3)5Xipw{t4YqR%2}mY&L)7~8+4yUkcxT`j;Dy1-Oa&;>Sw zt-bH+)>ffH(~AC$U9|UadwYA;PsT+KYyAwo5#;Dt@8ehv!t9nh)cEgk*!mqCCPu%J zQ*c~{iA~ai-VgN`>r@xu-{m9zK}$vT4RV>tPDn@?drAk2f>L*iVNQMT|~1 zM`KU>y1OBr87a%MXh#!f=?k{r$Yg#y&*MR<;-)|h+o6XV_=nYO?|X@yS{Xn=_8-=# zs6qQtm#znk5|s+4ZpfYLVqp!Z&eAlDmcyh&9?%}x8Eyqj9P1*`ktZKfH`zg_BB%F)yhL)@b2E$1Ay3EI3hF_oRJRg}zUQ2UVxb71< z{cU^>w5HZv=63Y{1Q~-iq)kan?y)aAilj;puw$d{JV|_QHsbIidO)uUmo6`EkNKh~ z@bQZreT})~2J0zqCm&jVe(if=0RaJ;Ki-Fu^qe0Jh-h?^{JOR7IiQ{+JJgbOr&TH} zHtmVaAF;WZbv>Oh8=Whnneiz=5=HZQiQ;6fp%ZhW4=Bt2+FKlasj(>?w4h=z~J+ZN|8H9GffYN?J-QBIe z1_wXdx{pgF}Z@GAGS-O2s^k2`I+A|EtakzGx=g8QGUq{7JqPk=q9 z?d|QoGk556K;%}p(i@2QFVnM&bgDii z8tK{Dm0fx)yD(ZmJtR8noVD*^o-8x&ROi=cjx-)YAi(ZG$Zo4c?$#>`odU@(+-N3+ z&!K{xoP6>tA?w)1d2FX{BUEjw(n{mx%zdT%d305m9X+zx0Nw-@;TEoRQg~0Bz;n~Rw2NLGigCA3@(yi-`os(OWNyd8E>550t>WqcXxNwp{u)l zsLEc*$8!%Y`fF>goYy=0gymE26 zuxFi7>J9HeZ!c$2^j!RpA3rWjcy7sFOqH8{)jk7$t%jVTP0zjgJ+d_ihgSiyf$X=$9|b1B|z6U3+p(;eBw~V$Yk7Tdxh*#`9=ZzS_4IDZ=JnE9#TQinkHtSPvdF?=Q5;pGNP* zvl^&t2xeD<6-!Kd)I2<8k{UE>Nmw=ZLfsb&EX|yjyYoE4?4ubsDyf7X+K--YjutXF zmE`bU4kc4=a97VbCmW?+DJ;82#3Wr7P(LRm4C?Kb8?Da*iO6b4!JoH=S+@#@<^MoA3!^_s}7awBsTznR<^_zt-cU;lE#@GUva zY!w*80yAKloh&0=m%Abf+;LCR1CG&Tpal&%9zmK&o1wXoVQ{Dj5BOp6u7DCWI(toD z-{Dt==q7I@x#iIw#A>--D~zHRyq9`B)_oRtOf9QO8cBl!rpDLEGYxtijy(MvBkzND zLbZL`d{e0XAp=P75Vtl&F@l}U;yby562$3Pu}&c;3wSFUU&QKGQ$_(E;>jT# zIT}5}#dlC7pH};fBLY9a0Kx+E#M{2Q-t*SzvA^AK!`0wtmse0wKZ_eupj8^OjaS80 z9=DT-lcogiaFXxQx*@sf=&j#&IF4{?MxPmPG;XTgJ=r^hf+w>=@S{{o!LOr}VG9VX zXpGGh`7qX_XgOjYDyG=oIDAoJ4Vn#oE-=kVZVPdGg?84Q)M@F~0b_m!o;l)6-a!rR z5{VwF(~I1M&CajV!37rwG!~Bb9T2h}(p~mVXh?$vXjA8Zio#(`kH?5t%l@e?lO5;X zw*0a)QulXcRS!FdS$_(N2yUd%A`u<60FCiOlaR;|<_PbGWrl)BcyVZ8-&cHmQPBjo znT&4ps}3xPFLBE`4{H~hmxxTzzHgUO7#4ywo~+1Zrts=8vM9f>htS@>=@#i9jr9J! z0uwI@mbHyY$si67{mw-!kU^14-N<^#*Nun@;bMcgZb_Rkg@-Ie6yC-u9MclTuFB>x8>cVBl%VfOkk{B&@T{bp-DQ}%$V>SS zg~pr9Eg~Q)Z6ad7q61?gWH!`8xnv59`0An96+kLW_!!31(U9R6vK3iow7TpNeZbRE zbkfl6Du<xbL=pMaLH`2^~CbTx=Z4B-2DJ6 z17-&4$OeCB5K@Y3N|Wk8;!`CGwbM^Wj(N3|1l4ag}c>!ST|cUd`=@ zhlTjyMWzm>HzU;escu~nU+Q41T_V#^$j}5{?WW~bcpV1VUcx}Zrnht#VZS%qs8-1+ zOZzJNle~gb!9y6WnnX#5?0|;+T`b~xraS4+zC@_Lc4Izz11s#iS* zYb&HZzb=aW$Ykge4FxtEb{X0jFa&FdqWwEnz zOULjnx_ft*e-6}WfYYOlg%k7?e$iUX3^7|Bd9Bbky>zHrFQn_96W0qjz}lqy6aiP> zaEp2)HT3>uS+iuLOf&h65p*+zp9d21vHvE1OWeI=s&)FBMUGmC8c#Dp1n%*^qq8RE zw+w5As&=%h9G`MLTp4Q~cBZV@BwLh9nvD4jLfHz*pcSpVXj*Lyg9<^9*|r(yUJNbK zpoYGigx;s9ik{7`JymGY^4%zmutP0rwA@=^?i}2oA&7r% zjg`HDE1?(OFY#Qv&q|-2v*X0{!jt`B=ZVoVO7u8`#X3AEXG~h?hu5b1XwuT*F}l3b z<53Sk9#$LXv&mX_?R9G75=3ShZjwcYYSxo5Xkf1de-~!^b&Fm+kVwe!Ub19=?BzZO zD=w2p-%3GE$d~WV_by%F$W)o}2)EQ;;%ce%4w~3CCbfYd;zJiODKNP)bKg=qGZLR^tAjF-MwmE{a-TqK* z`1o5v*K>O;rWJ-CDS{+(XnGK%a!$r!67cJbFyL1X=^Nz zspt3GZ>$2Wo#AYy-(SVDp6nF&xdf1I9nKgEI!i;FdS%slxG!{Ko{3q_=^T2|-P5|U zfeoc%ct@${l=iBVZSch%XyR#heQCNN6@?!15h?YSEA=O-Vx!IQ5ZSm1AWk zzr8Ol`boeu(}=bBQ%)1GNo_DAI$}j!)@z*OrMN;l>`bX-7l@8ZDnm=uo$-RzbVF8@ z`BG6GS>EsyQK;=Q5WI1T+o=4OR$Qn-<*TJsosqDcL_+DjFw$^5-Y#}#kVh1Gt|BsW zKuuT-^(;2WjS=GxSJ-?6*=Ldv>1^?u2xIN;T3O3PU5p4rr7$XbTozII0Rn|o8!$Hz zQBliyay@gk9^vchin}ZBZ-q5HyGyQSy4h(1FlmeX1%>2q^{7Bs_V!GTY?r<`_C>P4 zs7gVlG!hiFn$he^c&gk4eCo8H;y>v?_Lc>}P3}y36%h|#K@udPF}pQOIF$;}AX>vn zWAR&og5chEI^*8uy*FOfhpF$rc;FnS(ugKtyvEDu-m@Dk(hBs1ok`xLnKncm^KbU} z^|-3YI{0mPQydC0`XpTSbsgvu4h_?{)Lr%UY-v$9_SpAI^ zE2gJi=^yXJQL0Zeb=F>eu-JYUDOTn*A(Xkg*~c?C683^eVXDenr?{}Nuu9@9!Q^0; zlogN7w5G+JC-T$+d9sz;J=lE%>30XX8g*IrE!)Es^!tzUj#J9zW$2URZ7Wsvb-U4J zi7kNgW_2~^F&37xY5YK%kWRj;jiqG)!njZNi4KFjRqv!T{oZu0B8A$RmW<8qhN3qI zeNUmw_HXtbp|k0%+3J{!*rC3owSiIF zl9&c0lzhVHRg^=UDh+jkfjT^xVrU}MFl)P68~ew)uT-w1(%x>A#mzoF;+QB`fEHy} zOAo1i$=g5yC2H!-xvmpquuk+yds080xVSuiCyG;6{sCI@H6cw5*@!ITgKP(WPU87P zI*)9FEwi2#MG{U_;Wq*lf;ET_XBSE`ccg1KcA#2BD%zVxtChUM@K*S zzw-PctGPV2iwSCLYb`mBH(%P@9{NOKfEN}Ps%-B6`SZk=hlDJYOiV>?m@-4ruv@mP z>uc-DIDjkoFj0OFm?_`nY(@6u(tA*r@I)r*dt*0l&o3jXftGhRmq*&x_AgcZUH z3WahbC{Y}4tcRR}0(XNV>S?H@MvnW(wle7NGgq|^M4=`k>2BKSU+v(37YfuHj)!Cc z3RT?8s|j%l2Pz zg-JRa6u0L=V61H}tFd`p?{jp31o2zV(5beuOrx*81~yi~_8Gvbgl%ts_}8y3?#lpS zf#LFW=b?y*NQKP|2|$VQD5MKp|MoiBRFg{+Bu?dbf@J3c%w;&eN)Bf?xDMkj-V?AP ztQw%YMujc>e%CtWZdyzL96J=Cg}aT;w#IQ$bh%pzK%K%F<|EE1k<127(|XG>tK!QoB_V0nyRrqll34 zO^1(8PHNH1-Niu6as`UQQC%gV*2o_{dV-qJqb&MyLybe0?f%K)UDFBW-<(QO&q}`F zgWlcVT>q|fVw91UWw#u8C03`St({cItXHRcj{>0Lskp5t{X5CsieC1iVivB#Wo}h=lV2 z!2WAAvO~%E9h(8hvdGuJyqsfnYA}M9GOF1eU{?#qrJyl4s7iNoFMv?Lxhs-pbO5FG zw6?bHuf!V^pn;*`fw&Z57e{M_X;d4DU^%&;fT*$GMH5bxCI%ffNyeb!;Ff`UAGaVF zOB;Nxr>gR+KCiEvZ_m^d+QP570cvnMBfX^*euHgbU~uvSMlB<7dz60LJU0gyHHb%b zhIITgddqIk>`e4wG2(J0MYZzgD-zz^sJ9y+^ur>7L`=-eDYzXhhBG%|w}Qk1q} zQk(q(d#WNmR#@QT=vjIpw`y6{y{;78FJ(_^fq`I>*(x_K!`Zr z8197a;AJEZ+m7$ilropn@5D6ALbsTN6r|l(8rO%<>>V5qfO{+ebdpe&?VNtTnfxvE zkay`!(kWNueP6g9wbg$FveC%nI(j=5hI`<*V|*=GDm?P-HS2aC?QEux+9ye?o$+5G zuudy1hS?08(MF?95V4FJs$Bf^6^5a(d}iI6??X^<`qAlW74MB?$F%gk(HGd=Zecq+ zy96HFG;HnTV-Z=jZ@69ll3B_vNky-3v=n`*sJ3VmBF19SMjh6t%IuaT#rDE$0J&(?3L$(*-j3XZm-4VX)dJJwd)28q& zsw)(s7yi=&iLa$j;=rFyP-6-W@d!Iis(0B_Z}d_Xq2-FrE9wB5J7U$0*Co%Rd6Ln%YOv)7TS^ zU1_hlGy<#wubT@q$L-(B*}t*O%*-mR#&H_m&(wP$fjZ>riHZ5adeVIMSa?7fvMTeu zbe8@^FC@_cJNIj-68;oL3BKhY>L1s4@3SOHZ79KzS)H1ho>qNgvSD|a*li`VX`+@+ zKYCRVbR|YB6nt2VuNL$lIW9GXhPZjc(nU=C>_NyDH%=&`=BSnGE*;nwc{*jQ#_FHV z$%cgz<+3_DrEMkEykqR`S$P~#yfN4|Jmg-~8ws1${&bP>^K;i&=xMIVbv^|A@!FVx zSsND2+vU9BWI0+8i(O)Z1hkT3Uov8y>^(XtAQF!BopWV(t^q_lLwBt8p*~%6bcR@( z@oI0PC49=JUOt;*cdA^~f4p{P~z?I-}!6I$HqzBF0b#f*$&i@4*BM4^{}RYvjC~7r`Mf)=%2v{pnhV zf^q3Im)+^wN-sr@G?^|3>0fjfUTTrE9G>0j$GTwAP~eXExI)KD#Rkc!Xp@wKPYhz? zv*Boxy;5MV=dFE{RjG@u+wm&kBFM-P>GR#Jq)MS0xg4#yKdNDnPaXsC@+6P}TImQ% zFk}@LzXGVo>OGgc99X0zb()`ITH|z_Xy@6|1rWdYyv_uiqRXU*ypCeH5|{EAhQw%m z5~i7mIZQr(Q}SnDa)MM23<;}6KI<$PBK?CB+B?A43Faf!0eUm z%m_Olz7)y#4Ef409YL!erZur1KuQXbDrs2PUz*sl6kwea9fw!vOW~G!a&jREVaPij zg_}RQA$UWNtj5;vwj)SAO#e&X8@;%Mpu(U68&JTDV;BhROY6@1 z*oH9QMXhX1$h?i1NsxQA$-)}CW2_xDh{(oJtXt|&!csAqUx;3v;V3``8jH^#{ zbvNfU8QX<$hLcyG3>^iZsi`?&6OFe=$b=uBI2;dOkJe$(ht4AU!j_^+r22l|*6Bl8qaUB&5wk5Ulh%^ZvYhb~ zqWHNO`St1I3*XiLiLuA#GGnEf)HFWd#C)*u9nZ>{wqA78gbUsUfk17{uU-cnkByCu1U93){Lb4CfY>IN%w0S?C5M`as*~%0J-gw09;3yMFAUO~qdA19S8ljB zb^{_rwAX8qoJXJ@knbIDicf8XxLE;a4~xj^2{3P=PpT{7ePew;808v& zye+(kjcu7`!($q}%O023iNH$We@?{xsB2(6dy!A$X(rTti(EwokiH&Z4NBbDivS*u zN2I(@h>3|A*7HNVx}*Ushs^aAkXIYk!~aYjQdM0)&lmQOtUtL?v=<<&LnhlY4PPgP_ONLFZ>cU$St` z1mLc;f76@SC{%iQ0%t!vEsZV2eb@Og!&%?)CLik@ z2;B=v9o6{s^zdK5lqwZEh`xlr;K{707};EEY-k`U{xe7;yhHZG`@Lgk`-sx?yp=e8 z=7Y_B4K>B6udfS3)q;E=&o^v`eyHHryPyLCK720l@yhxrBj(M`O(12*q}6!GuWw=p zfT^G${YQEEJ|LeOZvQUh{Wy;XtlyD8a6TyrB2TY=U4#A5g;`u5OrA3D53=#N`!$gH zZA3N8(&vKCHwbKE8r9+BYUQj?-`VsQ?#nL4EZ3SKyCUn@WeywELX``cDJUpnEpq`w z${rOZCE8vSk_E^vKSufyOsw?UxvL|MKpGxZR^ewO{6<|VA zL^mm=iLU)T!M(c`lSsRQD)Wn#VyYCz?u0=6F})SA8&7CETZ#yQ35 z*rL(zY-^+l{DJ>aZ~Pv5Hq?Hvv6;|dy9*M8Eu`mGg|A(3h?ufPrSUm z)~9P<3*TNjJR;_RDGZDQ^h(NTn?)JvDgN@k<8!CoxwC^SvP z1h0y3K5wmM+d>EW^HNlqY$=-m0;r=#i-j$iA6EbmM@?NH;mC|N%%j+Ot8lHz9CRLN zi0Gm_R|yx%ry^1n`NtW?_bIcSnrXJ0sC3s;?RtB0**CvhuKl5y{wH`4yf}G$`Jbp+ z?l6~fbAOmyv8}eq!O~57`AO{i@nR<)9iC#uyT9HtliYrNp|APLIq$@-?pIFtmy*SW zY6l|gX9hUy?|1wSV_p5y_v$sy8iL#BSS7#YVA%BAB+T0Kui~cR8n_tf@RVx(<7P7f z!Scr9bDLD#N&3ywHMS%r!+&m;6%N*_nW3)w$IfPgsbIhtN}rr#*fYUwS?l@6y@;ss z?wMm#kcBgM^FK`n9?BekH$S81vio4+MnA1Leb8GxV7S{{yYGBd<#d$9{7*pVmid9) zJ~u*6~4%x$ltMn){XR3a3bnl!>d~XIK zdNul5zV<$l$wZ+x{BN({vVXsRQ^Q;TyH4xRR>!mtcKH5r?QN0pcM{VT(|yO2pWAnS zuv;}Vxz@T()VZ1boN)Ci833x2r?m`tVj?8LSX-bxcdfXS$19Oi0W>)wWWN+ssu+l7X!u0urTPSck{0xLYe{~}q zJ;Ad+vV!p`)L=uq}( z0kU}4%xsIjK$Rz7-liZZ2=ndRw<81p8K?`)^0?JYbS=uSx*1F73rm|?0kq{O?0Gq| zS^EcU{jic4-@gi5E8ER=dNm%`)-(EW;4u{EHFCfo03yZ7Qlo|$CIJ}WrqZ#2qE0-f z?ByKFk6^>l(}Cn@ObVBD{zi3ueRAQObK{>sf97!tq9hbr5J<-}1Vas|dI+jxS@}{DH8`a$4DKrZZ^m?D=xn_vWuNf$?|R!V8}VY-1M!x zy7KT33@mWE)Mo@|F)}k(Ub?cfZt;}?W(2jCaiCzILt{pT6-#X|gsL|VHVqC@YU`ohz_EAw3{sg^#^ zdK}50IH;==%(^Z;4j~gDz{DX1SSLCOz~a8&|cFomi_vCEWunjA|n zudNiW6*DOPKZ3hz?nu3&$n`UTjo?K^x)37v%-KnlKXoLgOY;PNd+5?TA&i+AkZ3uB zK10zQ6)F3xAD#+K)wmCU8zS7IOnlk$Z9t-tcHe1x-mN6WhH|GzVYuOaeojCzMt`yk zxO{lXJ&%>2Glf!!G__300=HiNi~}QAvT(*6#wl2_X_@)%Jgxoc3+X#x0EG-QR26r3 z>{**?ZXe3caE`*nYmRBb5wug;Y;VO-uEqARgpc!G04_&uDHv8%ohQGU3Y!wT+HcdW zw0v$;yF$=*B*RA6sEXRteR`5!_g8Jwzn*!!8R$`-o$YtFQaxlZ+Y_&;tpT>Qsv-~+ zXs`lJ7QYLvoly$$kbU#|M)cdu(C@!xfgdu7FF0VQ8n0*F*2rRFV~qem>}C$AWjKh! zOSAOPF0-%Ttgpst3RrU%%$4!}8Uz*cAD3zfdtxx7$~@u-WJoi-XI$@H3Nctuh?}>k zYk$n9eFbJWFaP|e^^Bo!cfY;OvQ{HmUz5j%?0yA>Aut%||B9pS*$uJ@mDU6|cFPo& zwE)0kBB^_zIDL$vo9f0e6LV0F8dY(VoT7$DTR25+M*`_m3U*=IXPW7q`vA~*x{dz< zFy+$xD|nk|46(=sC;J=6hv%=n5VKXaaIW^BK@C66Kgj}vl9}hRqOBXrt?;RB<@8Wt z_NHi58muE}HDDX_FL1UTli{S(yk4?ony!4}M(1Wp-urLF;SvEX5boB$5k9GSXRQi= z>M9xv`71h;Gnqr%HXq!xijyU||4BPZsShUz*&KT0JiHbiDoMA=idMy-HD_%fo$Y}P z(1r6i$z{IJswpDs@zxBJa3}bdQSs)U1c0x90u%al{ki$pY9!e|!`0WC<1e3p$8+yM zV`=ozddIeHvdn6b5f%?L>HOIT;yG;oNyz=vu_GntGa}w6AB|$4p%StVxGv7$A~|QF zaM&P!<;mO=CgNHQ@67`cFCQN&{O2Zo(n|jySRA0f1T$}%PyTD@-vRh8K*v!USXx;L z=uZ_eZV!HbGHV00k{PJ3s_swd()gKWt1gcc(T=$H`m(Qi1Dt!{Ep!_$3Nij=K3`!) zIJq-hysMV$>j!KI16rcGJz+|^c1KUk0vk{C`?7dM*}1ueQ-F%Gu(=sLWeaaq7+6_a z@&iY|Gy<{#uiGJQn)@!F6Utt>**Jq*9gkO%hvzb;Ud-&b_7kc$b8_0h3KMk0=#gag z`->%t_@C-Zh5eN8i7!M3?uzFr0;pZ`4{EO}74J~VStmE%a9g%)AIWe2ZuG{hiRJk~ zZ7|X3l+IZK31HrSBQ5>;Qft=?U^9Ktfr5nw9iTk(LV@U?m#lAMLOWJ!5DutA^8n>+ zRs479m(l6U17YCBB2V6mv)9h|4yU-sJxn;Xws(*UYk(wEj? z?$V8g?+pYpPfGNefNMg8Rk6-_^BCgh=5`L0zEAP-vxe5ht8Hc?Qc^ygu;Zz=x3_Ce zp8{0pJV0D^W=eeB93e+dK?mjYZT*=e1_E!mraa}=>UJPtqnWQ29cUSEOzYpsTTOj1 z1XfZ5wN_X(>$yyvXnNh3k#7c)?Zdgb|C=cK;V0VG(=|`Cv$NGHSdAll0hpUlo)2)U zOq$=(fPm_X-h_^7u5Qq>^89clKB38t|KDgSsm$tEz8VNXOBeKv=rJ0eJ;D4tYmXsS8BLeP2OB9 zDq=!;x`_mwnQ%yXKYjlEz^RZKTp2x^5BQ-9RfRXcLFauiEw2Utu7l&);e>Jv?5dQR z%(yAciq7Cc#*d0??g{V5HHkH)!tVy*%92Fwo^F-CQC99FXI0DGNsvd+)-do?3-#u6 z+Kky8tpRB1gUhYbES22gb$DLhgV$#LKLM*@Fi;|fkPB(wy9;1wi{Bjx3II^dNrpzT z5b5=2XR}DUu}rX_|27GU60}wGfskRdNmFM1N4ZfVlUOLbsi&$MQ@1ymg~@_4A;RioDj9MkQ9IqKu$Pb{ZHRur@T_yzYo$~FtSg+%TE z#ZP;aC(@9Iw%UG_VWye$PeF4%8UhqF%$O=A8PefuMn*=dDtjRS+9;%q1%i0jn1ypX z+3lm()xF}DHU-)|EY76rp;`e6anA`uH~72UK0qK6Y%tsqm{>F3Mnl9~!$$Y5-IbTI zJDFL9d*Trnl7EI+KAAg_$s5pI&1dSkP*@IduTlvJyx4=^3JYH><3EZHwnGy>pGSAx z7?Q~LKLG?2XR!ij=@T5{n)fNu^q4*v;PM&BPd!}P&$a)ql^Cpd0X(R*Wf=_x_6C0i zKuY(e)57G=hq7haB?>N414UcO@>>+RYnb zID{#7*}Pue-4pv;8T2-qD2vu7(tM&kyDt6{82VN+gvjW(l*0Uq_zjR7zZ1Oz|1z9L zMn*?x?XI}>x~rLJmB>klf0-_snsGtLOX+InMAXLYihqe&p?t-vQA&4QsztF}OFJKP z7pHY#K+#hYdF_8uYL^48yuR#vmiqw?Pj_Dshz1`;5`e*%iscb7eVz?2YmbG0U-A%m;~Hmuqm zbm9RMg^nSnKMcMbi|r3;EW8I@4PtPmp=h^iV zQiaHApxpniO2J8jk;;2#por<&z5CQZtTd8OX`erPX4vYFRp2LyUBo9I9u=YnkVgqr z(glngj}rmD9ULBo@s{Hhan%;__NhIDHM>&C^p_URRm&Q1G(kT-XHtSGJwL=PYPP83 zTrQcvcC*ZBOFe{?56|Z0BtSx*}rLoM$y)BuCA_m$$S^t3AgWP`{WGHGrH|( zPQ=sea=iO;q-WzBL}b%>M#)4J|1CX}hb8{k!lV$}dEl{!f;{Qgg7(E#iB{yJLgP-k zPJA-HcW(SIYAIROV4{s9vPBp*xgiBDlbWiXeO?|52ove+wwBXZ^#sPIE}eQ%)_LbJk&L_xVvLc8%gC z&bAA_!p1FqRVx3ue>LA_G}0H1qdI&VRqJ$>S#)!`-o~G?yC8K<2;LVs;W~Pw$x5<_ z3fwxI<6&bvE`15{%gmDUX>ILB%G|4A(PO}r@bRfK=OZ=}AwxY0S1@`$CY#-oIH{aK zUR-_kZdj%9_`8qGhP*|+z1@xCxe6N$Ly6J(maw4|JEf7vdYhD|6J&q+gOLo5!`EzP zNYc@0+AE=}gT)BK1J$|Q`PD_rQ35)A2EJN*CC3Hdm1{pgMr@{a^sEG;hqQj|T?woGQz5uW+s3}<$+$-Q z{X8*9x&xOOQ-Y&OdX<6O1sYHPnUkL!5e;EqD)mkf z=_n%cV>xrSh!~IA`~*n5kw#kGd1pIQgn+Igsd&-Why$$Ew)qyn!A5r%(l}Ne)Y7rk z?XAyS6}tpj`Mec^H0JN->(qj7!_gn@s_Z5wvSpvQL!0{3yVGmvwL_ErNq5QnNyXX69vv$MxqkGHGwpd6+#@5&y_^;G3kQh8R z#;}OiT8CJ_%wxwMWVN*ppA!oM_Q&_?N)7-;8$7gxUjIUZ>j=M7$p@m9f ziW^E(44k$#`CeJh)GbVbae{oJp5xIrZXy9tmPpVgk7$o-rsJCQRG1~LL5={d1}iHr zaCCzG-Me>Bo;`z&0iKS>2uOB2_8)TkQO}To6L3`TMDQyCbAgHgs*K!_?U8RA)=BGt zhhOV3S07vELnC0Ie9@up@*hs3C}6bcUvlothl`sbg*!aLr*(Q#eCw~H7r_3+>$*?rb+JMym&6ISW@Kg6SgM4% zSO7f`4ANc8QV?UHBZ|(8XDG2pT!X5Wte~XrRlN%3-iHgVW#=WXko0% znhBo9hA79{PH}R0S54R3vt9eBp^UxIJO-fsFMrx+?$4@#@PtPl_jCFK@Lr8THyv8- zyrZo)vhWvHCP6_hvAu~VMZh8jjuRJEqyc?TYWfdGd}V5KE-*GroqEMEIEezmmL{D; z%Z?jdB(E}5ptf=#URL($Yv`ILHAfo|Ex>Fe02j&&UlX(+c32?X3_3-h;&D|R0-V>X zcQ6;$)`Ea~dI^B*oe@-GB*#v`{O4K7{I8|^A!ZDCbGkqE<7}-;JU7TE@|au;k4(=^ zFtS(c=YjY#8j2Fe3Z@Pc=bqg11aSA}m=Xb#W`+#_xJHhj#}T|koXPHQ&T1^^D*4}u zPi60Oc(p4?asNzF;|^RHr+V?-wE4}O{FtfYWDBK{!uS#rvPi$b49du~sfpq3xb3?& z4aTR*2>}K}K4BVn%!(hq_-#{OI5tkG(bhKjZe6Kn+BJ*i6<{q`Wu~@#`u{Y`dZ3cl$yQgR?` zA+PCoN?A@Wos|h}A5QE2g+woSN$+Buy$BrNb3<>`b}9!Sec67BPB;3{+9FP~;GtI> z(Bfn1o77l((U6{xJv-Z4JxEN91Xw?vL`Cyle{o07QJtOC4*H~V`}*^m+#?}Na!Klf zUq$G2)pLiI53#WyMVAbnL=Fs{{{W=CO#Y|~LVP^A4*Yy%PdxJ;1%bMS;8PP82@q&G zcG+lfS3}x- z6IP1)La7IIKj<1o&H7bwf;nCT!%wWm_bQ5Aay-(GI+5}A^27k;9jHlg zQ7*2pKbp}Lw&Vk3gUzc3@xJGOxWLTGh*k;sjU~x5guRgw5Xz`OjF;qyDwpcNF*I!C z-sozlNqEMCFo8Tn62?4EaK=Qd%lDlJb|^D_`w?KFl$Fc(gHG7wov|;o*o% zStG^CHYv*Jwd#(K2liaax4g82?5%4H49}*U*VwXdAGy{*Ie%~Aabf<0@?Qlnq5Gh}wUyGYoOv{cj?`oXfRPT$pyjsw8#hR_7n=mPANDORKip>zBFx z0f4}0Cc9WpW{(-qgVuRMwv{+~%ez|C1qOc} zJkO%Wb+95xdKVwh(ZXq!_MCkeNR}*mXfDWyyqqf}4YxhWgnCaFj)zWa$1jf)KDE;j zWC8XB;I#;O|EPOm64>-9LOQiwz8Erb6;>L2uY!Z?N+8prE1fYEYDqIK6@Her0Og=5 z;LLnq3a83x_;ZrrpD17g5B}=2)G6=&C5-gW;UU8wqmN>)0)Xh6o>f27|HwvsK@3_2c3odx3-(k#IxOghh==<8d85SyCVh@!8o$e;zYT|m1H`@_z!w?PaoOV4 z=+Xa`5_cC08JBDb1gKTiqyM84hRSw4%Fa>83C6=`-eZmaK?0N^?i+me*4nx3$o@SQ z3+EtKa`m1@F(|+x-`T7nqnggsqdY_wkAHko6TR;&I&xBYx#h4UbzE^c0 zTMlnpT4Fo#f#nK~cwkX$;R@{;K0hn-E?l83r5yD;HcyvId@p5U_LmG(u*fgb=;D19 zrK29VaxLJPCkQOo3UD~kZ#;P{^&Nu%LKpbwhA2Va7A(ctV_JQZOFZ8OKS1fDF8}mr z!#mI(Js}gqUK0!YwUul;e>f!DTxMM7_O-XRb_22!;zte6e)!<;#re(`Vh>*`q`u4at+u)lb2WB8{p|SC!g={f7e5j zja+OWp>*4S;~>D_a-dWiG{3zJ=n_wrx&GehIYe4?m6`)LcxV_1LL|Y5vyGASOMdHf z*El7f$h*qQpI$32mP*-avBzD1f5f`yMtm>(9>c4o5f?lH9KAdlZ~RE(KN83CXBnAK zOP!42pl%fO4j~Q>p`0HA<5Uj5X;gHaC>PA z*f2w@HUK5>DN4!%7Ff9pAK!DI2w_x;4rWb=epX8^B&V_lJ;m_wv>rTsPs7gm6eZ$o zE1I^$n}vlO(a7n^YBPG97bs?V zwU;NM%HsbJ_7)CRt=rzP3W$OZs9=sF6kiO15^8<4Iu0-}q9=b|wg^4lVC3v5 zq6j7)c<0M&>a*%dw2}oO@8lKH*CvZ_S#I8JW@L}!H7GJv99eu>NsV4Q)A8tM<4vLd ze7joQt6j?uT~fkn9Qh?zYik{rz65-I)^Sd*A@3wXH(pn~hV$fx@CqrDR-fXr>F z6*`*V>SNXyl|_N}SxR*f4OrvQO%)yvHaWlW#Yag}Y{%^fl^rj|jrYu)w&e5M0~lC` zrzH&mi3t&^JY}08NCx9C4ooGXm<7OYT|!U^M{bV+o@SXv`++FxIs|3|QHoZ-m1;Ls zZ>+3GR)S0FWeJ7(;_b4+54RQhb2k+Su(GUeB021Ui|S-EJx5#um7#zVjcLdAA^mB= zi$CfE=B-hU7*-q9+L>A_uwBgIp?8?|D-6lL4QFk6jn(wy;bGTh7oR95Jbq@M<5oso zg>S4%?2Ku-xYiMj7Y&0;KI5^TsjXdLZ0Q43DeW8cQ9(*9`=Lbq|B}ba3$j_f+ zq86f(cpZMKrlnGEov$p>^;$~|qLvYjkR#=^=uGky5m0dPbdy4DW&AFn37^F-(`LzlwlB~~d| zQ2m2Q#}H&zr)NIx&d7R^)AsJHnSPB5Pe_}%-Wu~*_?Fi{Z#WAwGW^*fjYcQ~`R#w- z_i1owL+4dkdZ@m;K^Rswo}-U^6+@7G`M^4{vT0s>lqs(v42S9}Ko^U9+> zUaLV9(2VPY^Wz@b5jk=+BdCm?<=QD=<98}e8xNGFSj7CEd0%V0j}l?gt%^{yc3lq0c9m1L<;ZKfC&QfP`EQmZ1n|-`mP}F|5`C|Jb zCYweu^LIeDR>orcFzJZhT5{hjZgVOhF%*l#y}BoCUyOV<<*PD?{CKfK%XpDZ`TNMt zC9&gmEY*cdIok8W)x=pQ?|z$^d>;@7&o}t>IN0L~EuG-WZr!JLgL!7c?7Xs z!0VG+dJ`@$@Tnr*L*LIg>w{U@eytq>z@c#}?APY)e-*dR$Xs285aW1T3=DMm`3pNa zupLg8dylrJ55&pI%E)P;-bCIoS$0m}V<_EsIBg*nx$!;7YisWPwlv~PFj+>L|Ky}j zCBj4vp2k|p`puaOZ|VBmIKL{;L_9ZWf;TobZJwK(vvrFAjy^Al@6t^N1eod-MA5^X z&02gh9+Lukiio|uvr>YVkB!1z15Ca#>{h$tcO!=5*(d88@F ze1^2<8lwQk4aMquarkI*pIRZ4 zWTl4XMEDd4B@BUL85V7Jb$(#31I&H4=lcfFbgGBVlb073zFV&@qfO}E#O!1xG38UFNANPw#xpYx`Hzgcf?@xy?u(7ju4>w@^Xq)wpAHXKV|^55e_1qP*ad*5D&Kt?NN;L1Pl3kbtB7t(OB_wp$b_}Lvu|wt zV3X2S<)*}Pn#zEEDuNy3^88iekuQ;9gMHM*ah%Ail=SmhI0|NF#S^?T%Lz;%ZfXYz zPh5pt@%L`znSwSpxfbNos13u-k9B{|_! zdZy+n#JM(m-bCf}hSugf5=dYuK{&^8TeO9Qhk3CQ_L1F8xx`O>Kz;2U`Sti!SX?5q zo5|3N4e+IqdEY=ouv}8w6C&cykB8((Vp0XKH{>f_Phdz+?{EJl~Mac(iG~_i!0Iq#G&4nSsNUR9etwuAIj+N|JYM}DV>dYKXzmD)> zol8`#kdb(~R&`{(66i^fFd`7Fmqoh$4Uh=mNV8!nZcm;(IiL4JBPauEF_(IbLCo1othO*-xF)l)KX;O)s?@?MV8a74pNCcU$$FE_W?(v_Rx^yZGZABuh8?!)36j|;EQ|1t(X^KE)6NV zTnyHb!Hx6@D}Emmo^0+RP>V zWelHF4~+SIyS`sV!5H(|byUQ2lNErfXR2U9S1*w_wi1_fpTo1zX+~YPZSvpC=bN~b z!wb&-EZy|gv_ zgY3r%D{w0U>re(nQh}UaDj3ubp?R-O)o+O)Ov*@&ECR}-mXmF>SRR^gVAbVGkd_H8 zvQ5qBAr6J3ABfN&xlwhoJ^Kpya!{*7)&FA@t1QM;KeY!C~WwCSN>a-Z~lzM^6|m&nRj!aCN>Nq8OQd$n%r z6mQB-pw+^1&t`__?@3GycKE>izQF}V*sqOW%{I7Sf+{c9h}PO%9Ec^_1A1Ba=fZ!h zb~ny8zT&fECfPhek53?4qhkx@uZ(i&eO{rs7$o|}pWVmGTEN+@+9Xo<$x(6^m9k&fFGwU@Od7SY!q1d?D=G@V zkZWrCj;y-zmK>I-l2)_dj4)zE$uEK5F3Z$Y=4)xN&K_nfk)QYo4%RFWYD12EUG_XK z8o?x<^sQScl~B-_2)pyWn656^9ick@UxS+?WR*i~*o7F-ECtam+VjNvIrzc)B(G6- zDMNo4hpA$NO^O?wl1tvqL4!;4d5*w3OKA)yL(j!5^IZ)p<1`569d6#Q0NCDCDn|{6 zs`BKMqGfJAqMt9FRF8DaaqrN<$VS1io$uQRQ9;`N5BaJ0jf1lMg&*P5uskvfWZbT~ zWA(0;QY`UPqAxLFPTbTRhex%VhfUKbP{TwyvXZ9W!S}SQtGL#~!2x{Dw-R3(XVDS5 zXACWi?q3fk>&FyS)Zo=k)nC@Vrb{Hf;sfLuR3O$UtEu>;B}n$@{n|tZ<-fV^;gKWg7`#&SJVtu8jOAe6j$0;B361~{Kc2E8it0gi6~{WK zKbc`BSsRr#iV{c!8{DqG?_B11#FJ8xG+TC+t>c^#0iH zs(xz^^wX5Mm|bO(yfG&0?9#uvXN+r9(ud?P2-x|Mb_I4hEG+CH2^*2#JMNH}SKN+r ztIvul*-FXr1`)->hhDo&F;)4SuaQq$f}p62|3iEjK3cu027sHlGUVPyynfU`zU4q#}c zIJ8;%0*P6&gwO$_kv@?pSVh8G-lJeo;ipI}Zg3JavOWw82MvZXt2$Obfooux6V>lop%aYh6gCn)}DY!yre znpo@^K%ZwIJ&kS2U!lrSf%YaiGF5$Xx6k>=pNpM0RtcqVkN@q1AQpMkSj)HgLzu*S zKTin69tC{-%1fUqJT<>^rHh8b{T(p8$R8~Q zdh*<#D9ux02j4P$zT~&KL=QM|m&UODeNY96!pqoVO(@3Bcm(}MgcLZM`PSO==i>*j z*iCSFO1Jev_08Tj_ai+u+M!N-u8m@)9s5U?Nr-bHr(t_5Og9xZmFEZRkD;jEbWLbC zpk!t};Bx9IJ&cc7jl!H+O$+fnM#2Zo5uF1|C_TnR`cibTk=?ZMw&djZs8qOA)mw!* zblu#iTB*irkYP(3UP+4y3XfbwzR*oAcb{sS@NV@a0{A&OjFg2t=N%L93x5<>ey7L8 zG;{uBNjGJ8=I+~!HFR#z_(h^;<5hQZJhV{))!^jS<$LO^7!&dL11`R0(RK+W<;6{{ zPr2Ywc8V6d=IiGF`?$L?i07-Kg?@b*sl3Ai1Ql>k9Nq{CWxTFjsW+1N;SHzeN5tH^ zzLZM31l?0gH&lP`^-^3_^JyhEgR_By&N|wIT^0lF4QcWgdvzTJ;76Kzzb+Za5kPNQ zM+4vH!eJ$OeN(mjQbJ6XM1DA*xE%|F{jLNfNn={2)VSM+0?i;R{I4TM>P9bn@Sw71 z7F&m2xM>xBW?J0#;Azh@HcNXuC*fDWpX1GAXZ%RNqFl6;ceaN4slU2aFQ zK-Mr_3fh&t5fv4~eai*E80PA#z~xz9U)sgqhj3IWtLp%42CZoVcWRELsod(5uoR>= zP(Di@E_1=BWW4lDK|}NKotQGANF@`=t7(|JhESa*xF&GorSQwAr`kM0R%6+1sHuuqmvGc>oj*pmy7*JLuHb z@xG+W9xB~BnvRV?3izDQwGv#JDl}CaRlak01+GDT*4$qQul)VGUx%sV8>JN};o=d$ z87dFE1}}M7B_iq`;Ces_n@oeuPp0 zl&MEuMM>$Mp0l&ghSk!6XqfaG1R8)Z3B#P*ySZXq-HQ#*@vb&xz;bkgZ_V^o#`78SrWct$|A^U^aT z&2U#>gKG0R%nK>V*qUNPj2wmn*6FD*gospfo$v(68bPTMa3<&x4N8MR2A zLeSaKui#B^^Wl8Yd}6MdlnKTCq5O$EQa;F_A-hbY9hq-B!+oT>nIB(kSgg~AyRpXM zkB5C%9gU=0#hK65*YbPit1%JdcpjQ;hj$rf_b?CNQ0;GwW5{t%>udV+a*dnx(vY{S z0*4wT3jf8snlm_O_-0<=YN^qK?Ai04(OwEz8d=Gm+w)F(JR*6OXVBixR=DNI0}*K* zg-o(OE7235Pne1#HBNacg`NO`OhIP(mcvb3HIw?~`wWq z>v-&A7>XibWvS>H_k={ua4GXvZa@ z>*>MzVOUOE#zSKM)5PI?dz_z`?@K_EKDd!~_B7f3qwJLQ?M~dp#*R?~ed}L(q3X&z zAin|C{~q@{Vhr~D1Swu-vn5KRey;qe%krHZ*u=~qfIgP?Vb{-Kw{ecfC0q!z(3F#m)HX27e9ek zAH42f$=jZ5;1~azqOO{4(LnPY9J7(3N`L4y=()yA^F&pFT3%M~mPmNd7pjt4k|y#6 zJpVUO!SfHDnRK!yq;8jO%cjp9w)o)@2k4zVN3kB#Wr2)gAG@QO=C85m~xtmq6V=A zaGK*clgQe=d=$}P3tlCV`UvPotC{xo_d^6)jT6H3jMac0VD*%=)dJGzm|DBtbj1xc zz9aclpCo+t7QuxL&WWNhR}8c^<2uqh&czE&HnI_oZ6bL;Na7HH@gy7*hy@4ud`bEu zJ0+t+iuW}1I$RiOtxpy8mX(+*x4M1lDJgeMb#BD7pMGW!r-%{jcL2+En1j@dHrHpKQ ziJ&`G8G3#G0r;EaMRp35-nc+S5z~?@`f`d7MK9?_^VTA`(UBhW)94<(w_;t@e`|gM zQH^-XCiwB4ujh1Z!r7cssQo`-PRKcx-xkDj@jr3&p06$3Jzh6}y2tu@(4b%_rqcfZ zl=*fxN}-IeJ^a5*>$Dv_3g2NM*II8Qn3+`!qEm$L5aGA~&%eOyfHgmIBho)|={)e@3Ze z3miT=7Tq3y1?rJhqxq4+?u;F(VqEa+cm4f8>UltHQF;|}fXU1#c>6llG55vlT<;1A zL60j`r;DkxJ;zP2HEb_B>!I;X{0wAh?;&JEtKWUeo)Jq=PbV_iN7?K`f$s)HF=wN` z#04_h$XmGgP1PUsk+T5e(0p}s1Sk<%{Bn-Tz8#&8_DX<@WUP*NzLg&MmPYf>3qY+8 z(MsO&$mTOysHugnJ?0MPBc0&ZKzyRQp`u^mY)}5-+Ss zLKG^KRo?Lp{5p#CBERhyfo{Z(ln}YnX4Hy2B^K(`0j2F~oue7_!1o8F{&!xh0o{;l z*fICFeo4K0-fPn#GuErg3w&z#Kmrm3XVN}mNfp9J5wRu3EII{%nWyC3;4h}+skRG6 z0IlNh5G;%lO>0|5-N|cAsJw^N2mdVZjWhl2{cWALG<2T$1RiuW#OoCeJbdG9&l@R6 z!!PlqP6W>qO9%13bg$Tldh4r@0~d09Jr!;3cY5mT$y%I%QEtO3)92*JP;>{B#oGBF ziN?yN^s~9y1E*Y~I!t0sr$Wdrq$68t4*I#t$j^s^cFi2lg3hWRg&bHkJ7dgqN@_KDAd#1Z+C|DV zK-EZPf=&iVbo7hA78lu!3FqF}va@NT@aga~pOsg+nEYVfG)=h*cu(0vmG$GPfwJe{ zd!J&%XNrK>9Dc<{z_l~!?NsC3+}VzZ$5ZNrfCh-pa2mkpRIMzl%&H%TrYC#aGKEf4 z0^B1-T(;!$e7*fvyb<9cl~)7laOBcD9*2TrdE$J$(&0D^+-k2qkn|(Y7l^k5$8C$u za}~cR63^rR_!yg2#H?WcXlo2kIkSnK3W2lp@NnhDE4)H;9Gktm$g}AAwGNCSa^&{l zEl(=@-Q5?#B%or9SUo+m2yhk`6;&ewBoAbhtVg~awzKSh1?i1bjl`#_&5S9O@_7$x zL`7^O!VO)El>M33-2x|1t&mM|P2QtVV8W%hJqX*aDL6b&9#)yTaGpaD7LoNz`3&FP zkAtos%RzGnc21mDYAp`XPwT1~JWiZD;G5+-zYn4#V4gEqLPyMXa}F+*c2}nM;qC%c z&o^@5rC2a>6LX^JQzS&UV8el5y}^|Zsszytyr=Ax-vU73NVgdF@fL~4^r2CDdnd%L z-!_&Q6SP1)!guw=f4e20PR7A<55;GB9OmUX~ zXq#|({kC!7(tS!z(L%zMu0QNd!Bxzd@FYr7+W}_ui_P;LGHR>%&;M!$6wREPQ@?;` zH2lCnALogIy{ENxYNZRd$zy_YZf@QuxgIg#6b6_rC=Zv(z;91;7{V{kbKPMF4j+PQ zcHk7~XF+CR-m7`%vi6hrr!X=wZa>4Ty`yaX?H(uYDK^`R@FQ?x&sk8W*OtZlZ)5a7 zPV~i3jhm9(t@Gmg^gNWJ7#L>U&a9tl6vG3ryD*4_hXn1@?q@U9m(bLZeu2wpz+~?Y zj7|s%KGBuHE99>W?E z_}w0Z=xjm~w{2$NoInTZ2v9T@A3t%L=<1J8)kWe;m5qa3R2#0*JH@0xk^cFb_7Z4c zz8{O2S4nJ~us6xK>%?Wz#HS6c52G=d$g+ zh2UtP`p=mc0to7+CdHfxlXeV)9&(&2*)qIucs|v<^)2{5CJ7s{?cl4J}nZ%&*=r-54>Q-YL^3YpdJQeRsuoNrNR2o@8hLrSgU;r zUqQMQG@Isel4+wS0-bFCG?br^*lqGpN6INBD4eUX-qGyKb@58lNh@^^=nkA)jOz_d zWR`%MYV7;DA+sIoYL?b)5#O6`Iyvun{)C0GDYP5TU(LV8Jt`53pCT$MD=8>^e27I& z1`^Cswro3I&@wQf01BxY4vjC_lcO&x zgu2jZxoQq_3G5@@(G3~9eO-U-i;tU1?T$iDCcCv>o(ZM=upF&l#!$~M<`;ymimeXAWD7pOciBng3KwmQT zf)+^EA3l8Ov(nNc3i2-TfEQooh?4)PhZW4`x%mhzZTM|Z-H&=Xq5MCH&l8pXKYFFL zrXtgH?{vw@P~$A6XmFMryTv71JzA-mni)jxW4v<54E2JSMnoe~xf?PI4Yaui<01k; zlodL#6rjzzZZXteZ05wUyhh@2+)Sg6i>!kDdifF{+=BkBpyg|guILA|dL;kE+5@Rt zwr#4?V{FG#3w8N5Y}N_Y6sjlFea^j>sE*rNywJj+a(<(1;zl8q@M!i)&$>Z$08_p zGTA`c(+G7TvgMawer>r1TJQO0eOI(OT8+UcH(!2{4f1GSRahs`WlBJX`M*&idG4A< z2fnQ?g=1bXOG+rjCd9aER&u2?zXpGm5E2&x5Hne>UQGVjoAG`KIT-(fy}r125hJb+y6UdTIY zwgrzCPJ*^;W(#q}B;#0P^p}6Ze9pvbuuruaqDCjr)KldM9i~V_Sv+gje`c zHlotqR025xtM@97JRASw(y-dFFeaq)Qi!A~;=rgF;EMz@%U}vFuF3^XP#&pthabM} zd+!Ad=T8naQ#3iBnd6NH=y>Hf>R8Rxnxs-T!23;Mp)@L5Yl2Y)KM93VR5vGQ#~;h} zZO>4UBcersq&P1iP01>)0dkBi11&M|naBs<4$O&^w1wj}QIF7?4;8y@^~NrNvG+kf zl@9C6i`YsEj99}!gSfb0LQn`1u5uh&Y?%&~V`7ZBC8rI%u{mB>{Os*La^4A%{z@OD z1a8TVn?jZULT7?-sbw#1$B0s%OjYNQ|m{LfN!wVJ-4dms8#1^O5JKbnfyjzvE@o#kuZlbnfU{_RVeykG zBHvfjw{DMTt!K-vb;A|@qO}ghSx!4%ZSCe^@aje@;f^vr>dWuru%HKM*{$r}X|Cj8 zqe%YXcr-IKDlTJm=5M_SQKCwE_jIfu)9i0y)g1c&LSBK0v|9mmjU$kWMw(Qxnq_JR zp$4?Um~&K;MI9+N?9C8|z*F52%#5>)hB;hF>81KeG|sfom{?Jf7emC3sIl|^(N@3` z7UK=$XI#|+IsNDGg0EzL0i@~9-mACMYzx#5^(Cyru3v0&aWNorg1oqbttL45Lx5?y zfS1g#=;3NNo;fd|2Bat!OUsK}Q-F3TSVX1t4_DGxe5`gq?85GN9TSNK`L^VH)!0l` zPR*~bnhbG(g%1%zqQN(lb60H{LBu*P3?YhYFXMJY`U zD%96pTkR|??xu`JN2vu!fffctc7ZpaQH)gb+@t+{?Yn*1KLV~_UaLl~4IBG5C!poq z*8CtYfVl`*)QCb_q4e<$DY0r_Aq<}baUo(a%Skm5se7xpwG{rpko_82*;>#LJxK>h z2a*DF8Ah#F9R@F>nrimea~K>S92dwe$jZM}?76findLr4E&bUvHiL_N zpXo=0R>qHBZ*TbH;(k-YE@zn#O034sD%UDVb%YQd9ptf&BOPlW~rHs_UCyR@4a&H^1iDk4ak#=BI|}u_Y-MVv^(W$*zHmON)vz8gIr| zm$yF`-WY&$vvJ0gy8<-H(8LwMmMz-dyzZIcK>RON@0f{(uaLBp43Jx-MO3IMEBZB- zc+(iRt*>%~x$Tj?jVq7#&8o8a@LLIdoEIIC?r0&-DN!{P;OHoCk!)N)&?USfm^?2R zvIl{`w;e-7_1mRTN5*brH=8ki)$ekyflY5w)T!$Hd^-f7jg;bAa(1N)1R%?U7-iEm zX~EJZH9&d8hWifp2)#j(b7QM2Z%rXg-Ef>byjC1Fa2Ntj$e;841ot^P`4;qc2OMSk zW!rPDO7;&1f=BFJq5-ooOxXU0pde6frE4e%Vm&U{&Z>2nU4*EG$9nu3~M zC^v`wRu{gRtD@{*hB&(Doxns^L5VA8)3n6N7o_gf;Hfs7_ftiRX`sq#4bTf|xScUQ zrfFzF!k3?6i;uun|LS&$C2YT(%pUxA4c1z1yY;g|M~@9Md(K%zl(IgI#RTX0F{UHl z2oRRARD>RrgImk!_MMc4#fJN5RtN;j2fM>=)hLs`WBWjjvamhu;Exdz9l7-XAUAHp z0mB-xua)5IYn~>m>=}8fzSye6MBc!rhae_Ddk&Q3rIHG)p zSA2(oPwU43AQRT_rJ@|bG<7r#z8S>jWYVYjNMt+kZ15w!A=QU2$WV8PT@|I~XnWf- zEUO%PtLE^>`^;`MmTVfAXoC%Hxa$a$r*rNH`(oicV6*xNKT;G)onPHCDY^ZCTW44o z2xx=k+5iU))I>c&X&qFQIe2k~NR;wMNYM!c(0)1hQqKbqo_0LV8efP1e1bf5LJ%0N zy5ShK4~%skPSEmTw+G5`7x%d>7ppysr=!@-BNI47*57=7d95`AF6;E!(aQ{g?7VX> zrrXF{`=hsltx4{>d%EAAhjsv{1@JO$_W9|_MgcQ0=2Pm(C~X0KD3A>4c-1tKbW#>{ zx`m-M4vd`VfOE{a;+UY5;r$CP?P+bxQE;N#S>Ara_wybXc2ru%Cvps5Kw#>xtd+`w zEqABruqY31z4SpT8_H})swyfUt3K;KUm_wiAZuaCFzZM1KLknTr4{@?AbN&4kb5MH4X&;flNX+7 z-;hD>UUi7QP#)oo0UM+#4iX{;lxM_pG?}ei3gDq`fp}MuEKpla5l%IAPSm^Bfm3h; z3Jw}>N$BD7gTm_mQC}3B#m+8^199Q(cjIQ0jsYs*nNQ1J5x z-XAaPepusN;T0T=<%5c#O=Nuj6#8Ypbli4oVy1i#Y!N4h-SChI#{EFEX0q7onW?9kxsjL9Y1X@DPQHWo> zyt^|}D~?H2wmI0fizJ1Pp*Z7}cDWnw5&m*4Gh=hqc6zaXdhh;4YL z9uSX=gBH&28BmSsw<(dO{jN%$ztE-NCw2;iKGuup{lRkxvUA5h&3;XLRQG<_E+TIE<`M&6oFw|*UkBdh9vo>yU{ zx;6U3h3jX1-7dA@+Uh-IT(#fhKNZFynTseYbIK(;8s&XO$Yk?TSHv$=F zNvN52G?sj2MY_6~e~F8Z2&DEDZ_=;)1La=S#7%8f9&pA=lU(DAa6&CO*JwWL4FIP$)$wJl8ZsE?%IsR{9d&e`QV zs2Rj9ErD3JWG5drcL}C(Am<&Ri^fiB|7ej4?om7p`B&+v1X|R*+uG53?Kcek_QFHE zdEoIhvuXPjVp-s)mY0k8!j8%8Eed|tv|B+we5Ex>y8p>wIHgcnUG#lG{P_BAzcLY` zhO*+EJwD)SzFAn?{emF!SpTp$d|`D_EpzQzrP9aqN*BNw#bGG`sr)!K&Ib8?F}yZH z1jk3Pc982mTnpS8Bxq@RGAaH8!xJ3 zcF4+^IiuXT)tQRK+65v7t-5ofsUsJ_9Dk1;{VsHAG5mbtJzC8&3v^4M1E9TBzLU!K zU{C*TOVC$Uqd=a3%{%=ceL$A|t@U@kZCM59fmE^zv8idY)f5cwdvbDhddr08SLEj| zg^z#z%EsfXjBbXP@`ToK!UQlhs+RCZe2`=~dou$E#TNYVjSY5HhKQO$e*T)4}OY4=$3ZB<)u4t99lJJ^?$0c3(pP zP|qxRHIrto+zGx@%XUn4mA5xHzo~sa=6L$cGXCmNLS~Q_q=^OLM0F2EW9y}X>D6^G`iH@xqv5Y9FMuSHHEk5y9o!iD}?m_&x*0= zq7npZD0#eO2T0ZbDu73HW#g}%59z~ zM=2;KLGZ?UdaC&^Kz|oHZEGH*?Y*`A4a#HC`lJm>3Hdbj2m{roDNX6t7-}pkK|qoK ziIrQ$3Mlu7)1+Wik@Tw3U2^hcs^K|uFFu|i*W zdLI{f8e^~xL&9bTEhsr}bx)LyZsq%;J$PWT+U>3G`9P7xfQWn)=G(EbvbJ?E5!QCU zvsQQ{^o~TAk`^H$C8vi8WjH^AG#IS9K9YkA1vXA=i7`7qOg`P43ogg(!UB5=Bn*!d zz4Aif#r>a>Hs3Q16tu$vuUlVB&L&t&W_R<%y*?yr)bUdF=8?)qZeZ7rJm%o@klpOU z#F+R5=)q` zqtt%+mv0rmSrb)Cb_k^D?w|R`PP1MM;tKL%AEIBFo=MC$@)?u%h#LsEzM@zlSV#Iz zc)j2eE_mhotFg8F6Llh43Uxu{IKFzm%eB){TO@sAN5{UnxDPH1Yu&KBt?kL!l8$y4 z2DXat{Je0fd3ufNm3H!n(}V1+c`1iFFu3<${+Wi@_cAq%tNS3)4N8?&&Ul%90L=&R z!e=#!IezN><%`j9mg2|zQgC5Ni85jxa}F@x-Nvs~mEi0>^puS$)9O;Cq({ zmw72ZzZ=|(rKW0R$;uf0Vvlv%@38i#|6&k^|C;(^Ea$3gEJwC+lD&=*=D*mL?G!ByR#M;#zAl}o+Np%8Wt4NQM(g2wLV z-0cL(;hQFMA85;OTE~sFI+*ukZ2A5|VJnF|@Mjil7FLfqQyt%1L_|j{VasK^PrJ_y z7^on!&q@Lu3?;jvll{+>3NsSQ;HSJ(t_JW`=^2}CXsYe)5`%N`xj`sl$sI$=eG9K% z`E0MbWpF?+`XC5JvH5lQx-`0>bPkMv?}_Ke0)y{Gm6XC{rzAv;rIbuC6ZMYx7_IAk zF-*nD&ZP?tw79!Q&dEXb0o1MYn+6qn&7#X6jbqC5&)Qu>;lF8@@h~zf7!eT)m3=PRqNd*Fc%0c$l=b24a1>1$ z(KHHn815$+QPB)(WSP)XRw;ntRUC8( zBv}<-8^(Q=+)DJ}C9TH_=G%Xut*wzB`tq zgrI*gqQ@gaG{Ly?Z@vUc@m<>WmhOWpRnc^I?A$94AC(H2!KP(Gmdz{RXnbQI-(+K8 zTxV!22bCrb+L(CdkF5iT1@+W*^VI^!50u{rztKKCy1_`_O~)f)Cvt1w6^ou{|f3uBH-Nl4{V>VY2G#t z@o~J~$I230bLAKhyr^K!Adqd`4lo4Nmu**R>8ku3>yu@hNfPz<)9whX8hLqoeZ!Pk zmISq(Vo5lF^*KiYzY*q4lUkcwyXarg@P)30jH-4;cUAEH>wfxI)o$5;488Jm7i_C2 z@gRShG_D?v92T2aty5+AjxXe9?btzwy=oI4{!i6IYrD&0N{7LY56Y>m&Ogxp1UivU zV1s$F&L0@)kLyM(FzITq^S5DJJFCr;HP6YnKqZ_@P=ZA4#WT5{fF4?Ob>%+`rGc5&6 zyeY3=%7nKk{%1c|EC%Lg==$;U&U6A_v$&F4#@0@@xut@MNpB)OW!h$uP@dKntP=wR zAA(S1J&*559U!1u`+v zoq`o~8uZ4^NQ;Y`R|BOOCcGy4fARXtgx8#VAy*Ecq-NqA;CD+-BX z-GlKtEY2`6qA{P2N)7}$f?WsnC_rLh$FLFmE}4528~leBTG#R7 zV75VXT3~n~{kv$*UG#CGKoNpD+xK4JRZCFS@v+c^lu0SCtOW$b@<*rDYQ(Xr?oO57 z)#h?$#h7>i%CKUKKjN?_>AOH*3PdrY<<9|FP)VWQAM2j?8uztPV;{mRdwmq3cmV@I zo;%NLs}A%Hjg)+vMG3vmY}#S}nR0fZjs-#5?CU&;H0yKT@O8j1s{Ju~QpjGd7R z9>eZEV%e~0%78D+U0YuKdOwnuqjEGImBV_y((_yss(!O2&K!%!*RA zCl@RAeG_sfV$5W$q;eEdnMR2VWDJ5m- z+P7O-#u>4otU#XA`*@33vi`&>GBR?sCkzbwq~2Yv<0J6?pb+S%oDGsRqgdvkz61!g zHh1dKC;WR595%vEz~eHV(ES$SW?@vEp-R6Mp3znJGPf&&i`;w@`WD#;oX96;>S2uO zyHhUgfA|HII&p*Rrul8nv&lLQZ;hA+BY|1Ib7~-H*|$Avyj8UPcBrhe@sYH9#LYd5 zOwl3h>Mt#m<3S?j%!=wdSw1p9S(b_?SdW;JqCMjJcCXC^v|p!C$I2c%U8>Dq5ehHy zmtssK;cv}u>K2vI0Aj=Yj}ud-OVW)vWxHrIHy_heqsV&%x2uzqvg-eJyh`3n-|WzS zVKt>$fKDTbi100=B{C|?XsPW8PoS1}dYa(a3KN4H8@#k({n8c9G-7GiV}kVG@z%vU zu)z(QKU%V+i>(>%7$y!@ zQXMuaD(Y~3?kFvK0^_Q9b@DiS{*4jeA=8SwrNh0+nQ1xodbjt_0G%-mLl=>i>>sGz zIojXt-xEe=xSGB$)b9Wy_;)PR+AdY`n@QM$g;AI^XLjM_NF$+Aig~iob=W&r!8{8H z%ZK0}aF_vP$4IZ$u~jXBvx=^!_4w-UT0Y3D?GME^-Z$GBBD4A#VWDEf281?$G%gK^ zzrO%%l46*tR7f{GRsjDfJWB0kJlP_ndFxr&)?KAL-(eAz^ZIIj6y(LwV418@wseB{ zIXB&23*avMmdPqxUJ+oG4WzWAH|3``wr|G|UtKDng4C0wArG}~{;A^@kYmmK+)&@E zo{^hF%CW|-6}r5W67zGY)e}D60Sj$Yd2w2U^D`jJz}8P8p#6K#8Y)BiA3dvi1c%Q5 zvs3FSs90qbY#=}B)g)6n{74a=s)_u0d3LVh_9?MbCrY7*j#LFQ64x06z1>98 zJvu&fO1_o=lH%-!RhRgNZt^^~4^c!` zS>s!NMLW3oesK?#rVfFQ0NO6@Tcg$HV1&?cEp&px(T*jY>!cXeD$4nr@f+SEg62~d z4DmVyzqf7W4@sab^VH}d*b1TWTaYJx-F(UEs+9!>78Dmlh0Ym^wPb4cP1V&^uDUOD zxP*}-0RVCp>_v9_3EX0^_W;#8^1m!K<=sru|D*zd;Nr%vS#N%Ey3i;&>jTc?O=^ie zI&`|HSvT*}9+eAF^=X!I;q!uzSAkH4*l&Nep~nPLt_ejSPw(FPAIa?`DW_{KwUlZA zO~8&gst=CHj$4_#ip}xie)K?BO{DCUc%&3laL+>(RcUQ;@!mukrP*9n-|$Ngt2?-D z9pK@-fc^nEu`z#@yZ1M^!>R(2Sdmet;^Pz0M+JKTD_f~$Q`c{$qRxxy42BnhIakAn zAe&Il%*lP~q|9+B)=FC2sT?}3qGDl$f-1zMNnrVanKer~U=wJ7Z1ya_$52~oJ~)PQ zAUPZUC@&)g)5{cDz9nFw*NXCNR%o`6227{8&8q1?_?`87gWJ{W+~V9mNw9gsFLjg9 z|E0eEdRV7w4n-Z`&ZH{w1BCl_ePn=ad<#7v-{M6UkOIg7FQH*t^0FM!8AW{C zMMqlaJZ}M(R#8U_{H(2L^!tOm(II-V1)eDlGsm2@T*qR6bQ;`j-;mb_sh}m(UtC8G zWHsQrrB-__O$0C?Xc83avpvH^>GbgVb;v!~NzZH7!!8b@!djzJ)}2VuC}YUGoG0=n`dP;0=0%a%8jc6k0+J=4~D zhBHEfqQgoGd5K-d0yRfS5eF@;w{0yny0irHspz%aIUib0!Xn6|`5Q`1wHaNXNrGy(7y12cwi*&E*W~Qb zMZ{58&t+X}0QvE-(89{9JOPwbUmvEc4$ufR{pm_u8~ddfAj2u88t@{p(ERbZ74<={F_Alzk6mw~Pa!Tkk&fL|_vB8?hCpgv-h!-s=cfk3T?Tc#PkEz2Wz8zp#Mh{ZeCL z!_^Cl%|#~L1P%{(4Ts9XT;a5O4dl=MbcX6Vls`f{6&ZSQ(i+ar-Ui%`Q9AJh<{3CT zhG$|xX)Y33y?r!6JvDV~2_$Ec|MJ*e#!Y4AFS0H%zaGN2lparuYQAnRg1oQ!-FpOl z`(Oz2$>}Rl&V7iQO^JQ*un6jE{va{n^n%O@DXvlBv8mMWRqYA?p@K3BytUa33Pcmb;J*OA7Yb&?Ja<6Qu{?eNWw)eF?C@>8zZ$`EkWI_3?qzo+5 zu%#tsNBNLr?04_j+juF#>Rko)jZmCeOq8%QO2Rh6+g6G{OF0D4ArKiCd%m0qHkSYu zBew=f&=hR-Db7@!56dX8p`8A-h(dp$rp7i4TYQ%movBj;FyS9BGFrgd9%=<(XO^(P zD7uJ3?z{hsqoayN`uEXVXQ{493fCrkkKFk#CZX=mot8XL>JPP(MA*i+ZLyy!Xe_~+ zISm5F9}A_AFZ`LnJ|kQVbtS{eikW=yH(``u`?F6`;YM}OJs~ilv^19Hpu?xT12?(K zfMGuOlS~!veeT{?QdfaMRA(313rXwQ*}&rr@SuGO(BY`eo&L%c;G6}`tDUmFZ26a2 zbaOx}p0<_S*p=@Q6^3EXjFUp`qG_DmoN*|0h~{}8yjWP_TD@W(jgR#X5Z0*}1T8`< zkVjz*kf$unkwMP{1^BH@7BmOhMSvP!hn%eyCw#l|SLG9+zA&(+Xej?sh|6O7v&@2o z%b`Q67sZ$sJ&exo-xcZ!t*y05WH%bnyZ8~(EM6kd<*djFB@{wYhrpZoX_guK4v0gR z4O2;znMg8}%&vLAUHmuMRGD`zU-#0dV?n*jc`!3pDS!=Z!A4dR}&J)3csA zX41DL@3B@U?anKI>E9&(ikbD`nbw&u*ptNq-@tw6zVxs$wh0b7ApG*tMYQjM<_Rdr ztGK>je>??76yzXHN3)T6d&15b(hUR{9Tg*ePPM76XLz{U$?4}Wpx^xL>9v(99S_2c zt`6^-yiE$EM^GQG7Ie6T1Br?L&wm$gdE5mXiyRS*J|wC}Z;lLC2lT|+S;7}JhydE z7^iqcTwgFaqwM;Zfw=BB!$0r4>prKjWPE= z%j(#671c`bptjIO5(F4%|Fi`27yjJ}IF|I^RGlRq0AifSp?6>*ctDsVroc4 zWsW)<*Z;`irBk}$j0K)^&->ha-uvO+{bfBoti9HnbFVqZm~;MOZ~bJQo!|?O(S&D{p)+?9 z?-$lxc2X@_^ zd=QX;4-Kw@3^C04r${h6Y2VKdx+z}}3^_0`w*Bnq3PGP53+#@~KXX+W-|ughHK^yZjLlgaL! zhwR#^*ZXIvaw$6~AK5rz_fSRGg{5;yy-2+lSIq@)bKivhx~mRpcPzo3NHgDr7;!gQ zTXXW*o`@_3S?!+U&Q4_^fNb}Jiya6hB68bcMTVPGwLvx5a=8LetD5fJEwzR}O^u%9 z5nO#2X*7#SKpJk2BiMdBADP1({E{4g(i8GXw3qpTn%Xbz$log+>97+Y8L0pK(Zxk% z=2eDZtedWc*snTd?ouaHA!0fIW^w^h;T-yU48gx_idj=|U$}5#4E)*~_O@4hM6|TD z-raI$U#wh}rxAL5Ht+(|u#3Tjp`@Fu$v&llCRxPF3bNJ>L+tNL15(CCHmkK?JQhTt zabwYMw^jXb2s`$hp*q0t5zPA{o;>J)J%!NFqS{ba+r58u)S~s4f&rjPg+#2cz>(p_ z&TBdsNVo+TV}`Br5ogR&Fc^7su;*GBiSi)4SMoNVNly4yzWlE@)%yB=sVZFmINvctnDInpGD#l?M+$JZ&eFmg@+p>XG}))3i~)u}7Z zpSYXfG3k}-^`twJiCFBTad8XT$B4-y|8Az?Uim~NFuthoe7mJ3qaT2Nr`$Oiu5g|p zrX~+|?&ZB@-IIFpF9T&(%mMr9(o$!Cg1KYLq5s6^v@D|5O|Hhd(dxi2`QoL5Wrn{V zkaK&DdEh@LNX*JG;N@#I_DN$t-q*PzEn;TXMZogOiLw6#@l*ds)+i2k_AgIQ;C(N1 zG~b&uILzM>Iz@5429)JFJ{^MR^Vq_0sW5|bsnPbzY-WJB_XGnoGj(n4NsFEg#o^~K zoHs{C*1cAAqSfBS-bFW|-@W+xwTzXET>#WAoS)l~8ElPClO4wF{d4Y@(o&8>k;~0p zh7mbWGD!NtGmRIo>pTd!ZO}1N<6DH?6-%SU&>j8I#RDMPca~!Y&{d zyxdBgb)s#+-s%3sTDq&=B`Fy&dB5TE-nOV$g92JKeWLiYtr}m2sM9`P*L>5}?ayI_ z6CsS!U)lpC)zbd%iv}~&qs~(og1NZVv(QXNkKD~sFVWDqZX ztHkuVIKO0I6A_`ijh(*(Gh~|A_@c_Vx*0<5=P(9lwh-GD{(Lue^C&OdLCFcR@Mnrst~D5d_X{d*h2J%O1I~xO@L`-fs5+ z^DD3lW@2Kx6hTf-j)?OWf=b={_wP$VabNZIAG_*(3aS7CN>gQqJGL%4+0UQF1$U0Z z(+C79*SpPt`1p+5q!K$9N2B)=7lQLb&{HPvhE9n_m}CGd1BiL9v~<9)!@m)9qH@`c z-fExOBx{6Sq<>t$k;mycg9#pz2%;~>#G_k1?%lm6x*&iuYg61rEZf;z{;c;IWKN7! zJ(%(i8A$~uN{!OJn@)Xtos0j8HkpgXXdK}+i9y|E(KMS;7-Xg-PW#_X=|1U9@=K6{ zFxVh8C~~vX-&FLv3VBm`Md|OE0|jFMW!bwpG&a-)6k`Bh3L8hpU3X-j$7NW_^vlG( zcDo`La>1slL!o}Gw#tfzso6aEk@H(gZ|cn2sx;cp?Zi*-sAnGglzK< zXMw=imtO#&jFF$U7t>+^l#6qG(rxutOfVm0T9TFOUA)e;%f#qr!5gc`KFP$R4v73Z z+SedE027P2Slj$6(32<+D_^Glu^53>Pw<`ZYxaMONWl(~mt;-=$yF2Wb`9}5cRvAW z=~weOc&SqM4*N1T(dEQww(@4Xw~;JgMce3&)dR#p11`-OosMQ_4IN{B{d$+eco)uPDy_?SmfZY=UvhS&f|Ckp0^TUJmqb zmbg4}B5t2_2EUZ#TmC@9L>?}U0t%5tuz1K!It}#AUxL?I^nMTw1kvaqwBFrCbfxq3 zjh|r1Qu>31y$8K=3ZYqj9mx`bQ-*_L zYhKl&2P^Fc_NikeAWTs2LgwkKu(W%@=)mZ2>+}dejDV!P&#mDe;wfzG*OAhyQrmgk zS9DbE@l1rUnF2oW;O$MJy;Zhr^iQxi0yQozv;WM2)QTUT!s`)|$okM8KX8g(WAk(< zO%MS2UCva!fXTyMb)^XHO~Vet<(*f3=VmFbK)VV)O2RNZQN464 zUI2XizpCmaDcFde7MLlUK^W#+eL089tv9N)e}x<6j4e~s`T7<39ar^70?2&ssnN<= z=v;zRSk5~b8BXvPMzBkjJbM@MT?xTo6ZvUO@SsrF8VV`Bn>rBJB=|nU&eG*nZ=jA} z%;1O#h;qXxgp?cR>1@|nPJ+}|9jGp=w0^48N#71e_yVzUf{hoE{&EDEX>>S(OxerD zMZmY)soU(VJ3|k=zRKM-5Kq)d{QGEFz{BxT>wLr1B5b|4u2MJ1i0BhL=iPkQ5RrWN zG<}1G0cNgkZ5}h5sAuaeeVG&dBDT4Y#~%vyuZkUegC0G*FU(!us{OkKSVVsv8B)g3 zN|`}>GrSL&=r;vg<~=K8uWH%bvq7N$xVAf<$EU=$-uj4}V%Oo388Ng|RF5oq`eM8c zqmOK^dM?3o$axakQ-5|w`j-Ds>y;g#7J=N45HRpG(dwD?AX5IN@IhB_Y+P1vz$?0E z2zDL(i~qjXXjTH*@!XWQl9U14|6DGFSoCvfLjS`6()B-_0VjQirJ9Kz(Oz$TqWOV2 z*cpr%yY>?rem-;j=l7!V-`ABKu=_M18RJK8kcJL{SwVMs9=CBGV%JSj|93vz{Sub{ zeC>IDGa(i3M%{uH`d{|wktfe^fjMpV1jQ6WLU=e4#G$0Fzj3%QOsW_*G19n9&qZ?Y zp7wiIEA2O_SAH9(vz+4ovu>a9J1Sp8!7NUe3O#AfY~~vH_5;hs)<>Q9KC-%ZF?aFu zrKd1;HMA6Vdq^l1oR_S-un{%qMj&lx(8uV$#5vm0_RV3m;@QnHRUd}h8w6H%ORUmCv;6t&lU8+ZigM;&& zMvVB0`PX>T7TwtNy@lq0|#NIEg+CaFMXENQ-$E5K6s zlHSsmYY&pw>k{G>O&+HVO(5qHTw$$s4v&{@-!+T(@eMULY4! zc6384hUe#Xi?Scb>6w+dHCnmHKGsUoGwa*WSj0pU;NU!^@=wIq*u!oK1ZZ(fq58fR zqGUlBJ3KD*QEwu@&d>Rt8@koS`@C$Pq336rj~iwP z=b*fApW>VTD#rd(%_1nL>X-J!T8om^s%nWGbPkTZxT1Iw3MH+;>7~r&wVyAv!ukR0 z-{4I9v5lHXjUy}Ks98848Cc&Bs;a76^bTrKRXr?x!gV+tU%@pa^5A|#nolIJQ-u&* zY|NiXHjU!sZIXEm)_~H>Hs~!Clcm(s<=M_czoTx%nUYZaB55i@Xj#|D7*-+DN7pD- zXXR0{?3VJCk%TOD7%p=5(xtLrNrLLG_qixOr_F~Cu%ne9c97nqOC+`=zd%Vlg>{9q zo@x-uZsknab!bfbMh)h=yb#9FkB)E_%!Pe#Ug$(lI3=$5- zrS!44)SP5wt+kfs2(%iE>{?sP_^7rcoi2VM$@g%|Xg_nP+DR*} z^(QA8TyQG~Iy3y@kb1u2wBrrTmBG19YSP<5CrEoMlG&$GzF}Ch?_;&1kjW;ofwD+mi3* z{G%7s1kqt4GMmi9nZdzlj|Kov2CW!zV>mrWUrGmy%Y?Z||2g5cvDL^b*u< zOtOyeC~{Zvd6C8HRZ@K(O`RvB4}(;qQ=zrCzX!|psGtkR9J4VR5eW%7{{E-=th$>x zXS8z-Yh{Amh3HJp%{fFw^p%v9WaZ?#z)*KuyQNNwHG@@3ynqh;Q7*i=<2!kff&8}ZCX^!+Lu#Y z)9D}MJ3p0-Sar0=-PRzb;>|@V?C-3vJ}RoM-K*yOS*WNbmtRo!2)0ZwyuV-5dA?ui2@AN$3NF>Lw^ z@NL;D@?2@YiMq$a)2J2{_YGX@criaqRlae7V3zZ2cZjHFu}zeMm%giH*~s8(1jRwV zVxv&w1-kRuL%%T^qotqU{G>{+*P+}kq}%f9VEFR`^@l;Gp7whg!@)A;-h0l zv~J9mWNjn_)y!SS7jYvPNirY10ZsUcQp;?|y#?y7{ohBH1_~M%-8AZHSXfvRmUkf! z%(pl1DgQjE-^z~&sJ7|;?ML6YV%xf~93H8ko-X{6Jz0%_nh&4BYt{gt;D24TA2qV) zq2W?>J7%&yW+=DNWBZV7E%SWhzd(>qwi)2L42Jglpl(oDYuWaWdjl1T zsaW6_Xx)%Ai_#k@aiuDEN_!*cw}2-1Kj```YNeFpeLNyg)b}K=^=KHd@$s#1J?bfv z1krj83?|!$j2V!?8(R4ifE?yjU-06eA4qJgk7^l>w+qV2_9}wN zUSVo?9B*+$GsV)a`?9gj``1a2U#MtiqPl+XiR()t;1@87VQCxAw@qf=PYaTnR zR=Op5$9*IAI&r*_#D&7@yYCCt(#-F4C1ptg4sKIvbK!c!oTP9aA}joBq9$g6@wx{o z`Ug9vuH#Dg7cK?N-I9+IFv(EAl<*WeOI6@`D1CZb*7vNU0$#Uzi+%lr3Sk$6PS5Cf zB1)uOmeWUp`c8nD;tDyETX-s*EBXe0V@U@GOtE^=*hdw-aFxV{E3Di0#TGpqYAuJt z20w<9!w0Xb8ND|eR4JEcj0{p;+|k{wlw;)T+3H^2k@ods6$&#z;`$hY)Gv`giw!P( zkDCoI(z50^suU|IiQj)-ZqTE*WaA-yOk<#*8{^C=O0!HJ^1jyv7bb;J!xBp%aWc*je;}E zz^azK^=`{=2T8R!pT!h2qy+e?WQd)~FC+zbiD147qz~1JAWeFD2Q%j8>3BT`gsQ5F+!o*?(ZJg8LT zD9P^r)j^S|5veb08`5(BXpDV?W7b{Doyh?y<+j zSl7@HzmC2VzxrC`L{@&jas_rl`Tl)>adB~7ggvRm#E0TirxWp~0}Uj0RlelnZ6pJfFiJJXB_J$^MFap^0d$-yBc zq}$xw+@sBiTVW7LgHHO9ES;%UV76h`6|SM5j&_{fO3}wR>!{oqw6^NYj+^aHPu|*k zOnT|&o$7;~OodtRUFQ4m62a9{pPQTejh|naZOJgWKk~<|?jnLNMVMi2h>GRFtyqI# z*)n=Ij57%+Gy{}xfUgkSw_0L5^g+aPhn0^{4P-qu)YT&h&d@Z~ln^Wzo43*5BoAxz zYaT4Jwq1f1Mz8?M+|WMvPFTehJekW64|bhfZzPJ*74z z+CVzt4Diqy(!ce#CsSiCyJ9il)41U#vu@N-$>hY;ry1Y8rnQtoR?d?6_@~S-s zm8SLWqe0s!T^9#v$EZQB^3y#VJH*H;Z1i7C+#}46-V2wzxM&bpk zFxCB0*T@qwpSLHwL>m2d?g#IH??hn2902_FmTx*v-rqiD7N)DJsF+w-Sorqa`t*;l z@r2)`O-)l_EHphOFkf%s$mxHUvz;qCW;5b-=;=KDU5uPXUKLccdNR~FNNI1W`jXLO zD|olq3h;pgM~h8;;kx7rMkj8-aq6jXfjss?PF7ZSet)2W`56zv8JCKu(Kb*bS$$8e zm6>W=2Itp#`qZ>E);_DdhBueS0d+c<%2PA5xAi-S3hj_0vcIO{?s?vxpIOmsW59eP z`UL82uH7ggr~8dJ+{npGPkf}dtNfv#Y+^*1g%xoO$p3sHmt$!Y^j7{!x0` zYSWepqtWg~UEQv`x8LZ|}5uRf#&jWRMaZvq2* z9|#Pm0EcQQUc5axD#|hk%|oqljfqM3`=$QaO_ny+vdZkf`Rh(s3v^zg$zop*Jez$+ zNSC{5)+aG`zb%Fn#K>}~1yqOIDk{wgQLE1I;|+73d(v?FvCG1sY2=#vK&5K|h<)Ki0(UeZj74U ze8_2LJy@8I)RJ+xU97+aXX6pd5MsxVKmUAPFhBEdlBYGTP5yD(<;sQ21wXUB4iBPl zIcLz0tACo{Lj|*Z#`7PWc+l~#*3U7ZRO^FfwkUdN@KN{AzDotFs{`feAAF{p5!cnCOm&;_aH4O&~y713PP@AS|PS z*-Te?z1*lcSfHTCjG*&oE1!z8GOz23$?k_7EjDBIJ8jW?a!=}Q$O8S0CtAWMKfP7K zKqXfa6tf!^7N+u<1&tn1sleJQz-SiAsa$y@*TZ<$t--^yc#3gLuW7FBHH7UsO9+5u z98!tvtzft;Y-wp34{y1GxcGDPrr;~_Ah8#DaFXa{d=$TJ^wgkrPLVJNN#heV8VHtU@S$9 zbG93%aqE*YcC(=9SA>#Li9i<0%?t9;kW$1dbpj zu{Jp{_K|mbMxy{)AopnO<5d=+22kb@`;a zu1+G$A~iwY6?%{Yd(bgX^Zj{m`R#5lk--KyD+`NsUS3{yFCoq!gX>jz@C@X^AXS&y z{FcQUB4?xBsK;smsl2PJD<+Z%=a2ExIjO+jLn3fDD77g>p{ckZzEscBeE;Q(c;74@ z&Xxf3sH~#ycZalqbax5T-HmjEfPm5h7`^J0! zyfX$v2Ye^?{?=Y=&bj6~k;-pm(2$9cp`f79XyWQ<>)>kp&XmI4!rA4WgFPn;I~xl-6NQzltD}nmE34iAzJkTU z*^<@8;b9%T3X-F&jtdkNh6&^cx>)qfJ1D4FXgNu7bUj?p2b`^};4$jfeX; zA38xApN%Y^uOS`AY=IH~9=5^x3#1fOPmjE*pJLhne%%|!HbnRDw>6ZgXOaK8_!+F< zzh6=jcmDrgN>Ao@e?D1k*wR?yx6}^J$H!;9KU3Fu(XaX^Ta;X<#yluKK7PS~lB$LX z@`m)?sZ2U~Fdrhm`&=Gu&r4B7JD+YS-ktQb5(s&+F=-eZQ@nWdDPnK>+t2xVQg{@+ zUs1R(^X~2~|9nPvs@sqg;mkMPP$R{w|VO>IGGDk{Crau39ah~Ar6BJS7l@VSMuiLcTgp6iqn za=tBoe3|l6E3EM5xQCqG|IQP<6+G?h5A8*YnM0)-FWrv6N=4(5qn`ACUHhX>DfxI{%o z&3hA|=bJowwubX13J&C#+TQ*l^1WV9YrHsqxWCU#LZN7^mh4RNo%Risv->lsZeijVZsx&P5E|iv^PhIo&kF|G9^P4*BamTe@ zOzxFzHj~ch_|Mlo23q}Yl?z{|@CkTRQO$OYf$)g>ffIm)H82`NTc~x>f4}inzajYT zpNx_Zh8P$aYkkQwu@8}$)Y6gy24Xx&pJHe{!AJS%ouyu)nyZ+}!}t;DGZD$c>Dup< z{aPw zT5;<3ny!(9GJkVJ*P*`UHQVj~dpDfNevZ#AySb>LD;mG7onA46%hAO}%`c1Bfh^DZ z@!_7{sI?ink*1|lJOrWM_uBbmk6gB(+fD(Dju$Bsp3m7v1^=0Y`Wel ze}=UqrnzWJyyQiBR{4x0KX*U%!4my0}0;Jx#>fluu(RdBA5-{Z(re zr;+uN3u#C6c8_zc(#XiK@{WWyB01+I)1g(|{NiA~j73#;h`FOKEe#*UO=yip{|Y$e zJ1v+PWI|$nNwmi&>+#1%q+tKc zgLyXSuMPP!@ud%$Z4MhW28JwRy`fZu*Qs776?#9qBeChI{IY4-c;h|)<>zrSzSn?xI(>%Ko@-8Sc-p8E=3V&zvP z+7E|C^kb5sprB}G>|}1zAa8pPA0riB$9ZzyGAoKG%UK;`(dw9$!|NwHY#%c z@E!?U+8gym;KXltqJneZ=X@uH((mRhj7lo%<3(RJJRIEnD?@&JUS8gx#VYvYXRBh7mA%ROfr}H ziDs$(eJ@1wjRNj93X5buNEy>?1{Z+j!GTPZ{8N@gPjZXvVh9m?FPz|A&Y%0woQ-OTe#LfDME>(hX<-MLmjJ--wvK`x{P^Hx_^xkk^e z_VZ*V5f!7thd?+LtSVW?OHem8I@nKXyHtx52sijGqJjtDFVD`@L#Nit;PRa@DXFjm zUlX+sXr<1UX;o^9fAI2dPAm}UhsRCVBNY%!x}<83h9$qbmJ@5TnPh49xkPtZY}Gie zF!JI-0(C-m@|jlf{?MU`>maV&aM}%~G}fAY*VWKDW+%1| z+S(BQj~IOThs(A{shdwH^${EQGHLo&NDeLDt6W&8DD0Suq6w!)MGXW2WX?fSQE0!_ zF-u%1H|?#QDaDG~d!?`&95JT{<21l=7m1<10rk7`g~G=i>E?i|WyC3}RVmc;v;%6F*JS9oVV_A`{eyeO8 z!Q@vS8!2O&zWvtY2C$Hx6?x>Tt}>ca#hw!gfc3(M3(?;Vi?3uiF-q<&GnUwVlm)osYCXb3LnvYO-(wjkj>aL|C6exlC-6TZs4`m zF?qlpW<|DNi>dKa*lirhUuzsve=tcrQ~*psVbAAdk%p+b{fx=5(KOqc|6HB z|9kagq19qv$PG8+B^OVl&@AHZb#_(tWT#3ZtpdP9mXpEsRn%P{KQ?ZXg{hF%PwJNf zvMR52bi_5S*f{XuP#wAuT~vRuHAf?FQyi{M*zNS;9^E-6VA zw}p+V(wqqOCYYJ90xcfSkOPZldlzKX$cf^&Rvbq9sUI>$1N((M~~Ufy+fTc zA_g8)2Lb^o?V4$zqTa!34@*0-{|fNz&Xl?0)f7&q%bCTsWFJ8yraSfaw>w*ow*ywX zq#b;}S@Hd1#G8*TnJdlwF_mBf(haHbFU=oX69*O_51J0g=6w73uAi3-8$Upzo&CS| zKt-DC4@z7pkIRNaoo^abA#HzQAC_Cv!OM4>xs#dkF>o(A6valC3a|A0Q<)Xzi~1sp z*!_eBXd)8pR+K&q6vD_fP*4uOBjf8QSyRcEE}2ZpksN7Q{}?-sjJZ8h7_FPcDnQ** z)7=7>w$XJmFkY-8abI3Ykiq2f;&hvq*)UkwjM3e^!0IzoB^`7r$qy$l;qCmG&I~23 zgiB5Tzb9FJ#brWm`b!Dd`-#l_mTx#<*Ivaly`<~Nhf6(a=13yeqZvwB-I;6nmhnJ= z&y?r$wO2nNJ=LVykxC859KFdaxBIBqi+TH&!;hl51dkmTY#^t_?*i$`bxWGVASPb= zbMgY&f=@jgqbLYyL6S>SBz(&E`tm7^g@57uuC%L7LmTVa-wqI*f8)WE`S2?B zIA$*LY`H~aD|Mm zb9DGjYgD0dVu^_`7MO(>GLmsJ-y>w5_|sog>~{Ch>|w24Yz<3Typcud2$wygKV2>S zm|ZX;pYS56>h5lBDwc*KZOqL;8D(TE&q zCII^FG^e2uSLoK=EM5LS?(pXX zC}+AqRwlk|M1*a6NO|=a4>~|(nLfv8zqYsrU~Xp~x5l)l=Ka8US~NaKk|OyFotGz% zN-U}AN)3Q;ML5NQGKQ%ll&E6eN1veL5=BHfpJtmBVeRuAQ$?F(7%=207)WemCe|%Q zK&}OkM6~7q{%>^zre8_-dISqcQI%AuM1 z8+*;Z8Z_apu-8aNtB0i&`W9q-9Y{;I2>-{uBg)ecf?An`#{i_Pa~+)iW;tH-x<+9* znNF$G?=A=yaco2(;O-bPj#MygAf2;5M*OhhCi$cI|!d3!Gnf|wl+6v zZL^#GZp~#hF|$8enXSvI-Rymi3;>yiO~-euVVE>lqwX)+{!waQ-sE~7uk5hbym9<2 z;O2O^&_Z7^{_@`UXbBpS3RFbI@c0M*=l?cLN_u6U*I}XfiU{eDhj964=4db-euT zaf|pJ6Wlb^O(E6+K6ydqFNZ7oQzE- z>Q7?YRy$fKkH3BSCQC>M{sxpCsg7WH#oO3Lx$tsYy(g(lcgAml}XuNj$t$~s5#ppt_jeoNaqv9*_#SZsi=Ly}kj8in_~M7vL#ufU+v6b1!1)%{dGl`t%ww)Zc&XQ2(py%*vBP!itaAaev_=w$O(>2In3AKbyy_dfye`FEz?EH3kt!yVf`qff7mW3zVg|ypKm z4OrF~9%e}us}A(PPkJGXpiC~}Tg=#?cN&VE-pJhl$IsT$mcd+uw}h8YZN5U_KU!Sg z74>eQ9Jm+I6j)nD>#F8y`;TH&?_Cg-+ z(lD=)k}Uch3B|u_I-@!>aVXBt!1^sOFXuAuF1Gs3y6Ur=+>0XpllG!8^`6Dq#hNiS z)A?%szl1-2$jhEN-Q5K?d04#rlrZ}zb7u1PvamB@dzl4_=)Hg3d!!)S=}!CUZ#G71 z1ql{zE4RHsO8f11KCac9#!8NWL00aeb+k9l>3g&Nh0o`LiNoSI&X>wAOo+M|m4%1_ zrIYvFMvFp;Obi)*eE>{3e+Q>ebb+omlY8AI0DDOZ6oN0rv@r4E*(OLS-mEftkKUCI`n!pA@mFO((v&*Iw4 zb-oSNzEi6^%NqU_iOmkM6O%zB4mf>1L%9+v-`*UR4&(MSIFQ(VxZAuj(d`J^Qz2U{kBz&M_(*022lHdibhe+fl8p3 znfh>Bu2c8nP8sIz&e8MM9U@W2o!mU^}@$xHz2TSzddNh)`+&MG9zes|ZK+0~xMrla@Seiwus=DmSv z#5_64<{e#_PtjfA^+2Ls{R-tsDI5Kf9qVHnBd$=AVI$XbyWR#->< z;dImH=8u0rFWojb2hKOu?Pod!vbMp^)FmtF&zxcb-rwh1A``#z=r&pyeRcST@6)GG zM?h}O1?L{57P=%FIjjwKd=~w7KsS~3;~0AXWbz&ZMaM0-U6uppbqZrB(Eg7CTFEl%klHE<3xDq-iA9F=UZVtyw z#o~9PC~3}2)0+lUs+j{YF};30n{*685KxZ88XiG>?*xlwaJ^HwrRl}z2zGcg(|wy~ z3Y4N^jWRq0bdutk2A54ud_4Dqxsr_y`RW#+M&`>VQd#c=;=po|kEdbYw>{jTI7J2l zc#|lcl;e5hT4A*?`o-jsRac!D(_vaQ)6yZ5=IC%peAYbcvD!@6vCSIyXeZ_37tRGsnT#rb)tjk5TZt2jOmsITRv2gGuEHL!WVySiw9HTzQ9$;imm`Sk+bIYA(f zHP2;)2(lmb{-j$|DkmsG@F>9{zSl?8{ZoB4?lm|IYkd>=YvC_Kug%8{i)dswI)6o~ z-qY_5t|TkfW`|Z*X0^~#<;7E+uF+aN0IWcHfsc+nSD4Y7s6L%$8~~DXksp8y5VcWR zpm~N3Ga=YpX05ZD@Lj-3ADs&F8LMG)@yN|8)>A`9@5T5|+s$jeLqqA~SnB7I*s!7x z#ecf=TZoF)dU!^sInAN`ub{7P9qd>F#!EXc`$z)hEr zX*Yzyr|x75da&GF9zJ#)rZ9zYTK+9ocwheu(k1G}GiXJXJzr81h4+6H=JONQ;b3+% z*!UVxNZk-yg_1PGihFf=Fg|i=GmhMWeieKSL~cBTCU>bwEZU=seZ3USrGo=|Zw1hY7+TQ2;wFJ~gBsm-tE|Tv*9No6 zfjFs#kI|ZhvP)j|ZuEtDUlRPfh1?Y1zYmw%?3EvDjL%ezTbNAcMrHBZcu$+Tom_-O zHjBhve&bkP_c0P%ti`+ImRtnx=4`l#rFYJsimHZBK9xzuW+5}VT_@_0FeczMShmXl z@xiaoHS4;#bznP<@pfThVXDca@^u3*UH_3>6?r<~e8o7vCD0VO4;BqA#UI(t!W!A0 zPeOXFM*LhU%S;9&9E9 zGq|Bkif#34;v*u;3uokEGJ&zwhN^*TCd-*bYG*y@=4)id$6CR zq-LpV;p<|{tQOqRS3V#GMyRT^Y$c^YneT|{GhO2oJ;k8S`2{nZV@_(3gQhrv+wSXh z6J{wDOvSVsw8#l(wbb~}zBjReyG)7bRlP#Wsddo!c?+s5@;D^cyL1}bs-`+t+ zC1u1$k-$sK|Cl_EWL{D<`UU#5F2#bO^X@tb_vP6hDW*y}l0kc%?W(Xz4iKr#nLz)`X)No^~pA@5I9H>}sxI$xoxy3VxNtV&t3U1)UV~(&b{1fLkD$aNuNR(Cm-G z0!}uo1kJl6YH1^&W9v1#ZjWi1RXJ32RHvn->AoH$VpV@H6YRU{gRS-y5=@CPbAy?P zXS;}=J~p>B5hT3mTcdRKvLs!i4M(cqnU2P_+LwQFe1eN1McG@Zh&=%~+yf&rB2N-# z6(~v6pqF;UiRWI&F>)vojt=RrlBew0GprGayro%;cq$u(UUvkB6}lY~8*7Nizq3ex zbjO8iWeHKrTvj9$=;*eT>ja5D3~34{B>DyfER8X6e|fwf%B^R{y|FVlXJ~fI`DWgi z=fN96k0)nLNZe6KR#^zi%4}>?L=aF&5ZIjz>*fqyw zVnl?jl1w~Rj){b)ke~GoH;UL}Chsy(FnGj9UTT$V2LZZ8>2tAHrF)VKo|xn9mg8o# zG{e0#FIYgr_goO#72)}ZXcM)$dF-W~@qW~c$Oxv7UxOY%yARS5!Zl7~)Ic8nq9g-) zB~Ir%8Yv=J88|OM;}` z%~tRG>Z8x9NYj@0=Mg}U%nY0Z^A12)zr6We3Uh$2+J~nqUf3^c6|9^DFLt;P#i5kDjYxSVvDc_@wcISqV3 zf_e!WRX?SAnI;+l+R=5BSD?MCF(I~v90RmKwM)4wqe??zR8j%15fwjja`HODmekix z;$7tBb&gW%gzGiey?%+wI?ZsuUt;G&GphIWVrV&B+i6b&05VVX&xGx0ht14a}xp{-yrAAo#G56LB<` z6EQX0u#Dfe>dMyZ4JQEV5j2oOBS5(20kO2`9`qo!PB)c4@nLRX_UrqmXOnx!wKf29 zpAX<;y~`##K(59!ZN?oi=6^CY_M04+VGvLWa&}YawEMc{MC`(KItzlS?QqA!uo3ljyg=X>NzU0J>JFn4Jz45Zu!>IC7!Am!^*;}Tl=ieW)dB9EgGX{i->Z~>9>YXGC zuft_HFlad2eI-R*HUtt3FfKZ}S)K6kGiBN6{{~ug@HV?n4XdODXa}jHqXW zvC8IzJSCi*7O#(5M+%p#>`6b3e&JQLI6XN@(mTO^zwg9F`laGCG3BBl##x8@r&sKE z!GDhec||aU;(jg^4ioG;Va;q}>{9it<8B_31~@<@lK+xM_E{^?^$iSE0HNBO{V`ap zwBaK+E0iKygvV-F&UgvBftMli!uYjh)iF#!;Oa`hJPhiNl|Z=uENHV^ed>_#M>lSQ zK3voZF^ceA)_#1z_Yr1U*d4(oWD%oPFMP zQ&67;w_ek?4?3-7vm96sZ&(Oqa~8iE2=WPrE9fSi-3{l;c4aE$NDW*7if zXmz_6pu7X20QBCuTV}o5?{|I~oH82LGJJ$)=6Zkg2%=WG&~uxun|>nN9Md+MWi1#0 zDo0$fOL7lhWfjmi0v=leGGXucouMdZfXT>a@>Db$MQzDhfAoSDJ#Fv>Dx_v6(`OH0 z>>2f!n@&62pQ<*iPlt1U1SMiz3O?NuBAuWTa?t#ZPm74y8{3~1`;*ZQ%DbSGsqs$) z<|DeMW1M%&Xg(T50eW``G6ZZGM%1um#st!G>j*7PvXYWKuP#k}g?%p6^*jecJj@F3 zi z1zHyY?w-fb!DmB{`Gf#;K^dq)n(($611)LDd)*X|$x4A{Jp^mB!icDyp1$FP&rpfF z4&jt+B_(Lu1zQAx)q*DwQq)xRwE?`=ke}!no~h~VPoz%DD)JcYeKpYOVHK2e6jWv% z5M(zMUMd@D>Fp5<_9UwxsfItfKs}iuwfTo2?nPl#ZXzAyPmAcR4j4Od!+LNQk~+E;`b+fF^EH{ z+5;g0PN;<{&o|Ex05j3~2O6ryVQvpwVP9CmPvGbbucsN+7M?{=9rGgRam6hopA@@$ z3w4qg$K>(ldrShHj?4}rqBq(>L1OV_KmyjC?STF$h)*D_+oXsC?~#CO;RM%n)L{Lk z{c-HmeG*^p)3bg*=?OOk(9mLOEbW7$Hh?M__hErs8dZcZ8%Z=3D?wj5(|3gIqfBby zD0%o55GULx40gsY4s1+;U%pJZJHzAtCnVLktM(yLh#+T&WFRYh4KT9ids~m2XhRR47sD=Vymi*mcT;xBqqm`sqo- z>zjzRwn*jrC3Ob+f!sEMMT+MKgwxMiX~bY{J9)-b_Ti4eKT>Xc6HoiT{Iu^<;gzfa zV^+CWOt`zjPgEij@r*TDnuqu<#dT}PD;8JIkR5g7jY-(qPCh-WcA%+etupp_p}+IrVv1iGoE+{6p8P4qcdb= z?GqJZ6}sM+F?)gJ`ol0UtFiuQ%;NfMN3*Kn>-}37#nZY}n42w8Pq1IWeRn`C)ffdI zPUdbonCFVLEx*pXsoez zt#W4$jyhg&iM=BMg$6{Q_`mi1GKOlsMc1yOsc&q>Sujgb5v79^tM?I5_5 z^X%`=JU8G(&z}$_74iupI^4#<@XVVxGtS<1HoNnjR4LtyBxO~^;~Ij5h92~>1q3C*7V)87p{Vs856zU;UmqDK!f_$I?&ZkA^DrTdj zk`m2j@nT%BYg^KjvtPcLtm5}eNN1C zd^{jeD4CRv(w&NIOEjwcw)`FWVss_(>H5!4!OWrCO0qSBEs2Ho)(NctECoN}~COe}CBRo#!_*XB}=$6!R>I!jFs5oPS-1J(S3~%n3HXJ!$(cVH@8oybd+A=f!8SlL2bP>h6U%oq=*Hg}iBI`v z1qqUGYK$<*ptx;d217R3wZ5X>-Mn1t6^%EaXUT&iGRAIRE}9{&f-^hLUzi8E$+J_5 z1H4PNVGGR87_|N3#7rnMG%*j9y{@sO`969sm97~fOs>Tj)Na1BUra4cQeZJp%bx~# z3}9sd1u8x>6IYobCaBB1y{N(69flKTpB>8zGQ7gFaoq>BuS(4=%j|Z1Dj=C39Zu4FX2gJf&$i7oC7@8qk=cC50@YG1HdKvz%_o;nYl!_O+^wTh* zc(D9v81}=1_`E3;guafT0qi|cCrit&K?_LP4(W;(3OIXywFkle6l#@>#InX-o_8Rd z`U39I+%51XgaRGV1SqD(s)bQAKY$p#)}Mya6Hnf=nH@kTF9Ry_F?IGdf#0vz&dQI* zni1vLcqVi+9UMA_Hy(4n*oBvW8?_I7@S!ZZdKmX4G(L1YnYT;qy;8*8YZLp;cO8K5 z=Pw@AYED%DtK$?Ka~g3T#?Q#eC?#0bYKUS~Bt2TALYJFF(0wmI>lRpYfqo4;H$Sh^ z==v^(nD?)%g{I-?;Gj}VoXSG8*ZBQOBPRS!(h6(lFzDNjYk9Fu+om61+1~Rpy!G@? zFx(6qSWn?HvV&tgnJgwaLd3gv=co(ki|-;z(>%IrzubOl-SakfY__O%X5(1r!e=wM zC=6|CQw`G#^^pqWq3dlALh)`Rb}PDlBYAdsxKTvqv3y*g#J&CUB3J*9gB!7X3vVo8ejcZDu{_kS5Zf z{(!5a+>A;PMSl9to|r&;)TF*n5;rERMJYj1Zg93x_{c^%H;LkK(3Y?%pFknb6`utp z2Kl@u4;7PksQTu~jgv>MFX#^kBk+zxsU*}jGGt0w#gF(0kGI*@ixtYyz^_B|X!IOY zhb#T>0`MTElw<*2y`Q-of7W{Pt6if(m9aSYrKrtBxps>;w}2Zm*`G+3KA{9}m<{Ti zbWTek*m6_dL(l%!$OlL;$NPN8(aD5}H1yYL$e93d0pkyxy^)QRFe7EA*kyL~tFy3Z zag>uE{1Z~A_coYU;n+;G)(jf>+toUp81dsrXA1A*NJoG6mp!wMK5zDrfz7S3*F9}gL&M{HUa8dC@<1STl)wy|>s)z-P(Af%a|TW@ zAXIi;9?~}eg6{L%Lek;8n~xBkN91}98}Jo_y7dN&nRbxW#{E?M41nRXF7yRmvhXM6 z3-@vyKOs^2)_t*T?MT){v>)oXOi?*rORt+x-NW4?uBL25)6$y5 zzkB*l950YcG1PWC+lo=w?JZC|W;=F0V&C0#%-}i&_&OW@dTgNVSu6DaadeozzOso{ zbLsMvHmaw1cBKwjbLln92|#?7!K%VvwTSohof#^||oEBxKY zG>Vg1DK9B`<0MAmFQw;;Zbvj_VBU#873EPnB8W+7Ck=bnrLN{f*_ea%FjNPC%-ON4 z;(VI=6)>+tOaRt#%}kZRRx7B6`v6D`=-#R-DD}$Ti9X($H8Q&#LagTC)KdcIto0-4 zTg8LBTH@+g0?X!m<(R@hRAV9U*2eUOj^XZPhC#JJ`Q7EB|7`{GiH=itL@!UwPYSLs zUAJ2_tP+YxN{+30W~yi|*p>v8$zg1lC1lZZ8M6=F?D|rMPqlY~U<)`6NI-7v0;8gCy=dZKPn&Sa#O@{XZ$i2mRzW=EUtLIZ-c){Ma0|vES(ruRfja3wPz45Y3VdU9* z;KIkRMGd||cCvA4Q*i?Hq1c{bOM?(GQrMNXd-9v5Qe9{dL35_o%;OLhG;k>1E!q68 z@d3nKg&1&^xSgrkhO3#e2fS}pD0QHoCUQRu%Dd7Wr30;%q(uj0FhJ!t=U#wUbZH2WDK#MKsm9q?|APX+0t*Db z_3jjQQQJxw&~y-w8^%j-k$-4al2o~bBGjmQ#6!|(BAhU0@*iu`1Fx+3bbV<<2O>bT zI*wX(N_lWIOCAJQbaC|3fAiTg%y40XA284WkqR|BKfuGpl!6t72k>7*@4ZTq#n}M` z=Z+a?bAs5RJ*H0GesQ$nM@-Y{mJz;E8wj7-fYs;M(c; z{8tF4Lk9EiA*?((m^Dl3Pxyu27=oiU8MYtpulmZFw{Mc16(p;>pchSET;xVs7j|LW zc8}#u1A~Bh-_uK<^LwCAhoN(GBbqVsW7@8Dij-G5advN%QyrMW^! zRb&3N(ncYF)UiqoItPbw{V-jEFG*LC^elH649XaK5CEpfQWD!O^n{BNpFYZjMDVS2 zY+#das2@YeBq2x5Aq3^w&S7kT^utA%-b3jqRDvB|IP)n=vJ znLNxyulF!KT70C<@!fOrZu06%TAqDY=CJC5+$^Sl*DHK_cK7022(+i?QuhZ2&jOF^ zh`j-Yv0uSCv;VOC3oAk%uwwqF6|c`W6B3y7U_Aa^ev<%sHhT60io`< zV=^$!qfKVu`Y;Ge)%h-;7C2E+H|ED~jWbjbxzIvYqvsEmVN7LD5pIp&!OtX(m~Qk$ z9_gQEgKG3y4WZD8pd1#h_c#6oQA(U0;3m%d1eup&J=)M{?!VOz5hwWawBCQ$D?B`i zMdP){66-d}Vz!TBI~s@jQOP?JX6JFIQnD3eJrbab8`zFR!tJSD!!*$z)Se|gvp-f6 z1ZXfE5_kj5^yw&Xf~eu0@6@Q;ahko+{oWqYK<{{h{{7VB=U)_t?F9v4Z6;xKYPRNI zQX%&!5yXsJmD4QW;}^_Qpt9^0|6^DPh=_iPWu>~Cn&DuPWF zQXr5(4)lzr6 zye(LOv zWOqQF?IDo}m)3Dwz)V!Y>Kg#oiYfIIT3y;ffwxY07*onoa}wOC=_iIz01PjIM*hS0 zO-(kq7o$bvOAyRqLaY^2baBkyHWW^5Dj_p zD}j~l_z;qB(P03|8bOr{q|{V3#E@u{74~;+E3vY=W9GN{ zq^XdkP1V#6+5Izy*2#QC$D7)TzgeW()i91DrEb`Xc6^~pTR~n$7rw4CPM<~~Mdsp( zcyzV#y95@>*UchfS#@2i77Rhwi-?y`y^$B*xQ|W_vVTE`+0%MQKb;@615-cSyAc}T z9eWmvjN1vE70NZ{eU9Wlpk;lc$@5KZn_` z8lCgLStbJck`J!V0i7`Tv5(~b+pu2nE)e;uXN;(#1Z&m|#r4JbNyOjI{j}x+%rR6{ zAHw|-6-T&-jOwg$A*KSDJepU8J7-*azm`;+ksV($J5)}6pUY(kg;|&*-|y%LPm!qYSX}E9}AHzUZC$3 z7sejM#?}u|yt$4!jS(y7JnG+%hm*Lpu(cGAsS-S{j7&Uj+Mcys ze}@x?jP>PBw5W)d&&2*JLT?a5#9x#5v>{@UQJ8hd@OhunzfNPZn^^>iKE*!(j0VZJ ziGr4vwZH!s|INl4zT5rHIb==>;-4wH2QyG&U|cAXQUXE0-VwOdQI*}G&FupuAx4oW zLt`75c`Lfd#`F{WzCWvC)dAx+yEu*;PN&drQ&OuW>0Ywb?A6<9lh$}IqQOY=NrC#lNxtC#tt=^Qd<7WeKyM z+SVp5gpH>JM^koc82gWbM>{R_*kNoOY1z;Im#vRQpAeOyflo>mKCiFl=oCTf*TUb} zN%8b`@;tqqY@jLd@$)YquO{@D$qMpp{Jq?p#)b@8wUu*PB%LT>Ccg@VjPU_a(*NzT z)P9kURfyY}TzYx@_)sqzfIi4OzXTI7o)zPNHGWv8JzzC)IJJ_+OrF`@FaK9bPe?>B z;85h@s(C56Tl>q#mSwwy`ZJ;TDhna(Qzl97ZE4Zyn_(o$X*Vr>ZI-Fg*}T0AgJ@~= zWM)U+GUVbLGxE?aK#iBa_WAEF1*>FfOYI-E>wNjQRI&+eCO;AO7Td_D^Am`?fv4hJ zLmKoa>D}vze3eZ*;R?`nS$$YbO)0u}!40l?9-m-{yLpP%XgoyBIn){O1hs0A$Vs<= z1x5RhLmJ~%&09a$i9CS#!2pUWu;E(^uYq2{5`fG_jCa5*ho(}lgnT8Z%#u0R8t~ZK z$V`2_v3;XzuC(zNP*H+-GGWzBr+0L6gXF^AwT*mEyA#Z|3(Yz$aRuM;n6!_~0!RSX zG>zrD)Y`aTBqp3wyiR8t?dyaG9@x!ZHWZ{+sa2F zFAhkLopD+TV5#4Wv&~*E=PkeuA^`@|G=^CER|^$0Cu$!~fdxwf=jf$sLBx!Cn{VYD zu*iSgW=0SKlWp~}mKd{?TXhHMT`6tR#H5wQ3wvq}y7I51so(1kO zjr`SN%6Atvp_@PjF=5;fuu2TXm}iAQD<}mn+OAkEzDWM7?y-jn3-pJRmk@N^o5Y_( z_cot`C5Pq><#IBe_R1BmwFx53a)HMtfEq56Mx`Xb=^Luq0^8a&9YKdc?)oL

  • YDJg{zkz%J0--wES-Wjfy@ zX|M}}Qla$s2vVKi&Z+HF$5|XVo5?I;0DLMru|&p^AG?dZcUB4A(=G-S!cWppwqi${ zZ-7Ad6Vp$JSLEGDfwj$O5gKTP=GX&YoX|`O1c?*B$P;B0&m?jqCmcg`58;eH#8er( z-&TiCoB6?8mzGC*vP^COxiHrB49OPE08}qxgAbz1TutJ~W-y;xSkwATSIAu!0xElv z@3kt)SeX6d@t|KO5;#;t$0}pd9TUkxq}oKg_${pxRd`mT)|mT+=YUu+M4Vp1ca&xK zsse{59;QkRAKwyj+BIMJtI~AD$I?VUM8_z4OqEXvH>zkx6V;$Ka+^xRI%bv06iI6y z$)v*=9kFHR$xox)@7yZpJZ>MMNDz~K2HC%Tt$7be$B6kX@HQGwl2EDnxXw#O*4dIs zb&{z}DN>SW)%H|~x~A|jA^u-tI@#*h$S^Vev}4L>xUI)}Ys(F-KuM3^9t9oplpzt< zL)9M^a!fiz@~ORGJDHnQutiOox=q+fOqB8Q<(F{mDbgU~bcM%3! zPOl_v+vCOG)jl}B;w;ycHv^&c{g|LQ__lj0aLqIF+$v^-FYHpb7}CbEeL0j?druC0 zV&Fza-hh+rmuPAsf2rx9iST6*DyBMHV(B8V`%q5~2Ujh1=Ue5h{nIkfSkBIqYz?tzG~ z0>;@*E{vMo(Lkp&s!t8#@J$BKk9Arrmu^^M~4MI^*9> z1c#?{dmr=w#wQ^&$zTWo)Yes?1XmBUf`EL^?lZLHqfK=DvRkI?L0iZuZ4C^m$ zS@$8OKBn0^@+ICPHQ-X1@Iy$^3j2gxp&Wd95Ms>~>Y~v44xDMmsljAAjNfUjl^3KU zz621%;lq8o|7%He6!Y!URP7S`{v^$s+7u=yKo}S_bKyasxU~nTz7qqqiKCWL$*4k} z;;t3*UP<&G2Q;q5zP9Pxt?UA#eFMZt1>(7SS`-`{88Xkx zsKdfem+^&QRyM4kkPuWU$fCw2G82x=VG>%3wbu^hqz?<-Dt&rAIyXr7x;LGZ4hZUD zV1%*Q4&YnsMTmp9Ee+Hp3{>q17J3-F^fAyED%>MBz4#IgR(c(pYE)HNBq`U#!hoK!%qJBZXsRA_k|83FV^KRGLZs#X4YsIHBK>@NSQqvr@ z9b8t~QiXhr0$kz(LQm4m1ZSS8aXS>BAfn|%|2{YkWw+qqHL7>}D|BKMxeGFNS@=GQ zD5iO$FIF(rRex|U<$^GVF?tH)>mYw%Xm$jhe70NQhl&Qi@*e3nP{gv#JM79|x$seo z)%7gN*or-ICmiYrN0qMY1B!3fX(;%7zpSYMV>F)yJ){Au z{id7s3Px;y_;tB+PsvDI&oBJbx)=<&u*)yt^#sHx$d)|-55;A84d zWhRDb`K9U%p8!_q>@jR~MFM^{mH0FiG+@t)A9nHf@mYm@F~RQ-42kqAROg?-R|&*v zwnavi8?X+vYh4-4`$xaGK8xFNFKMy_f|rJYvq-wLWj7z@(<3HpweH5$mCBu>Q!<} zjvV#mG8J%R1TMf}Fv4DZ0nTIf|Kw#xfFssL9v#I0c4-Ad02sgR1e8>z@HOuFNAO)4 z)JCnoeExTQBES($fBre5SJ$E^Ks)wr(Ta~5JHhU-BqT(;bevj?v_nSez2t=kH8jR=~^i$gov%4p&$6dGf(XL0RRAe$6z;>hbiAlj^|HU6n2P9t1$j z6ZB44D07#Yd9Jy{UjIaKdqnRMxaxBw5F#;sygxlULOJHPha=D2ubwwk`%-XYo!MjA ze`ugjZlr&|;2FJUMOcsE+^vmIUEA8-=&6U|8pf>NgeZ< z;cWFks~-kkAa9742^!lLcF$fNFfBlN=b==FFd3<3e4fn=2 zb{)y1dwbW%yL-GLQ8w<4AWz*imYxXD>TzEKrAwimU2Cmyvj@#pMeH&f zg}JLRTJMgzvo?9Nzt_TC9xiGT>%8z^pzsmpU1$p+_XuhgPGW*izjYAF%jS1^3uFLT zU=<6hFyj7SrF{uB)!*CiF&9c^l9|jIDk^j4Br}|rwEyf zjG1MgIfnQ7>i2)|`@ieH?_GD@vzE15C(ikP_uk*VpXd1uPt@@>IE-}jdCnzH?%f*% zGnH^cN{gop%*3m|Ug00twu#k4JNSOFGZaO-fRRVPT;!Tip0sP2X(P zR*8fVr{Bj-nmjVcvT3Q{x>ME_lMt?s*{gC8S zVZp_7qe0mALW9kx@7uK9`rfwDEc9iQ9l%yMZ%M%mtbKJ-*U~8CCVf;7D8}H5?KZrP zAkQ??GZ5Rc-urpQ*x24<=r=4XSL&TM>iBw*x;9z2px~Uq5yeo;yA!>{)2ke{eS$A? z$C3_QA5;V4vv@dc8~9tWHD}=n7P3lGeZ3?IZ^+C{v=sN|kAyv?M+PSgX7ngO6YyV2^ zxIi6{ML0qE7go7K*&D6ysFW%cwY3~far#ZW$cuH0a&6F45uCjc(BlAHWb}scqaIo9 zo+7Ad&2*;F@w7p#FNlpD@nqGM=7-XC|C@8CR4;MJ$>NSPy1fEoOH#L5d7C-a(LjwR zj2ZrZhJ0ufz($Nb{WI`XT4l{8TS~PZ{OqZ&x``xZdY_$R@TmP zP{_0i_jxa)l;-V*ClY?P(4yz0{}5#p;{p9@0ikaBCJ972x@&%G9iugEUyxP-mGLy&dngs!tjH^+G0 zUY5_2`nA@GC14?$zB?=BOve*4?~Urjmd{=|g^*kJ(~{6H`LPZrrf~heP`RVTQ(Yv_ z7Ef}3-~8QU#rJSv!zS;w;Q+E4n`R!H(edV^6I#bpdSa)Q1)%b<Gs&e!RGD(Oym~k(-Biw~_P{HPCW}nq5GJaoys8C^FPq>(S2V%lXH+QT= z1*>Ec{dC;bc7FX6CzP<-7v=jLVbY9=3gP%V?|YD2v(tR;2}LsgW%8ac6`*WZqK9K^2-+8aoroM-8Gi7vK85mPfUB*(o7`ZkJO1r zu=+cC$3plazX>YR0MJst9OTDLNx)6XkaJ)MQ$Ma887XHn@qqykq7w?}f9vb`>z6^2 z@blR)0CZS_Mx-PGeC0NhECaSOGZe4|Um(1eATZkMY&Q8AlL2FDr;;W2Er}q8zo?v1 z9DAW3XSDV^aw#S8A0>f70tQhRpnP@{l)L?PtO{YK5amo5qd@R=*LMF(cb1B+!Ay|w z<19;%t1S8_B{`OCZFG6liIi!p>Q~?bMJ^elIeOCXZQ*kwh-~govQ(Z{Zn52@eEF9p zC}*VuG5PORb&S*u%|*t?55%!=c^s$%(~5L3UMtt@$uF<8`&s=@CWqlRA2WWZ25TXt zxXV!Ui5X;Pqjmj0Zc3Dt(_gWOs7sq5;bd5!!U9CaY5@1((3|#hnY*~l94zkiaH36q z#XJo*LMmRG=xk7Fbz@_f^>uH|mRD%G#FZzr`^7*&59DzHPl@j84+BTr21`31aF1cJ zo}Yshi016svjS)`)wk#))Sf8}9pegMCGQQ&e>eOHZg+GUn8$2xrFP}|a% z-$cNZnaN3CcoKd?j-4QMpAZbF{O&csYC+P;#l|ENsgaKjBQ^RpcLhxcg&Mvnt-JwR zoj(N^c7gu8cN;|2ilR1eko7G}IoapV%(}y+nI-Fujn@sw9xtd8>f6OYZ5zZODamJa zJbWFtxFnq?lIko-IZIZZy=8Z%Lej{0S9z#=Q< z*O<&yAmQ>zFOTLRa9l+7ygQjg3Zs#l$8viXvL-Y0A~wJtK!Jt=a9?zoEKj#;9B<<5 z@MC7IR%{KRO58JV!w#l;RB2@7t&&s~!ay2%6*JE|WBBcnXnbxI zPIImvQVn~hu_AH2A{ecRs#irAh~^&bln!t?lS8^GElTNBYE?5dwd402Sh)< zKHF8qu%XtI*|GSuMCLtVH{9zvi~@K-0MwN*1Wcx|50h*x?a%)q9gZ4zO@ASudNjsR zD2;c=L?_4Vc*=Lo#It4pu~D2l8yM+@7o?Xyp;IeiSzV?tcDWkCPGl;Kl9SDRoMv-j zFH8m0Iogemu;XbNU>`w=yRo;I9Ead6@y0IDtND3EdttA&82M`~7&yZx3?S$3OxYW7Ps$>`|Hh#~MQDg0j@5||TXd?k4HTI$zMI|H z+G+u|l)wq}1-jLLL^VV^t`_wcsDx-@uTVOXSD0NO(d82n0MG7>Lu%$iyPprQUTGR4 zc<#+6Nls}#j@$(>jBiuJ*TciZ>cjok$q!qTY#1>~D5_%<5a5W3c@RW!+%ah%84u;F z8%sAGzusRrAAzMZLe)GTfz4pIomYbug2nVGeGS9#!g<$k_q;+;dV5I=2>@c@Y2>5L z&BEbbabq=A5_P+KpGZlsUnIfB$8Y^MR<_VTA>b;UTz{nhcxU;{@zj@l4+n*|P1^DG zFo24Qf=UF*$1*7ADx>>)?y}{UmQtALPu9L;>Zt?QjjFK?P)^t~@?)A=vFbvGMdGT9 zAJk!%MJf37wcax^^%xB)k?ZfwI{Pm(1Y_q)=p6G4?KxzR$`aXDz}t?7k_iK9rIw(3ODQ4 z$!G_etRcVTr{9(QcDkXTgHd+gJ}rK9+M2TXu@^q?tDQ*gk(Q2X#*^DMsT~ zAH!1u#|*UJyTFygsxQZzO)08jpy>P;&*X*v{N|Pxxs~Mzzmn~ZNl5%*^SY^a)BSDL z3sPUKjf0QO?p`_%H_wp0joZ0&&|k^2Pz=sb_t02f zk;y!l26+{DAoz*BXv$i-waPe(hq|7)IPtQy(wrT0UDD!XM0~t%Hw&9x?{TWYsik7s zk!^3D^Jc7J`!P2U0)I_n#`9gPKTi-ix`*>U9b7MYR9icBoXW?L`o8`oX~wv+ve@4? zURb%Ad@P&C5rR} z$5S1MI?J+=o(Z-n^S1R0+ewgWQ6{f4)Ia>rvUQ+d&FzXHYr*2Rw;(VO>?i6KJT=sl z;%zHMcMx`%lZQ||6jkrsX;`VpiRFH@G~4BU{;HSj&L*Nsnrf9#jS8Uh07qr34<1od<`v*I$cta9_3?l>N-cKx z{!v}oyK^Ss!WUsUAj-}Xg!jIfxc7To-*VvK-QX;wt{=er@;1*%nUaCy%JB8^WusgH zKCWD;APOWjC`exR_JC5~+UC3_kR)zX_VIwn02l^5;;!OQHu<7hqYk`?VnC2V--GK* zKq8M=Otl=sit~3iu0}EC?wowC84d7ah$`4cr#FC}-yOas|PHH}xxNbWxmEaCu zq}m1+A03zSDpnQC4?&&SR$K}8gFJ!ccl|Hgde>WZDTstLoI(m>vT=$Fx0goW<6$)X z7v|K{^e%(!C^018X(a%CYyO4;gdGEJLCQa0eN;U4WInq5p^uG#0@csn6CFgZ{Y;1(5e}4KdDEiIj9TITo{&w}Y{i|%452E-!vsm-d zYH7?Px=goRmWNdR8Nx{l!b`NJ#;8%!uBw%*W+dp#cM&ZA)dYKq!Mns)ONfdhPjb}A@<)BA?v~=(o_f80^%0rCgAgR( z;X!Pi=UCa=h++#<0m#~hg6Z?cMxx9Uo`%Kyp|bDt8=>JnV&AD?Ol z&YnWOzKVks(jfFaQQpW!vSJtGE`6t=)53_0sZsy3#cw%LX$-m)OIn8MWUB7&V*@*l zfCNcnOVv)kh-QjkPPD91sQ>TwaU}cVgetn-@SXH-?Og*8Rp%F2&ld!Ka-`dyOx}Zt z6(Z^@E$0`d&;0$x&x5qURLU{XeO&L^Wttk$)B?lLi7$Ob)%RBw6h1uc_54p6%H-rj zPIB;uHXEuuR;rtcP z_xgBlTd^>^-A|7XK0smvx)d1D#olNRsp+qZn>%B9dy;JOAgz(s0`U^)j~TmQ21;?k znC>whF;MUtroMo3D&Y6Y^-Jz7V?o9<+m%0Kj-o6%$Dw`;Nfbz17(k`gc_Gd7c-&p` z07cALh<7Aw@d1V<(!JUahtq@s611!Cy;*X2C{I|bkYKR{xt~4Tu)EffAlL}JPVD_H z^I}yC#D*{OaCerG4_*IU`SEN=pr_{^-toc+pn~aDXSczdGC@Mzd93Ua5Icts;O?)( zJfbBoh!e)}5Qw?uluKfWues6G(E@uJiYw{6-}9-9A4XE`2Ag{q{I+fnzZC=?0JL zaw7;{K2Ne0BdUT&2F&%{9f}d2K(qsEIRYThw1AaYw{}l_0J@?hmE_7JGBJJi_vec} zB_mEGkr0C`Y|J#o@kuqk)W@veH*27o zym|A6=9;Z(LR%L&0^_YoDz>Ph;IecY_u(u1cg|N=S2M$TJyACUsY40afF(l~1R#el z29X5;7sC`N-{=M{<8%Qy!F(;d-uMkN($M78fpa`Vn8wHt4H{xaNgIY9N>hi~v zU=J){SkLf#2MfU4_s2$xvD}nUmm;f`DK#Qtz+LG39+w<@L-?ICj;JFFkFY^UBKzl* ztAfS6cO7`m0|4aU23s&b<+ZHxknUp=n1q0o3l2I6g7 z*Cj|u>d%=>&S_ike)<6D$?-zHc_oUurL#6JXvD4=OQm}i7<2NZZ4i4b;jjj|4 zQhojM8JN^mG&W*Ui#~7iG;uqTvj*@+{b`Tibz8j4R_~}%j+2~XSE0%%#%Z7fhoL&> z%2>SuIE1YNhfv$5(@b+`@+M$rw=3V>H36Y@pV5#|3yjC zeDajow~Cwk)3C4&%6%ro=xx_`6u?3N*_p6iw_m>VJee7zS|`WOQM1?+;@j_n9XE2? zdm>?<>6Ap%_qIwUZ-i4L2xSqF3!hWYwVTUOV>WhnbYpi}T^JHK_zfQZCkn&-rHqP? z&tzuYA0+1lLgF}whE=bYa(suoXU6JfH4r3WGoQk5u?HRgZGYa?&Cd1d&vjSJ_O`6G z^{6pE(6&?@jkX-F&F_e`=!}V8zsSF}Bi7Vq|0N15Nf=rj;JkSgwM~=_HO9?xECCO( z@hM#8L$UL*U0lM4qmf1}+$Sc6JeEr5J^lhRb?5v(AtD!>JO4!L0Sq?Dl^bA{kx8O| zOPK-lZ`Oq`BtZ)iTf)ep_LX94OaVWp?cN1h_LI}zLY&QOcbeK19Wm}6&4Ck2hhzBa zH9Bw3n8lz6QSRr=bSTGaCNduXr{Luk=fIDAU4CsrPr#6??5BfXi-Mu}qfO#lJT92+ z_jzc~gIzo5!=P+L@vu7$%YORnyCA#5ghZ%xu%YTD<<2WjPeXQOmnc~4yS)v(_-qXm5RPDpu|mF4m2%_I?j1GMF$<@j6_Lg_%L zq+d8v)1cSF)UY!?o@GIm=yq6rSd4(4p-$e3>>-RsWuGJbdx&pTTr z7C;@+ef6qlrsCU6H0L6>lzeoNSkRX~%U$z3fut!J_B~n$#0sdu7|e`J`FVZ}S26pQ zc-@NayWoN7!6BxPLcICXSw)YU)nf$l_B?EL<}rr?vC>b&?ryGojhc-1K)tu2ixX7I(RJMGJM$UZ6ROE~e{r;H zQ}b~@*8Vdh$|8hB_q;k6hgCEOH6G?$liU5PFwWcS(;aoIsSakfm0{L6CiN~tW`I_ ztiF8g6OMjachJt>qn2lZoJUA}okH7vR@oN&-RkMWTyg#gL&{;g(0c-_KPcdwevXcm z;pzEN@np4bzSsL}thcDs<|1w6$OOkjmY%EHp0xVrr*D7?FyGx$UH09=itH1F$N)BE zu}oOS7N-Sl7{-66FNxaA(#@Mx-hrtcJOe_I%wUacVfAXb?~9wtY?yCk@P>_3mHs)I zko{9<&mvLjL^F`Ehw9?_y+P*x@j1@uW9l8Cu*3DHJ5L9oh(BLD2((9gCs~atv&mg9 zxT(wgQbcTXnFR?}@ww1W%NM!}^j7Qeh`fHccoR`07yS*f@L9Vk&X99|1NeZ+q-opq za*rrluNQa^`lDckOV4NodQRUm{m#Po-o&tuIEMFh$D1=W#4bA#=!+1#r#r9VRg7a3 zrgLv6CascAJZ56cVxy<@w?uVW<{I-xK6-l_Mm?iyb%s z--+OitXS!!2Y;t0FX}{WHkX+r`;o_}q-kW_@5`LOOpe!ZRpIuFMtXNaJW9KBKOzlQ zE|I|^W2ahxtQj2l(r(3$A4(nVI9n+sG27C6 zjlOGv6R(G6&xp8%D}k@f8vptnbW4J%rwR*e_+f$r;3y>z{z|GSb*Eeq)6#se%XSz# z54j8)fiy0iNuYB6@w#q%idf54HH|H3od0&?&V?4lkTT&*q>S=l>Qy4e2&pA|K*m$U zX>qb2d^@RAF-Nu_i|>0B`HvFv^5XN~BC$yNB|LR?59SWYzy3Z|$dvkbG!1A*Rt7cm zJ8XoV#sJS_GLbM{&;mH%$0ag7A$W2q*b7mw%&;!8NLrayJ~|d|`}kAxF%`%p!%^4% z3@IRYB3NyoJH34n&+F~flQ|@jSTt6|2wtzYiwVehC?06tk!6h8ol-JHMG#0PZI4Jl z08aSNNgV>7o~J*`ffp%j(R|^8>BD|POiGIS#_GLme0Nba#6u4~6NS)V1{;O5n>u>P zR>}mH-su5f^ef)$GdqPdWRoZQR@kZT@^IO>CKl|&>kczaK;8m_G6isKwuP)hkrC;|g!HTtuLD8E&pL7E zE8n}iNDwIohWz5~04SZM0geF9Qqlpl5kDMkZBLbiGD=ExhDDpVAJ+2+cm8o zd=NL6eo;epwGFt7>fn&p2Yp+=90@G1OMdm z2Ju@i0x+-*s6pz`H9?>Y7|NVtZoA!O?wF-YJC9mfDn2IE-Lg}=Q{>>B*zn6>Xb7OCLV02XBb z%I9`BdsPJ?rDIc!KtW13A>jdBe#EZSV|Ri8(f&hDC;vTN4(Vj|+!M$OCE!(cWySNQiNI@Qg^VvtMF=F5t zXQuSA2`#J<*+!uUpTDh5sxvfjxmgVvkr;qcjwybf458SM@?cp<-H@&yKXmcNeeur- zEjc`UCX2Mg;`JeXU1}nP>QKUOkk_+f#V#`bq>;M^JawWH6OFCuo6^7yLb`$hla!#- z{<**f2?+_S%Pxoe<&W~btSdSo)b&Va`~zv4^U?7BQA8D#ygM#ivJ66;wOya1fwu!@ zmlBCWxdk-PXb0tOfAOVr@`>_)fa}2g1O5I5lY?YB&=n0Xm*kpoEaX37NQKzX&fRVQ zSf!+Y=T6uc955l4H%%L^kZAQ#mM{8DG&AM!m6n7=ONduK*h`saT7-huj`7lJn^S^c z(JEbQ^+7;tic3S6^Z;pT9ehA)YD=@F&A&3Xh^W~8h!-1xb7{@*f=`w3668dZXBor- z0P}sh$DpgL3;x7f?^fu(rHE1k7vMA0Wt+uDK}rDi0d0qUh#jd|qNRke0Lgr7Y;s9h zQOA3cqziZteUD#OKp8pKTgu|eFle+n9{*s0k+F@5Ib`B@nEBiiM!$COq3hWaFt$m- zg>i3}X|^>K{mDZ-`5XSi=sT5Q9zOkXV?RQ#=;%Uswji#=yi2})LJ28gGJr8ORxNZ? zB&;`V2g-$U0H)&uHbDG2mzbWxP7Ro%Z&H#$!fX@~*31~|zncwosb|TYWNlGjRqiE2 zEr4<=9G@yrZjM*)M)PI2l}g+c?1AQQ)}Mc4X_zOpi`=!V7bZ5pnLW3HFM!{`d=>L8 zIpm|W%d&J^SpUTI{m|Jqz*(Bag@2`ut+gCh-)mn<0rd}X=qBb9Ptl8J0i(`#+WMF2 z32pA5B3l|CE{ZFKj>x4#(-n$@w?TpMHud(q{IAjtYA!e5!Fimu% z(EJgj_>)rivazuzoBho{(x&nbPF~kwZG>0n8Bpl$0VRd;sVRyFY{o-EmJ(v6lHB1U z_Gx@eeqT+MBdI^R8$7${HGbO@A=+EWlh6-vTd-wVBW}EEh zXKOaEP3?{Ifr7MS=7jqbpG=xgl~NXAFSt&H-`kz_a%1|?DaFVrCj2LRWvylDU-vC9 zQDCsLa>f;^3P-z}m?Se8j{BZ>_5}94*42zI5W7Bod3=3Z(n8LFx8=%alkBEKd79P1 zi!-`wNhWk|DU7XTy^}eg2yQ^56Rhudy*%C8H5KmK~bO zJ(#hm-<$L^Y!vjY6-3uNE}e&_W5EEVcog#kBUkb_ z7mBHR8SIc|DT_9hkXC_Of?##zoL|}_l2fO5RVO8|Rg7ICD(tR5ea4QAU7bi&Yw#Y6 z!CTjby3FQEu-}6+lLBlCg6{jzpc&DfZ}HTy+iP#^vj0y|4pPfC@yLxE`1SEQ4>mUT zDrb&QRYzNVFp);L>dY~acJ#DI<0~kBBf6R>4%Na*RbS3+sQX`a8Kc&WBrdv*`84sW zdiOlJ07^9ibi#1Sq%H9>IRQb}0>I7aJ57+rwcPFahDVE1^cSRQ%RQ;B^jA+wM#kdq zgXM19pKf>3gPw=u|S_AW)P!6Jf#0g8iB_wAq@HF z({_hM%w)KvTCN6rtPel+smz8qT0Ov*ts&f$(cR!El~1(Q#oI9|J{P#!SvE#}38?hD zr+wE@w9l7V;W8s7E))}7EhgxP0M(4*)!S2@xvpP-b2_FAcfO4{e@@Rg>r}U-AxjWx z@HL0OyuST@uc?$Q_#h0`W9Hb+ARWl}5mHb)yH(QiY>bGljgwf8YPhj7A=Cg} z_}Bza_W)iarsQI*(6#Gf8A99U*{`#Ulzg*keBW02@+JgHpacJW+>YhsMm{gH&)KJu zCZBt*y?=InxA)nYk;P5M+uB%1wjoWIGY86xkV9^u4U0gHw!DPgZ;d)GgB{!F=EYq1 zK7!sgeu+lmKItdc{y5lM%L3|E$R~>7+?u%N(V|-w+(8q}j1F6xl?I-`9B7TEWOr=ILe&Mb=hy3%HM2yd9qK z+rAs3$>}}G8CtX|Iy|1gO!N{*ID^5;lzM%V#Y0YXw^4iL5>zut2a}V~-ft3oJF0?@ z61)u1Rv-B}j+!al!d=lX{pJcvQ31S2eLvVtN-$YRZgZKH6=dH*lOgk?vx?rQ=ZfT4 z=uAK8Gsp*_kv1dh!!BW32^5>x3nYZ^QClS}E2H?e4|e$}wDAsIOfN-Ecz)cDU!-Hj zWg&{d57!?0fk*NAQA~qKLNLVx&kLPtIp;^ZUb@oc6taD2U_e%~@3>YiAf(#C6jAzBW9Q^(u6~h=Dvwk>k>;9FFy8`73Jk#!=haC~B3R zdT?x(p>qo}=M3w;8??Rp${&6imQK1U`24t-;|u+k_-M}1nI14N;k28Ervn!~AzW(4 zi_a=@)L&k2Aqmsd!kXKm&)_dWB(7~+Pa3L4SVwfA5`NuBXfDK0G2H)Q@R%)jYW@lm zwX(FcwM2NzJ5e<2Q8Zn@t-voP$K89FXv^p;c*lrlm;C;B@(&SbNuDoV9u$U{eC^zD ze5?9x85`}Z$LF~7d@hw<%>V9g(Qu7eYu;qq7B{$?77)lE9>_$gZyHH4mlLOktcx_c zXiI@*R2HWFH|K*1QSI<~P@W{BN?!`8Tib{ATe7Az;m0&^U1_!|zu!0_5Wf0~4jfCU zGH@I-UcFucj25Vk(mJwHizK zzqdizg+kd7rS;j4^5c(YDvRbNf$%jyBFFT&efCSzM|2;W_>fPuNMc~6&q_}nl4zE@ zdamz6egwzE&N^~z^)r}0VQP~}CT_Ffec43%>%KQ#EOEiSE&s_!7qJNY zncLv9H@?w@#qq$q#~(87ptHV+1H0+$9n*HI@i}!SfpcG)X{#l@ZgE$QdC5C_$J}_H z0FQeBZ!}J4M)8ox=ercmw3M5kf#pyW$Wm~>c+6{*_as*Xz(^F}Z;%o~_%w?Zfd^^W zCNrR1uG=Wr9jjl_tHJNY2#V>S7t=2FC%aPhA{ljhj$H#Sh3+rZ?S|}K1@`41&9`D& z_r?hqqEvtpJ2W$nqTs>TDmtr`j~~NFR8>9iN@F1iOU!S3fzoz0jcT~vam(s+__rkL z99|NbcT#Lav6Bt45qHA0kyjMC~(bk+muVlxm;MhKN-^VLAQ;_{lDE&)^1~Oy}nwm z0@f~zzq0WTqXM}#?}UP2$n=lS6Y}NdAxk~;ag&c%B4RXEo>1brmp%bUz3e-Wetn77 zw~9XK2@dFZ9(5&~kg}|y&P(gXCY5UKZ}>f?%+=hKKM8lA@gw*7{jU#%E_ot_Ct00V znyU7J57|_^%I~>0ZVw!nu^&)WAAhBMf>{!IlKSC;@Z5dkgJ3E=iNhGKV;z8d^%zY| zmZ+m}w}kkW>b_D*Up)}e6`zie>(GsAsB^YE`i)#7%P-=CceZ8LU`&fy9wP|5@E!Yj zvaP(U+ry)AY;uJpSv>y<^hXwp)qazq#{49j2y6YS(T%06Xckz`?d&b`g(d`-Oa`!B z_gv=5R=XsbJ(=ZXHI~^UM2sV2A~ClUcZrbmD_~KxH3W2lLk|vW`EV>}G>xV&SB7ju zYmkSjjrR@e#GJu3LccqeKeggZ3u^Bx5sC^bJoCyPfr|aETmc-?p9I|%JsK6QA`i?0 zg8&9A5}@Kr$J?rQa8M#eZX-QF@jNWj9%79!Zsc;m7ODMS=vDAj!hQq4C$& zKwYmj`HeCcF5G)&5Qx>Z0qLnyidXm4Wx$SLVAz5BAatmcMK8e0^p$2#bC>O^LfoYD z0nJ%(gV;Dav^~Jsyf6KPyQT5XSXikBB-4V2ev#s?XdahTw{*PC_0(kDO=Kbhc;h>I z<5hwTlOO^$SWxvj>ZbifHm9JIs$7A#vb~Q^!#iBRDuaJ5OWA*ugt19_Ir>n;O;m}j zrfd6tnhpQP_*nf9?48-J@^1$f)?^Ls=$f_s#mk~fL9J8IrzPVL2(Hwhw|tYwdQ8er z2?PXqS^J07Dv$6E-gL$2H=Vjm4twbT`%N3fL-EmZ9%oWeCQ1pC_m8$p9@4lpqHcLA27c^FnzP?V@L5Jfq zXi*p^T_TOxg5Ky@g^a(&G@@W3))dDwYUn}6@MFdw!?*5`MYU8|44 zw=Pb~*vFMCvylmu9`G^?w!r03&U&KpOjOKXP)dHw*T>^n)M<6a8wVZDf|s26!0Sca zdT+MAN=Z%x5wWlqj?|76H1p7&`&G$5)0G&G@Y4^L5@mz~0LlZER(@mJtTBRF zraMgIC;H01Re#CUTkE& z#%Aie7jxy2Ml2uG7>{?In+g!RxzN<>&M%gr{(*Ghxo7;Ntxe&Hd=XnY>q9~>3*4VV z*XuxtHwitYY$pOds*LMB=wtZo<@Jljb+KN0x-BnzFC5r9NfP@ue$NW~COqflX6N}2 zAbN4O^=hqWD$I#zqp35|KU%tfiUJ>w%!3bxi;pIQe_nlVO?LUqtcn2}PU*ybdxh9f zE!;LfL6l!nl`Z)DkamGg(aXi*n-V5Sk6q4z?6d!l^Po-bSQUS1+e?YW+AILCQ&~X{KbbbL9;3&i*d%r|opx32x%Js)bnB>!bUGt%RlpUS7JP~mi zDL%TZz5PyvCyQwbjLDN2He~YzUatWp?d>XC^k-%!OV}am$VPQaGEDqn_HDw%o;2x1 z^}qj=WIM1vVq@Kt|9B_oIq+)#1sAhUpR~NI8e_$LW8}}INnKluy2TIe?#!pS!#h5S zNXXZLGoR3pmj9vK9pPjwkT=_2JyLcNKc9Nb)2U%^KD`O@`ybX!> zg5#9-)&Y=D8bLibxi|OT_qHDNJabOSC6e_y>9T+iofiJCLrFsB;;IiJ81%8Ic4c|e#3!Tn2+*=Wmw!TXW9I?a& z29;+`+_xy9N1+#B;gi4-f7qWF3)(&+7G=W+=m_bRrxAXD<`ZJ$;H*LawMo!=CI~+{ z4_k3joFY4>^l!~w*J$oK=o7$B>m?|;f5RpOM9*iAP~~^q_$GoVt6}5Ck(87K9j**t z{B1V4xpzll6ufuURth8hcE^s7{Nb*eT3YbHfwloWGkrnEk|VA7d)Vz&8$sQ7|lA(}yx^#uo{b1;}D%-=qG ziuRg>vv6xUNbYxlgj{e)gJMt!sJVkExP0K3GQj(@%6Tmv2%bdXhH4I*J03_^>40IM z=H!I-`2XfTZuJH%OCSaZAiK0=J0!Tj^%^ZZ-kxmvko#yoNZOH{C z$yU(L4hA7jsp0vNMs^hN!+L%U3t&@%xMyuRqG1WDYls4V)aW9Ss7QyBJluYHU%%6r zBPJF?n@t@dJoW}wjN{I-5yJBZct#UXEU-h#kVW$bcw=x}eT}rM-x|ERfFcE`l>jZY z`R9jfXsi51g|G|GK)3sNIG>&Rdb_5&Iu`>w0Qu}8Tf4Z(_R3gMkIl5307nJ}j`tbx zVwVsJVGwin0(-lR+lfMVK@lmo8NsXcw=|rYwVM#_2n6?Mf2j51z@014x)I_4X3ebI z2z%*buY2a*Y+MKVC|b5z|GxbQZI7uP!ab4sqI}&%IeJ}h@;C2+6j12mY1n7d*+K7ab+&>xlr1)DS~5zjiz+Hed7B56bIe1~ zQB1?+{1o%$p!T~dKozE1YM5_>2TRPDv9DSz5l zU{w>`SCLobw{bS5lT8;od?3WylNb6G0K$LY{qJ|^|F>VYh1L6P@h2&CZS=~|=P7;g zEeOoKCm;wq;kpN;|7|Il0)6j~kvPo|+e*6 z1Dw;w#zy8Qm1UAsr=$RIj1YHqbar-T0w5IW#Fk3}>V$w*3=cSdG4#ToamD&)_og`P zyHe@0fqlC77TaJayd6$^<5|v-2)Ma89|S_}W4>K)_6IU{^j{txg7{Iuaq%vtR}uu( z^!k-gLxF>P4<5mXzbg2^jOG<=b?LCbLMV9=9;htrV}BCH*I6i7P-JjuX<_8RVTP23 zCIFtsdyt1HCJM2KF^C7j=d!>zJ{%~ZtvfzC+0Dc~09Rf(g5k=qFnoDx35Zz>n5mn- zhB2qQU^KM68277S#;oc84%@}~eSBXmuu&)4@fbX=KRzUZ5oiLD5E9{oKnyIKA?`az zjrX#$vXZMxWSJbqIY7D0%;jUn*ngLLqlxWEn;5Tx);+!at$u760g{W1#o;>fU^5F} z{mDiyy&T_x3j^W$cUfr_Gtw#r$D0~yV9XJ>mDSD7&)^R;K0S>GXEqowU(@em*29He zK#Q6pgzJ#hh!_?(4%k|LMV95_*;$~dlMV_dTJk&m1lO($%ZH_sfblY>93djF*f;ze zoA0Q+Ix<$kZ<263V-jM(Iixka1}IL@FB!~&jbK8Q9mc}A2b;;pf&IiVYoMG+Ft z)ybSBN)XQZvi_}?fdt?s5ODtPC1*~0ikzfUGEgo2`|jX5DD3@x{r~$g7Fy34!deP`yK*|YbvpZ#pYRg`40(88B-blSeKtSX}KzP*i1O@zyYYdC65_wQ{8(q87M7>~_Q55`1r~kkV!BqS|8MxCZ_-!-Z7ryKL#zAv-uoS&JQ`NJX zd$AmZV}GzHnj-9mt*57Fap#%GWRtLDxYi5ZEv3!k?@lA9qfZiWpbHENsxW8|Bz+|1 z?(S}IcXR1}d7SI1^RZ=d$?v{2#OF^Vm595FsLbmSO8t6A2-Ewu$qDsf+thQSac95ZPtsSJnJ?%pImtJshY-|Id8cn*DPGH!^< zK_TYOLaU$n(CX#9fgEoXF z&wtOZ%v`o%tfNznE;|XH)&YpfuvM&oo1;iu6_|}biccH@L4PS`#-3eMGYOXD5>qzVv6?Ii$HQcFkD?a+*!<&Ww^*~R zXotm6)mQ&=;q)^xdl6!?^KSovpviASBEp0D`nVh`iFi}UMR?e|^w!o^%)RZ8Kh2M3 zd-&`Ybwpoqa&ivp*&Qr4Z*#TYo@ob0lL1c)bhM|XrA3IDnR$VK$(z8(7Hr^lH95a+NyO*R?>1iOx0F;>RgEjA3h`Yz@L9rC z_?vC!Y6>^_tfy6c_!xS|TxrGo+uL8&8g`=S8g+DZI14(ijeKQMeSHoNR=|dm%Sh_9 z9{lePx7kohqtCT#o>VO1RgY#zO?@CnbL#}68ZW;L3{w8n3y=*ZKe5q zQB6PBOiDbGp&4;3n=W|d2s(Uf*K&zM<9Fk5da}x6HOV$HM<=QP&g;$Tc|2`dPc%*O zB0X8rXj~?-#rR~Y_QX*fv+{dUwQnzUVKLCmX-Pvl!;3{^WaPs0AC?nE+vo9%nenlK z4wt$ucUM*uJf`O7`wQD2PY;%8&d%=dNjDdp8_7*!_dh(jMOgM?mu?SNIxkkE#oya} z!<5ELB)}HOBa?IN_}rrLO2q5zt5JQi;+uleDRMa#0!I0G3CkGT6g+wvgYi5?%MZgbVz^9Gi9BYoYXUMdvV(*4 zk%R5EwNHV_7&1#`Zkr>Sq@CKwOTR*}DBcnN35yID<&%=3qgi|B&H9g|jQ(7~C)_*Z z$yQ%4nD|r?-Dzp<-#hJH9PYx30=4`vR|}zG-h5Aq-d|DSiI#&k=BTNjFe+;`m z=L>F@=-0vrO>xUkxi6%t=|%D0<B%A{xgRdSIz2~&&d7wc)}|4P_v5M>jkhwgycsQi%!-EoE~7a8=xYox?cy?g z{~Ys~n3VA)4pA~XKGXXYaX)HsB5GaZ!0C9LdZ6LhWkLF4i+VqJUal42+~K?a>$D7M zExtP+4V9sxNhg)=qf5)=PU=(C`)`^UaQ%d)ZOp_6&7h-scNbqBVzTNp+IBYZfQ`Jwj zKPK$dvo|!-+y71U0PrhuO)7ept$Ocz_4m2e8x1={icHr*M0hn98&4R;;eNbfwM z4Ay-@g7{Avo{D&1a9+9O$Y!|gOcuFoQq#NeaDUZ)a~md10?P~5~F3Kn@mwdtD2SobH-a0vRzCo}?Bye+F^!ubdBTy4+X(@u-m9sZ~Ba_%vD zxVL;Uh75&fa?c7UpyZ5b#bd&Z0nQ-MI9OUOeggJ4G8rv?SFmVICLe3SB+AB}tNo)` zM}Mmtn#RdGn{eJA(}d%=5RAzqZaZA^!W$&GEl~&p%W` z`Y05)CNa>^R1e&`J`=eBoXC}D-|rzSE2}${BIp7x`51PBO%lrULOA7zPpa9qXe>l~;NaaI<>o>+( z6JrV6Uorr?lI6UU(IEP^Cy42mP`jlE3}&t@qTo zf@!$P=zLeS%xJs`gq9E_NsF?+d-`nB|9k6CHJAR%x}(k6?xWe7uZlegBqRnyl*`%C z{!4z!Kb=1XcfbL*CluP&3$2W5A~u(gNBBa6D&+e1SYi6TG8~L2W}@QwyY6L$CXbX- zaQZY%s>Nachs%Y8-4OTYkd)I961g9pY*=+Fv$n0k_eb6f53jA(!JFR>eFy6Js21)Fm(*5dv9z7BU31aET z+}{dL0L_GjMRJHxl8TU;k4a(h{_RJ~SIYgEfw%i`3abr16y^)$0*+F``*S20Tg+`U zg6e*l4+#O;aCekMzLI~d`0_qBn_dZfp4sDvxd>$;@z_1yX)8w&xNE&B)L)w_JKDv_ zl3#@eTXZT`E=Cr-NBdBP!lHuE-SLoUaP8I|;%4*fcXay4Y&zA?j~PR%jLbjKk>I48|C;QOVmMW{{7^zA&64+Qj{KmvXw?JMx~AmR90mu`NFxF(5!aW93pWV9(ddnzQWhLTgp7imA&Rozco`QDveK zL$Hu2DGih!7F*&{9LWDvJYT-Oq%D@wzqVF`H03!-xg(=W71ID7+$5lUw(5s@5Seij zeT3G#BC4sfGR3JODAM|GBTLKfXqxEHM9=A*)(3i_^r&JthmtzYo)fS^xKX>{n=hJ! z;a$$yR9e7QfrMGyxEox%R$=oJ6IlXJ845C+Rq)<)wG~N6XQyhbug_y-hm1nfU3aJPR^7M8a*KM_*ZSfL zUSQmTlvnFfVP^P(WZZ}bvO2nnLNg5|Y1nZbbLYzPtGzlo0)rXur`pf%FzKtls}N{Q zNcdkRsk7$G;AUNM$z`){tHcJ9H||DH*2NvKgS?9FL|HAApSyRp3lX1b8Fn* zd>qBYcJb2-T_LF`s)z#L+nqp4B8m7lXKQzX_hY=>YVIYWe&u6q zJiI4EX;jQDSLnkLgaLwR*w`{49IJ{ZadoVyxoCP6CtVL75}&!6n~(XRC%bLLea8~=x;8(V=M1~# z&UC!-_I70?8+Di8S|t>3Fv)PkEIo5wmL_qb8aix;gA*+!8P$a)?&0NS404<4R=;~I zq$qn=SB=`~HKW8iWQ9n^ni-A5+3y?=bH#CbXv*+${4f=igK%NKyn4b@spXL4<|==Q zBj}2GvCFeO$zD&|mLoUfbA;ScYscSj6$d-}?#FuKmm?{MI0$lv08y{Aw*LNpm?E$# zZgj0srj}ClwGTu2?y2Od*x!YS3N#ckc#$y>L$M$ETw7A8eH4h;Duiy$zr(0P zh$<^96FOL54*?-yp)t4x`tD^Yu;> zQ%MyGrh1hSG@(9eFmENdWpN%1Tb}gwzFFR@4XCyX;5IRcVq=2SFsj@l9*EAn1vYk1XMa9gA4cUi3#m4OGc%Ph zQL)WC6>+E$w#Jco%n)@OKQ7qEbq)D~5wjRD`Ji z6K^CFsod(D>&@jx+wP1+-rI7b2WOXHJ4~ISD=d*947KrR7?@rjFaS9ZxERk8M|mv? zRce0_n|~%j{X$dQCqX~026!PzIJMa0*&5`#J8j|pS)%V;k~@VJstsec7xRXlbuAE5XX7`XRmYr+3Em?)t?gd zbCi@~0}{smaH?t(DBgF`$2`SMjpE#_1o1>1QNUCQR1xoy?Iz^|4W^1N zho!hnO)iOV0v^=){3#SE2o*^&2|+m>@$c_P`AUyKd~6!khPDiq}ZTr(D(VxI-m4gLxWN@PB zeLrmy|HhB}vJvDs?_Z5&V8bNkL@*zHjlui%*`s`Ao)Lxz4+;^nr{{)PSW%D7%! zZfD}+0%4-)(RiLk4-%?naJ!yf;k@Ne7d#-GqClvU{?Ezd#!>cPGL))S*;1+0l+<*+ zN?@Bk9AE46kBd7Zw+;RPKey8mhC1Nq6K{xuC13lOwT!*YAXG0#EY^4gcrv-hQY^R& zSA72eT_6ZJg#<8teP9=JgNro-et!)>#y}7jUY@f9 zx7B~XUU7lDxcvdy7+?P-u|fKs@${)I_VSc|K!c0o!n5Me2Lm>S;*RHHjARC#HSbok zcPe7?$~**i2qp=K<#R+1EyU?Lq-(lA9;lO7mS#PZb+$;d@-G#sSYS;KwUbCtAztl|9TVK431V2B#CToB%f|44ZU%Ui zeNrO^4`vPS`{U_xfSu#&O;h~aZ`I7bHTH;r88MmPYK}Ta4!)mI#W?b$X;Iz~hTpxn z#{zqwl;+g6HBb{2Sxsd3Zm+8sYP7_S-#vioWG3l$Ip364aey+*ZBtzqNLP@kcl?;);QTmG5$WzCD4;v?0a{uoy`4+YQhG;7sjnNA zsub!=Qk%IJpB`{%-`0--pj^R+(Z{8^Q-*L*JHx9LDwAguG5vh3uGKRDdB;!UzSPN( zIbeM?IzTO-)O>&tZfG+iTA`-4*N%tI*Y_&#>#x66_;`rJ8hr`v9mhTg`CVh#yYX9S zvl>#uecKhsG_c%oWB!|EAv2*xUC~Epcz6;k9c{DK5;K)~wseev5BFajdpIpi{$8oA z#%4BrvNYiGg{gw1TD z=3M016iIK)tK{tfmxjQWXLd$S6Lm|iLf!lN?6%GyJ z-mFD4Z-Lm2Mv$l6o)&=V zJX<0%yoc2_^xDo!h9E>ySOw(i2-=w0ppX~;w=`OSXqaBXoMyLARo?g=~nC(0yRp17M z&;)ki>;!OuvqL7o$2U=F+#@Xct5cRn4&bL9RxrbhX+{C&8J*M>hA3osgZQ0W*$`YjWWt5f8VJ>5@q`85S6!wTPI z6BKs>ye|(g25uReCs#>mWo+3K5g(484lxSWDX`EG?$YWVtaOi@mNmW-H~zYHINH z%Y6><^va{Y7c<6f5fNh{g+UBJ3|+8^_Iix70)iXBMKg(mzy znY4kBkS^UZ84kDgfg*$tEx#)q|2_Nc`<`ZRXjg)8m$T}(nfaV4rMIpqen}kE#eBVn zBi|E(*;kRWA;dQs(WwkpNQ~SzHkZXL`R2r)EVl0ao2^aYtZQ?+n@TdY$;ZTbM))b0jP z`ewgiB~RK#D5L*O`mp6nDwqb1GbGw96_e}%^JIsWk;q(xKJw8>m-cI2z7M5J#ZFIK zisEWqrp z2O>N*z6hq*d!xAW)%$0Z(lplwrE;nCq41d<)=A+^n)j+3XDuhxU(WY~ z=q`B@8$2Mipqw{aW261}@#D6MiHVnzir%7p9w+O;>FG;WON34e`JjIE8W2;oJf1OIXBql~VkD=4#4YT`*L)C>@+e>{I;8c*%JShOLZEI|eV7qP%^*+}#<-ElWHv z`etUd7L4K|Ol(QmxDuvKwf`f9-oClhOXEVixU#zZ`52wh|8};zS3eK)h3#Com2o%a z;NdJowJ69-^;*2ccc#i@X#lCW3@V$T-uL|YZ@<}C4Tx{gI-65rf$p~clC?kDx}#>1 zKGr-YW=EV~sP>nHFo3s}QUn43`z=j_Ln)x*vo~Eq4@zN{9SPvwylF4tug!kQPBk~5 zbnc=bF*6(dCS304$Te+)DKb(RsAlGw4ki@^rU5@-WydV6OV~hjjii5|kKI%7X5Mi) z81>{^hGj8Io-NZ1ZUj2qG5LB4o1kI0<=Bj?Y;-%gEUjnJ7<}jy>vg85!j{>pbEnQF zgBOP7j~11P_H};^M2XW*_2)lvvHw-jAX-u6jKnv8O7~PsRO!r|P96gepa^THrwq<_ zF7~}BaU(f!%DUQ+TA!xAKP=qq)3c>fjN;Pg3R zSo6NbETc^2%GxKnD1|HtR3-1;&9#OLTdRG9`-)1uicsk9jbVJs1Rnzw#?jo$6!&t3kWJNIKy}6opIns@16T;o^ z&jekXY9P9iCD+J$g1J5Z4F?AQj)b}NG(F83M(jgvi=JG-5J>Tt@ijQfMhN2~uX!jovTIpMsU0jjTAHAs*Ut zJ?5|c8+9ar#)WSnV3R!X2mmA~k#hT)7aqB>ISZ>}%VB5aVBF#20><{m6gL)Eo~zp@ zp*z1I17gHD!G|wDW}WU+U0s)ZJHt&jqlf$_SPcc!YB`F%%d#BzI~%-$4Adq2e*guka7F;lXW?AMgz+$q-}8)xMP%SFq4Um^?_qy3P)T z2`-)Ks=D93C3F}i9xv7$hyzcjX0F2u)$E;}rTStSCyu(KC@LU*_=L|jFtcT%0^_Xt zK)jKevtzA(!&c~Y%d)_|o2%eiLX0FI|AI@TB>(0x}$C|-6=t%Ps>Oe4PaW59=iklrFM zONNnnRy7$Pj#qh}|F%EWJ2Ku~ZqN|f=P4$eM!MqT&E!n;Brd|-6c?pi+GGnv<|z_~ z?=*wPTg5pI5!=#SE2~wq$G32ah;my%*^WQyrA<-Ga56u~&CSib)?i@0&sqTb{f+-M z5Rv?ra91gMxGmF)D5!T+(~1gtzj+$550qgnd#;;|FGm9@g5hUHln=mXu-? zCWl-_IVh-y;Lv;lg`VP**84l*B8^hZ$d}-I;&Vz6DZP%NryT=U`brCHUXny~X@90` z@OoR1TP5iKMPHxujKoaHxhg9bzRR@-VhDi^W~G!TsHmYZOA0Rq zkVBppg;Kk(+dX#E?HZHm_}pOe-1`xkPRC;GoRY)ONlupse+dT&v2o zD_7wg>`-lgzFw{ME7%`~!m1R8k)JFC=lAuN=x5q5+S=>_JWhVbf!q}&m_Rk*>J-k# z4}*(1fRZ7gu~8UQB7#A&qFANM_tq0^6l(w9G6dj&xVAhzvU_x!(SKSp-glw^BGj(s zkxVqom_xIArETAjLNWpSr$TP~k$(5LBwOS6_cZTUyQ3=fyUjsRiRx8}-357eQnRC& z=Idm+yQ}99d}5^;s_QO7_ZO24+T@sB6{njEhiU|UYwq2(ot@;5djO5s|5^S&C|N|k z-pDk&9$yip7?>=Ff{L`z@CZ=xuU<(ECbi8}N!(spoGaiaeyGfD1PT~LB&1c{c#g&! zbqQdll{>D{+j`T^XNG^0<@6eIu=sVG3b6R2NFRBhQ?>O`K#XIlER*={zJThR!QO23 z_Vmz@(!>~`n;z3RdDzfpy`OXOYWJlXu+=8k;ud0VO3YzPn`*3`R9oFD#1fzQkviFm z0yV)FS4s8FYMPbk+5cdLe61z_4S6J1S;Tun306W_$VJpbu5Do!2r$w%o(OZ zVp&Jp2NC_1e_2F=O&u`jltWAo$XGQfJV z=RstfSA2$5=xC6NEsjbR)Ono^vhSyMdLW&#rG87u@q$ZE3c{59p8VMwWq>~RJ?5~k z_D_PrB#ZIds_v@KoOq0)u-?fhKq4f{Z8}iU;+M**mdEgyF+9v#{vCheO_RK@ch-q? z-zy(Ow-cu2%_ncaBb*+Tv6sk7*%4bRrHe%!9v*HUgopJ$Nq)cWyy}Pz!pX4MKwca3?R$k4Q`3vv z>{Rm^{0~2$*t;q3m=eq=DJlYG16)Q^9ax^3k@56&YaBI#ghOc%B*0pOFdH`#St4@? zZXf4#ypKH*55JN`T3Zibeb^R$*!Z-qFl9mH&b-@9`V$KG@QmV|fQ(0ZzaPB12iuzt zZhzE1%h{3~k$q*EAMv`@c;{%YEC?7#0j~Wf?(*KCgd}7jjeI6iJAb@z4$K-Oc6;9w zN>5K;VKeu#nuZV$%C2B7&K&-1YkbCdu*Z)6K7(V$W0_-5Y39se<#pQxUup7Nh*xI! z!h$aQ59V68MGxkoTSwp1&C$XIF`zS>8)hBORb%0)qEGRmK^PipJKd6qrru4Zl`mGI zNA4I?P-}FxDbcRQ*20>Uw|8`W4IJ4~!mi|N01))}U9>}zJ*h6KkZ^7Sof}vr?j&>? ziCJ`o6zASN*2dujqM0x~T>(%OEZ;Z=h9Z~NkjmamqgJEz3M*Z0`$8^48G8Gz3s9jJ z^RMZ4zV6N_kI@597j4}0W#wqKC+zd*&kpxMkCc|QM^9JD0?Jr)-?Tk1P;UIT&%E4* zjJwyvdoPd4^m3iL2?j5D10$=Dr-r+csV1Yqjlyu%Pk_4RA8B2fO7;lQ4EGj&ikfRoyT@wpsubi z$2TG@j7_H#zrMV{kQ%Z-Nk(L6UR++ru0`S`z8^|U^G)-d07~{L3FI%?c1taoyi!tV zmpdFV+bL}K(c-~EqBKf6?l_h4j8{l00uG4C7{t6v@Zr?~2WyIX z*ok9F!yM0s7Funk+G4J%RvX#N#2^ggwHSM>?{~}hLbu^lETck)s%s1%s8^i8tZDF| zCUt%^=5xf;t@^_Ii@Mr=Op++@_e{Zi&fokBV#H;-f7L6a2b;J6*OFXmj0(u;<&AvB zQN3~m^YLz2DTs`H*nAcF_5^q{C5QF~zn(1j&{VH-oBZrLUG$xUvC~(|fd{0d9xw0f zX1G|{Aj#7?{Uiu@^QJYP8*NcEmzV{5F)ocSN0oT#ZanS8T_AJ<1i z!!U9o!ZWq}qRwxO{mU28PF%azxYTJv__v%|svn4#S3P;9ES}FOe8dKH?qCvM=gGz} zlvWajQqb`+(Dle%9{=T%YtRc1E0F><(NH^)u5O-l2g@Z3kunuVp%J#C5yZdS(NY_? z%B#D-*|iyZKX(9%oL99!+*+;D%M#SygDy`tim}+KC@FD4?lxI+3Dkij6~?kZt!Ksr z*cs{MCGpB$i?E zhP2Bdj&h}&S&W&|$-h!ooT)T%03o#L_H3>|H5)}Hk~GuOQlsQU06wEUX+8i176O39 zWb;TD|5c($pz`~?K}fvyoxdIOT+f z?7(ofBnq~cTKytd4-f6DpQd9<_U$i7Nv*@4JN@Zan|SWj&p|rws;^cRdpZ^xYS7z2 zX6|I0FC>;y#&E@ViyqBmrf@tQ6MWWUb^M|d;{0Xwx|5om4&w>m?bW}C^BbU%b@=lu z9A-{{H%cLV4Z~h#J_xllFmF01Ic|)Yq41MZZJi4Xq%zg8iP}1-m5Fb+k6Vjn2_pQ3 zAPJ%8j3)0AV!6RoJj?IyxiV&5*ouJzQlPlzl_U^8~qF4DayJ}p?~CL+)i!I z_^>xPs5Tt%%^7~VLtIV$X)AM8POcAHi+wV}!rqFmop#ndKU(}o%l3HbASpum#ZB%P zoHdT1M}sKs9L5Qc^_3A7Be?6MCiUpJkN$Xt1a}CfVgnhZWonY3(|V54cvx7hvgu0; zNhL0?_lq8m7)~#5!a9ccX~%}B)rzaTQhuj*liGg9nM$Os{G)OL6sFw*3G4)wX2V~A z)Hcg}G>h|P;Xu{z%m9*JQY)tl3JHML7 zsnr?Zm-XkDvr{WVJW?-lErIkGO$`8CEEH_YFhDoJMT(t2EyhQHw*=*Cb@s<^q#)B( zv0S{Q#%@F1q2JC5S6iEZ8yk!VxUc^?o1I#QkArWyztkEHgib57)mHGh1ysHxMe5J1 zbptCD6Sa=qf>A%9yAt2hI&yZAne^i@oa{zpxwv^m zx4X+#c(w8UUQc0j*JvM`eh2pCe)(|INyjXt7v*&nY~YQu+=maOI=Z?O^=)kuF8d&6 z$t1tDc^@?hRDG&d@rU<96Gnhg)jm6kVS+>*C##WBL1`>_v0(GgEye4tt#$Q`{!HT=@3B z<>r1WHg;utqgUYKpxb+oyVHt*k}{E^*#2YRk%&CZ`M_l|^}!$X2Z#YE{eI_l4dYP3EEX z9vnp2d!gQZ$R?0~OZr92_JxC|L9a7>(%|Hy>e1+*IUfrIUA76=htt!SZ>fZwfvRN{ z9=g{0zu^=Pc6K6RV}qEzsTz6W$oA@)*wE0>HgU2Jn^U7fc*U=mbLe^$<5+@G3%=@D z9&SSQWSwU(Le$PI#YH0g1^W2aAOxHOW2cFwam%kG2{tjWWSm_AY!16mdq7SET2cr#xPB}2T?pmA#KvI3MQ?pI*6Gh4or8dR!E` z9V|YR>a|yjrWTEPk$MIL^)NoRe|xn{M1+R- zdWL+@$?vj1d876AV82#;`8Is1la?E?c0qKsu}ekgkd5-d%3j)lZVtMpLSL0UlrD~A zXJ@DGuU()*%a`DDvaZy+lv4ksMmBlU}7i*MufNZ^ZNWDx?w^UiJ-qFOk z8X9KJIdXdSH$G`1NAqrxabTJkuU=o|RY4GaH*D*Rem^fF=2_Nw9MADQU|}oYeD4im z@RBw}<{3p+K~j5FpDS|BERT z^oKHusgm&lEOj&R@m|s9m$X0nUTK1Ed6n|MhvM@@+u>C+-WuiopTxy#^wrxAYL;YX zp1b)9QN=k$sXTav*Hl_ud#hP^gUjbc%Du%qB*s~ZRP`LAgk7CuafPY5*2(ns*Vi)x zj)`t`++qMIaTg~lP0?Ir4~rL%+^4JCk4Ud9S$lxp$JOcAdpbI`{Fa$+4o>Tt@{F_o zxs!amz>PLxo36g$_gs~Pe%mKNQ>hH+x$FI2$zYA0snlx8ymkrdZbxs@DuO%fXx;61FncjZS__8sWY?hLM4^_t&^l3d3xuUrs^1&_* z5p}Nn1J!5GbL*tHOX+EBG}o@aK)r7@m4Wkqyll|tigQX*8n~8M|8_!w^mZ8p;NApw z?bFL>v8yM*uPg7J;X$iQpWG~AG7FOII-$mG;Jp6ZNCLb3noD8eoJ#$~#rcbyhT87N zj((gduT*@Niqmr2BT6CXH#VFW1rh;>b$<6^OX_s;z-Bws61Mr3jebwE9zMZtQ^?08 zoy_2WNmP6}tEK1}vP6KFD*)>qnyxfiEF*&RvH8pki+5$Azn9tWa zIO=~1D=C+ikqI(FC5Jvg44>W3_;ahU?d~zdM5^8R{PlR(?&ZX42@@T+WkI5d2RAvd zxxZ1@XV6I_HRv1blK~{Aur#ouIWOMu0(X4HQi`65?KZ8~dQV6CkR>Vpb=71|;CtH) zS<=yEhb95gS3tKiQLMQNFnrOsJgcc6=2JhYxFNkUyC}F&m)+6$7-uLRX_Fn9C*{2) zRr(1V=E1t8J#+t#*>eZ*F}Zz0e4yMS33xZPk%l8d6|) zq(Z61Pp*EFMta!_uKI{rnT4?^N=Ch11slfDDG5}Lo%~N38h$X9wQ|7gV7cC9#jC+z z#X6KH#AWM(Ue5m_3JCB0UYE&;mm79k^oA4)^3&F_!{4voPKzP^Fl={E6XSuSe46OZ z@V{iK1UjnUt9hg#$0{eF*T4{XvpVm~N+Dk$;va4G^8=J5zdD7i)ViXl=DOcUOb*ZU zo*voil{|ovS3+HvvNS`J(9T-mj*>epSU}^li;9OmKI#n=xzj3mQ0;-SGbLHk(c^(`#AP$S9;8zMJv9mkabn>}A>jF2q zY#%6qDx)TXlJ#dp9sGs@b*GbSU0OxHg!KYpAY?cn z^uzo)XuX&D`b<5`$`Z~UgY^3ekLf@d7n`(Hg1+$TIUS+;-OOhi*P#Ffca}7Wv+RAI z{z^KcNfr%<TDu0q9%BuhcfDd_V`F@A#r! z(2V*=+TV+`TE&>a)RAAb$U;^zLlZ@~g^Xc&3L{(2<}S7*G6!kVn0T3ogYiVSNj_28 zm+~#H2TZqrJf)<%81T6g^*FMd2|R|vV5pgUk+3e<~<0a7cpGz;sk3{5;;^zkOBdZ{Fl zX?BihXcpZ!A#AYdMI&kU?NCY%p63u#!1KaPPh$wOAzkGz>+EQNOul3z&m7mEvS9l! zm_0!Q)SKhpoJ#Ag#0Mv>AjuKo7Ir#d0?(?f0wEsoOXT@{Qt?bVAu{4?@q)ZhR^0|( zk3UC+9qqp+nlO#OBhw)$N!>baAqm37)4KcP1xgPco1@uBfE8W+3B=7x;{O^x9k^KQ z&FUj3!J(N-F-C)r2wl4b{Rd%5DUETpae&NAK31cH1}flwkwHO`boCAh@pDbD!+J?0 zwvaM1BcD_z?8ZLTcC8OlqM1mWU5sv-+K|w1nWbZ zeksr8XYW*ZZnuap{fI21IF~iJdOI5Z&2K_bHYV=7B^_J0M2YJ+U2_`!~4{e|a=|%8$Ru!=Xukx)ZVoT#08v zA1GAl=&pXLC4hQx#a&tjmnI+kg44*m4$DH|JGw;(Yd zL82{Jv%DLJL3dvIGGOLjj|mz=7ScYb75S#DFtvA`0(liRoGRjk^x~H2HWDiX`qs%0 z0)bdoM}@_*ghtRe;goj!2R&Z_oZP<>kCE%n%(^7e6(ipvM>@J`&jM(ove)^37YI?K znUbgjX`&S82TPj5Zug*PtlNSSk8yXD{{3C0Xc6UfDYhSnD(ce2POzrZeOcU!k*5>{ z1F-)u?G_{d_J7L;1>DW~dLFThWhBBEI;4Q+=>f%+&!C5cEI(I@a4Jny0+g}6PM_eB zaT~lT}Pv)P1MMoB0f}GiOz+`Pb;Ia2x51UR%Q1&=`MWPu^zu1sb(ov+=M-ZC_4?3aXsvPy09A23MSqE@h>eYO}_q`Jp z*x%oWe~0v3;|8xzql=73deyeOdg0agrAm$v857m^Ts^MgO`>49Db+B{WXgo3fVQs) zpjR*ejcDeRC1l{cf&tY5noPO`N*U<>UIePM2xgFo1R@=du_A@=ZAK|}S$6Cb!8*LI zs1u(BS0*+T0zQPs5(SeK_tppAvU7QCk|N|HKQR&iO#NB)oU9Zb9ir-zPw3}+qE-Fh zE5QKtb}$#$pqIl&-snfNwK0qG?IzOFX`jk~)OhAT+)DzFZ1kZQqFmfvh3W^(9H}^L zKV-yNiHn-4U50o$E|VFEfuQX2j+vm}FSG*i+bUuy9&2PL6X2hhyp0FWWD3@H0dohpT`kmF+^H#eQs zDolz-%=Q&8j){fJ(tt23>$+$HAUu8ztU@bYrk5#!d$rK<@9)v`R`(;sFJHa@qkw+> z967df7?nTmJdcVa?Dxp~f_C`;=RVeCwDOvbw=NayRwMmYa#*Z916S%-a3%oOs~ z(`=+3BUE@3GG6gPvGx1T(_dJ}$ z9D0!em@|Vx4R!)#5am0cqjDKuW7dTruXhE|O zgrFSrp_!bq(N(fx`Kid@^5+0WR73st<33-qAJURigd~z!P-tipq@eep&*^>Aov7mv zy&rd@RD;@xKFL18vWcRx|2$pq2c7?X1Ps3eP^*%8xW@Gl`c3TSr6}9d{vN{SZ}``h z;T?5!Vd9?kNQPwRgFQPrT^7F%PzlD0Hx~XD*RJr;@@u+YBL*O*XQQ-5_O|5TNRCe0 zW0KK0?cr@borsVymP8=1gM6aRN83^QlV3W1v=zLtJuiN#km)yGcEq4YO!V<(s!!OA zP5;Vu={J})Q|B_BC>OpC3cvR^t5Hz510rkHXTtXzv;*lg6bB;BL2rb;-uks-nW|d^ zvv`G)j#pMeoIUsGJdeMQ*Mx_~e#s1Bsor!3eI+cTjr?Q5pO#hgN;aoi z$$AC`8CT@sR|D84NGvHSSdz{zcQiat} z8_i{ki~D;N(S;PQCRJ4z@v_3B!=j*d*WqW(h*&3VTmlLioE_}l(JkFacZ@+V{R7cl)Uvh)K_oOTp0)1sg01j3* zHqK}HyXMEXfHXs;OixrmNGPd6utqUI=ytxooJNGy6%Gb1Y zj{ssaIM?;RCJ?#MbkNHANhwvR`HTyco8BJn2n!1rYg;>34D1CmcH_@kt20Qs?V*?G zmr>Q42lOIi9Nrung5iMN3f`mlEt^aa@QFP+nM_`1yW295$uCq$V&Gc4DBPLAWzjy@ zhPw+uV?78)(?L!{Fr#O**BO-H(p10EHQO9!x$+GPNio`OC*G zw;CAy>3-Oh;$M3IFk&JqyuET-vTed;KK$jIGVeFAkvN(Jgg_3U71SF1N(PBWSN}4O zr(XVpX{Cxw2`*>0B8t4_Kz%jaZ5gf4a3cf+1y{iR)JU50Mv)`KN{f+`{&cAyM2d~% zxZ*@Q`+-hW+q-X|`f_mDe}~G*1RTjpfTGNJ9ibdc+@tE}Re7;Zv_NgTu~7gx!KWONKicwFHD|ud8##Bz-SdntdmIs zU5t4HfkaJ-BoqC}i@3Zxmf@TFNmA};54YGKAxlz64 zg*&J=+dL=JCIo{J;@ZsGxtdB4TStNUXAcq`Dt|IBbFe@Mr2Yyx( zkfL|YEKrgW1^y^x0kIXCUcLit=z0KsFqwgYp-w}gj)RZCgpr1YQxc1dAHEMd5xC13 zzu~GuV>0?9MD-ZrG%?aF8EKyi(BZy@B~9bwCtKU0Q2q&^sZlx6^$#%WW=sNPF%4jo z0w*IE4HwDV618sJiQ@TXX2AG5+<^-o{5RSJ_%6a0d=6yg?srNS(Y|<+2;|2qjPc#MPdIlnIY%o1AmGo*iR@psW`? zcGIbAZ*POrjuskzg-;vLuM|~_;0l<9+?9D8n@R9ie^7+2= zzn&Y5x%e8i`Md26Nc|hQ0XNSi+}ynNh+#RI=-+@!i!bpr^mR>5ryI84`&g5O`G5w3 zry~WRlMbqc6vSly--oHg&z)% zT3tzA1ejwe_BHoqIWby5H|=e8>5BH%4l*Xl3iO7=-Kfm)!sbS8^V1Aj%6X70gY5V^{h9^G8@>WGA=eX zPtmz&dQkt^e_1p2>WXd2=QPxM}0) z!pK;aPsr=^67DCDvJ|_ho(cekz_{C4#ZyJnS^VwuY5+T$FhsITafO5wn8{gBD6Bm7 z^K#+Ls`R+;VIZY=PdW>p>rq%%VcrBTHO(?9&}+*p@H#CTTH_*blg3RiVGoDGW3U^FC*hxck*GQ z-}b`=tt?y4{J%eETUyA!l8X>mQ2~{M^|-9h?V9s6$bcuDmI^JcJC2`_K=#CfiBt09 zTj&#%^h7RWMBl%GXAtRN$rsm^wA(*7`_)6ZO0K~yTe4Pv*WNZH4%pU|s=hi71;8%KxIepwx4$X~C+PAQsEOm~i1 zgko@a?$_6KzU=R;n}8^5VVtrRbi zXSLsod8ro@#s-yq*Lz9)$XVPg%U)HLN^=?7Ao`jx7zAuOQa;U-Cq{@lEjlnUG77}t zE@PQ@CY9q#?~zXb*kj|Ba=5d9hrH`!Q(Rd#gsW7{a#@|v^mKb7kNb@=b#nGpvHRZF z^>BG%0BjIQBInUuMb)KYrzn?>agL0$SH^cj;pVR-@FV5A*`a#5p>w^&a&p%Fyi;Ei z0Dc3U4)J9zrHYD%l!Bhj^l=}FZbwY}!XPaa|Cn`FC+B+!4Ej~<5uPu2q*6L3lxPG_kAeM~%6sIa`JbcWnbH>>1b?8#9uJ z7mba_T^{};-Rdz{7Epfyz69#ee;Zgr_~A(SnyBL^XuVgcz2^(avrHR98?GO&)vN^m zT0JT~RQo|_$9-sEUwIU2(GqI@45mti|JOM!gu)Iw-k;khP=5jbBqCRx+Teky%f_6O zNt*@c&rZX|$C?T$^`5^Wo0YKoZ%ounpZP4YfPn_JxVShZYvQ}q%&!19XB5nq9!vI` zdrT*MwUTIgC9KXaj8ic*M;@?6;L=hWqNhuM&pvtjG&LxHG+_4WG5w0%``aYv`Sa&9 zkd921d3uyB`60u;AL*%xJ?AKlt4Nf8w1b`rUMCJ{%CgHkm%92xQT!T4ACk9L&6gNt z!oq}A?5PJh&lYgXIbo~lm#1wGS2dIQ{t=mVsv}2Khbv92er5Fa>H7@Q(9#-O;c&R2 zp5m#xX>*OQ>@A*GKG_$?u1#v8;bij++M4idNZKkx#KTy6ACC z$zZo3`#aD5T^}$gv)mr&k}$jg{%v=`g{D*fh38joIIXukFL(>r1}SQbTGB>EA0Z34 zJ@xvk)wEy#!^4XEN*2w(V&;C4S%qp*wyz?nYJ%QFpX&;K3b%K#|BIj#astb({Gt#1 zng2?1q);CTRqM^GwR&O6c?s!wC%4M%k;A(*C~}ZKOTxoe^nY<4a1Njaua3XZMl+k^ zI2>QUzTLod$@y@KLg?4l1jXWe=g&bA+z2$%P`MGo4o=6mmOVWp2q{#)KKg3mzg7Tf%Kv}kUX<>hB*i+!&-c*d zodlPTYFh22 z8in<+C?JkIAAq7|BUX!(1pd*klcfGzDlNqKVzFYdse5(#-oSK5ue4GyBj`s49|00~ zc0_s){)Ygwny%C4Hu+d1>CSS0e9?7>S)G%1Z^-fq2bh1*wqHF_2}wOMg?fw$k8eN{ zNb0aFbaxtS;}Etmr9m>;rioLsi0dHm9@ho0mL>@j?4mGF>&B8 zG5r_Mjakj>`Q87BFh04*eptP&i}94I$oc+aRyUbv4~IwNcn^2kO}qF8N^Yt zFi%!jgjO#C-}id8P?Fzd)<#v>m8`xAVx6!gt&E#(Cw-ONC1a|zQ)4v8o$fCQBq7L! zE}oQIgsi8Hh{{Lvg4K!w;s#!m25J9}q(o0Z1e9!FQxVnir<{f0$I#i7YMmJkMH^G( zNt{IXzpN`dNMHU-#^;^J^Fu;p4d^Td=nx=W@Pn zOKZvFp6+mAlH)k9Z*4y}gPS43yqfT74_X;5Mkwmp$&haJN&ysxr9?T(bb%Y)951{< zTS_<<-fr%oy#y5-2cq}q8oe)eaB#tc<#`knxU5@c+WtTU_|#~|_FJEc>FE#iA7dNwIIRrR4W)C9(!8$~vr+}8|+RPg5h6{sP$lBCPQVe+Y`Jyk|5%cG2A5EcISX^}a zCkjXCoLntnv*NgSTHLa=-OR0xJm6Qv+}Tn5T1qQp4eIu+&H<_PliyvMxPMw9dCCml zgt=SVyq&X`wjALV=LCTV6vyBf>hNK7lnsW#hF0CJ|FG?_d!AD@H8x^cC_(tJIDxVK z|9wQ`?mqpGG>bM`1jTN#D?2eOm^%XDLJjQC)0UR(W_ek+o#jzs{Q{zalFJF-Cj%Hd z<2j{$Qk*9tpY&InNH_9UR?a_%p0a`5y#wjsz1v`6d8Mi;pHG86@W*u2Q!vgHWmJQk zdVY-=o3(-Q<uK}g-G!3*p^EgfY}-x9tl{9nS>6`{ew(Rh zEZFJTk?r7xsXKwpWgn>2gFYx9jEBqYQ@uERmAH+FAG9*hlrL_=u1f@Ontw_f%Ys_9NB zB{Og-D(iuP(F&*0|TT4;DUDGXN- zpz{mx_s^=dP)}0rLaQ;_N6Q^TPzFstrr^iD3}-3KXAs zJRW8g+0Bl!EATDKS@e5BFR`zfWQz~{xsmzUrKuX!Y6R3w*7Z~AaC!g7eDH-V^XV6j z(OD4Od;%a`ra$+$IGq|$Hm_S|!@HaX*K!0K)MmKALQYPOH{5A}Q{MA6Ubo(F!;R;8 z2;YWVlnxD5U{lvze9^Q5=-t7g_gdj7U4?jb|_WqlTFGc{<%Q7ne2~-tn z>SL{-gE9dYPz_yu=x4Ki!qe0?90HVswaI#sN;>d(oc1{uIZSY?UFpj?XKj+3?%usyW}S$3Y~!gQ%X<4jq(T;GI|eYt zyV}MJ;}@~h#+A{yD27L{eI#TkDJflzQK>r6#Dgz5UHqc^!?OWJyW1b!h1TFLDd#M= zFgMqSl8<#-qf4(97-O~Ft%aee@1O#Jn8Xmanf^m!mPj>rE`% z&^J#IX!?8xsfpn@K@Bk`#Djq`TerV>6ySQ43|ysiS`10cM=jd?eZX)hABtH+MV1$? z!l>X|(EJ0!sDR)zSvAnI@ipD5oU?3u=DYW;TUTp-ueN+E_my)Vkx(dodsED;Nyp;& zegL1EZXIM!FL1gHTzg6BBxL_{6m&I4ipfi$@TGKnvES5uX(KOaqg$xkzb0A~oLrI~ zBr&Xjmu5v?HnydVa?bwvRPdoy|T=wP5Br&oFUWWgh{)ux~);U{sqtWmuxexox_!2i13( zCF4(tbhG7;2qp@!c?|;$#ST&9K$P#|my zxZxjLcQhpuRe7h?#&QgIc6Kr(?I_MzwwAu?2A62VY&vpEO1lB97WgrfgDrH;*sr0h zR%O3tD#$c~`jWCE`d@3dr_2RHYlJ4PzDdZyu9vv1w$lL_$dTSyE^Y>_Qcg_4koZg@k{u!N8m(l9y?cct?oj) z$kj93`w$6yK$qJL5k&oS2zX#`vqLU2=!9&Dmse0&glX@I{S0`-^Ps}^;o;$tv}^%m z*k%Yo8Y(rg0v=;xHT#|1A*J8G)`6OF_#F6zc7M|V<+l%LtzwlymHNUJG+XP+!yi9h z-EWOpwR#cU*8CgxFxB(4J^GCn{+TDAg9l;MDfVVN`C}_UlUvUqm@N@>(?Opgc3IqK z5wmTLPe@4cp9BMCJM+(Tz4;YiV0N?UzctVJMc$Khd1Ym2+wzHPZnGeG08lkO=o+gn zj_i6%n6vNx0`{-0W+0pwCpxgX-mCIk{rmgqt}e}ph=|h32tb)CY-pb?FpC)L(B*?Q z#3w#%yK!XZ){IZlaRG?nl4BbnxfyztXgIKB0IrlWTL|u-Y*OY8K1;?!k9cqn8`8;U zQx*1Q5dtNbG$ZQ>esF}NvxJ0xqt@@>w?_*SYv9x!<6$wA)k@{pTNE`5J0@;DK+7#P zA%Ow%U`cfft)zBB{3qqz`A74zj3#_gnuzfE@c5%scxa>CuuVnqcs%k-YT~r0%eW=^ zYecy5Xd0$$vWM7Yo`R1_h3srhDTO%%oVF8{8;uYVx=SV*q~F(IL3>D&NfC3`{ClE2>;R78q|c$S>d`n$zIl$#B04!=Qpvm zySrPida|Q&J&D0&fmypUU5h%gs950nB>RGW@DEbxOlWNIMSnT$@ax*@ zOa6h_T4PJIn7VDAF8A5Yt=F33(Rp}!E$dWvK|hx|-xX8-tLVw>ACq3sWT`ArJRcu{ z=6_Mvb4HWd0Xr-7Tpxv@yC$rIQJbmRhSXLu$$rZDK_1nqoCgc@e3 zHu&8RbgM{1A`@?K1-dB4^yWo>a{e0xttzwFQb`tSBuVw8nhsdV9igL(+f1bd{dXv?UetQ{`+-vhGj_K#PWF@m$&~ zYd@8P{qI&X;o4Tht@iI&jM_!NPdpDYv$*9~6N5OFyu8C`LJhlwgBLu_ZG>K`E!tt) z(qOg9$7uFzqXQ)zz^}C@HK~?YhE1wr)@Q~K{PGNX7eJUZ={Lvu*mc4*DC4c6El-0t zw)&BAm1#L81{w?NJJ&SFK`BxQW_9hmP_jJ=kI>0aYwBJ;nYqmmt>bI_QBhHp0Ovj& z>}\\ + + \hfill \break + \hfill \break + \hfill \break + \hfill \break + \large{Индивидуальное домашнее задание №4}\\ + \large{по дисциплине}\\ + \large{<<Математическая статистика>>}\\ + \large{Вариант 27}\\ + + % \hfill \break + \hfill \break + \end{center} + + \small{ + \begin{tabular}{lrrl} + \!\!\!Студент, & \hspace{2cm} & & \\ + \!\!\!группы 5130201/20102 & \hspace{2cm} & \underline{\hspace{3cm}} &Тищенко А. А. \\\\ + \!\!\!Преподаватель & \hspace{2cm} & \underline{\hspace{3cm}} & Малов С. В. \\\\ + &&\hspace{4cm} + \end{tabular} + \begin{flushright} + <<\underline{\hspace{1cm}}>>\underline{\hspace{2.5cm}} 2025г. + \end{flushright} + } + + \hfill \break + % \hfill \break + \begin{center} \small{Санкт-Петербург, 2025} \end{center} + \thispagestyle{empty} % выключаем отображение номера для этой страницы + + % КОНЕЦ ТИТУЛЬНОГО ЛИСТА + \newpage + \section {Задание №1} + \begin{figure}[h!] + \centering + \includegraphics[width=1\linewidth]{img/task1.png} + \end{figure} + + \subsection{Пункт a} + + \begin{figure}[h!] + \centering + \includegraphics[width=0.75\linewidth]{img/task1_1.png} + \end{figure} + + + \textbf{Формулировка линейной регрессионной модели} + Линейная регрессионная модель зависимости $Y$ от $X$ имеет вид: + $$ + Y = \beta_1 + \beta_2 X + \epsilon, + $$ + где: + - $\beta_1$ — параметр сдвига, + - $\beta_2$ — параметр масштаба, + - $\epsilon$ — случайная ошибка. + + \textbf{Построение МНК-оценок параметров} + Метод наименьших квадратов (МНК) используется для нахождения оценок $\hat{\beta_1}$ и $\hat{\beta_2}$, которые минимизируют сумму квадратов остатков. + + $\beta_1 = 15.5869$ + + $\beta_2 = -0.2522$ + + $R^2$ линейной модели: 0.0144 + + \begin{figure}[h!] + \centering + \includegraphics[width=1\linewidth]{img/task1_2.png} + \end{figure} + + \textbf{Распределение точек относительно линии} + Точки разбросаны, линия не отражает тренд, что говорит о плохом соответствии. + + \textbf{Наклон линии}: Линия близка к горизонтальной, зависимость слабая. + + Таким образом, Между $X$ и $Y$ нет линейной зависимости. Линейная модель не подходит для описания данных. + + \newpage + \subsection{Пункт b} + + \textbf{Формулировка полиномиальной регрессионной модели} + Полиномиальная регрессионная модель зависимости $Y$ от $X$ имеет вид: + $$ + Y = \beta_1 + \beta_2 X + \beta_3 X^2 + \epsilon, + $$ + где: + \begin{itemize} + \item $\beta_1$ — параметр сдвига, + \item $\beta_2$ — линейный коэффициент при $X$, + \item $\beta_3$ — квадратичный коэффициент при $X^2$, + \item $\epsilon$ — случайная ошибка + \end{itemize} + + \begin{figure}[h!] + \centering + \includegraphics[width=1\linewidth]{img/task1_3.png} + \end{figure} + + Полиномиальная модель: + $\beta_1 = 16.8727$ + $\beta_2 = -1.1208$ + $\beta_3 = 0.1296$ + + $R^2$ полиномиальной модели: 0.0240 + + + \textbf{Распределение точек относительно линии}: Точки разбросаны, линия не отражает тренд, что говорит о плохом соответствии. + + \textbf{Низкий R²} означает, что квадратичная модель плохо описывает связь между $X$ и $Y$. + + \textbf{Результаты указывают на то, что квадратичная модель не подходит для описания данных.} + + \newpage + \subsection{Пункт c} + + \begin{figure}[h!] + \centering + \includegraphics[width=0.95\linewidth]{img/task1_4.png} + \end{figure} + + \begin{figure}[h!] + \centering + \includegraphics[width=0.9\linewidth]{img/task1_5.png} + \end{figure} + + \newpage + \textbf{Проверка нормальности с помощью критерия $\chi^2$} + + Этапы: + \begin{enumerate} + \item Гипотезы: + \begin{itemize} + \item $H_0$: Остатки имеют нормальное распределение. + \item $H_1$: Остатки не имеют нормального распределения. + \end{itemize} + \item Разделить данные на интервалы (бины): Используем те же интервалы, что и в гистограмме. + \item Рассчитать наблюдаемые ($O_i$) и ожидаемые ($E_i$) частоты: + \begin{itemize} + \item $E_i = N \cdot P$ (для $i$-го интервала), где $P$ — вероятность из нормального распределения $N(\mu, \sigma^2)$. + \end{itemize} + \item Вычислить статистику $\chi^2$: + $$ + \chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}. + $$ + \item Сравнить с критическим значением $\chi^2$: Если $\chi^2 > \chi^2_{\text{крит}}$, отвергаем $H_0$. + \end{enumerate} + + Хи-квадрат статистика: 2.7737 + + Критическое значение: 13.3882 + + p-value: 0.7348 + + Не отвергаем $H_0$: распределение нормальное + + \textbf{Визуально:} Остатки близки к нормальному распределению. + + \textbf{Статистически:} Критерий $\chi^2$ не выявил значимых отклонений от нормальности на уровне $\alpha=0.02$. + + Предположение о нормальности ошибок выполняется. + + \subsection{Пункт d} + + Частные интервалы строятся для каждого параметра отдельно, используя t-распределение. + + \textbf{Формула:} + $$ + \hat{\beta_j} \pm t_{1-\alpha/2, n-p} \cdot SE(\hat{\beta_j}), + $$ + где: + \begin{itemize} + \item $\hat{\beta_j}$ - оценка параметра, + \item $SE(\hat{\beta_j})$ - стандартная ошибка параметра, + \item $t_{1-\alpha/2}$ - критическое значение t-распределения, + \item $n$ - число наблюдений, + \item $p$ - число параметров модели (для квадратичной модели $p = 3$). + \end{itemize} + + Доверительные интервалы (уровень 0.98): + \begin{itemize} + \item Доверительный интервал для $\beta_2$ (98.0\%): [-4.2930, 2.0514] + \item Доверительный интервал для $\beta_3$ (98.0\%): [-0.3310, 0.5902] + \end{itemize} + + \textbf{Совместные доверительные интервалы} + Совместные интервалы учитывают корреляцию между оценками параметров. Используем метод Бонферрони или F-распределение. + + \textbf{Метод Бонферрони} + + Формула: + $$ + \hat{\beta_j} \pm t_{1-\alpha/(2k),n-p} \cdot SE(\hat{\beta_j}), + $$ + где $k=2$ (число параметров $\beta_2$ и $\beta_3$). + + + \begin{figure}[h!] + \centering + \includegraphics[width=1\linewidth]{img/task1_6.png} + \end{figure} + + Ковариационная матрица для $\beta_2$ и $\beta_3$: + + \begin{verbatim} + X X2 + X 1.734960 -0.245172 + X2 -0.245172 0.036575 + \end{verbatim} + + Совместные интервалы (Бонферрони): + \begin{itemize} + \item $\beta_2$: [-4.657, 2.415] + \item $\beta_3$: [-0.384, 0.643] + \end{itemize} + + \textbf{Метод F-распределения} + + Формула: + $$ + (\hat{\beta} - \beta)^T \cdot Cov(\hat{\beta})^{-1} \cdot (\hat{\beta} - \beta) \leq F_{1-\alpha, 2, n-p}, + $$ + где $F_{1-\alpha, 2, n-p}$ - критическое значение F-распределения. + + Полная ковариационная матрица: + \begin{verbatim} + const X X2 + const 4.7543 -2.7403 0.3629 + X -2.7403 1.7350 -0.2452 + X2 0.3629 -0.2452 0.0366 + \end{verbatim} + + Вектор оценок параметров [$\beta_2$, $\beta_3$]: + [-1.120772, 0.129577] + + \subsection{Пункт e} + \textbf{Гипотеза линейности} + \begin{itemize} + \item $H_0$: Зависимость $Y$ от $X$ линейна ($\beta_3 = 0$). + \item $H_1$: Зависимость нелинейна ($\beta_3 \neq 0$). + \end{itemize} + + \textbf{Гипотеза независимости} + \begin{itemize} + \item $H_0$: $Y$ не зависит от $X$ линейна ($\beta_2 = \beta_3 = 0$). + \item $H_1$: $Y$ зависит от $X$ линейна (хотя бы один из $\beta_2, \beta_3 \neq 0$). + \end{itemize} + + \textbf{Проверка гипотезы линейности ($H_0: \beta_3 = 0$):} + \begin{itemize} + \item t-статистика: 0.6775 + \item p-значение: 0.5014 + \item Нет оснований отвергать гипотезу о линейности (p > 0.02). + \end{itemize} + + \textbf{Проверка гипотезы независимости ($H_0: \beta_2 = 0$):} + \begin{itemize} + \item t-статистика: -0.8509 + \item p-значение: 0.3991 + \item Нет оснований отвергать гипотезу о независимости (p > 0.02). + \end{itemize} + + + \newpage + \subsection{Пункт f} + Сравнение моделей по AIC и BIC: + \begin{verbatim} + Модель AIC BIC + Линейная 232.83 236.66 + Квадратичная 234.35 240.08 + \end{verbatim} + + \textbf{AIC/BIC} линейной модели меньше, она лучше описывает данные. + + \subsection{Пункт g} + \textbf{Характер зависимости $Y$ от $X$} + \begin{itemize} + \item \textbf{Линейная модель:} + $$ + Y = 15.59 - 0.25X,\ R^2 = 0.014. + $$ + \begin{itemize} + \item Крайне низкий $R^2$ (1.4\%) указывает на отсутствие линейной зависимости. + \item Коэффициент $\beta_2 = -0.25$ статистически незначим (доверительный интервал [-4.29, 2.05] включает ноль). + \end{itemize} + + \item \textbf{Квадратичная модель:} + $$ + Y = 16.87 - 1.12X + 0.13X^2,\ R^2 = 0.024. + $$ + \begin{itemize} + \item $R^2 = 2.4\%$ показывает, что модель объясняет лишь незначительную часть вариации. + \item Коэффициенты: + \begin{itemize} + \item $\beta_2 = -1.12$ (линейный член): интервал [-4.29, 2.05] включает ноль. + \item $\beta_3 = 0.13$ (квадратичный член): интервал [-0.33, 0.59] включает ноль. + \end{itemize} + \end{itemize} + \end{itemize} + + \textbf{Проверка гипотез}\\ + Остатки близки к нормальному распределению. Критерий $\chi^2$ не выявил значимых отклонений от нормальности на уровне $\alpha=0.02$. + + \textit{Предположение о нормальности ошибок выполняется.} + + \textbf{AIC/BIC} + \begin{center} + \begin{tabular}{|l|c|c|} + \hline + Модель & AIC & BIC \\ + \hline + Линейная & 232.83 & 236.66 \\ + \hline + Квадратичная & 234.35 & 240.08 \\ + \hline + \end{tabular} + \end{center} + + \begin{itemize} + \item \textbf{Линейная модель} имеет более низкие AIC/BIC, чем квадратичная. + \end{itemize} + + \textbf{Аномалии в результатах} + \begin{itemize} + \item \textbf{Парадокс низкого $R^2$:} + \begin{itemize} + \item Обе модели объясняют менее 3\% вариации, что ставит под сомнение их практическую применимость. + \end{itemize} + \end{itemize} + + \textbf{Итоговый вывод} + \begin{itemize} + \item \textbf{Отсутствие значимой связи:} Ни линейная, ни квадратичная модели не демонстрируют статистически значимой зависимости $Y$ от $X$ на уровне $\alpha=0.02$. + \item \textbf{Рекомендации:} + \begin{itemize} + \item Проверить данные на наличие выбросов или ошибок. + \item Рассмотреть другие предикторы или преобразования. + \item Увеличить объем данных для повышения надежности тестов. + \end{itemize} + \end{itemize} + + \newpage + \section{Задание 2} + + \begin{figure}[h!] + \centering + \includegraphics[width=1\linewidth]{img/task2.png} + \end{figure} + + \subsection{Пункт a} + \textbf{1. Формулировка модели двухфакторного дисперсионного анализа} + + Модель с взаимодействием факторов: + $$ + Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ijk}, + $$ + где: + \begin{itemize} + \item $Y_{ijk}$ — наблюдаемое значение переменной $Y$ для $i$-го уровня фактора $A$, $j$-го уровня фактора $B$, $k$-го повторения, + \item $\mu$ — общее среднее, + \item $\alpha_i$ — эффект $i$-го уровня фактора $A$, + \item $\beta_j$ — эффект $j$-го уровня фактора $B$, + \item $(\alpha \beta)_{ij}$ — эффект взаимодействия факторов $A$ и $B$, + \item $\epsilon_{ijk} \sim N(0, \sigma^2)$ — случайная ошибка. + \end{itemize} + + \newpage + \textbf{2. Построение МНК-оценок параметров} + + Оценки параметров полной модели: + \begin{verbatim} + Intercept 11.998333 + C(A)[T.2] 2.440000 + C(B)[T.2] -2.586667 + C(B)[T.3] 4.146667 + C(B)[T.4] -0.345000 + C(A)[T.2]:C(B)[T.2] 10.131667 + C(A)[T.2]:C(B)[T.3] 1.561667 + C(A)[T.2]:C(B)[T.4] 3.795000 + \end{verbatim} + + \textbf{3. Несмещенная оценка дисперсии} + + Несмещенная оценка дисперсии ошибок: + $$ + \hat{\sigma}^2 = \frac{SS_{\text{res}}}{df_{\text{res}}} = 0.757, + $$ + где: + \begin{itemize} + \item $SS_{\text{res}}$ — сумма квадратов остатков, + \item $df_{\text{res}} = n - p$ — степени свободы ($n$ — число наблюдений, $p$ — число параметров). + \end{itemize} + + \subsection{Пункт b} + + Сводная таблица средних значений Y: + + \begin{verbatim} + B 1 2 3 4 + A + 1 11.998333 9.411667 16.145000 11.653333 + 2 14.438333 21.983333 20.146667 17.888333 + \end{verbatim} + + \begin{figure}[h!] + \centering + \includegraphics[width=1\linewidth]{img/task2_1.png} + \end{figure} + + \textbf{Визуальная проверка аддитивности:} + + \begin{itemize} + \item Пересечение линий: График зависимости $Y$ от $A$ при фиксированных $B$ показывает, что линии для разных уровней $B$ пересекаются, особенно при $B=4$. Это указывает на наличие взаимодействия между факторами. + \item Следствия: Взаимодействие факторов может означать, что влияние одного фактора на зависимую переменную $Y$ зависит от другого фактора. + \end{itemize} + + + \newpage + \subsection{Пункт c} + + \begin{figure}[h!] + \centering + \includegraphics[width=1\linewidth]{img/task2_2.png} + \end{figure} + + \begin{figure}[h!] + \centering + \includegraphics[width=0.8\linewidth]{img/task2_3.png} + \end{figure} + + \textbf{Тест Шапиро-Уилка:} p-value = 0.949 + + \textbf{Не отвергаем $H_0$: остатки нормальны.} + + \textbf{Результаты:} + \begin{itemize} + \item Гистограмма: Распределение остатков близко к нормальному, совпадает с наложенной кривой $N(0, \sigma^2)$. + \item Q-Q график: Точки лежат вдоль линии $y=x$, что подтверждает нормальность. + \item Тест Шапиро-Уилка: гипотеза о нормальности не отвергается. + \end{itemize} + + \subsection{Пункт d} + Таблица ANOVA: + + \begin{verbatim} + df sum_sq mean_sq F PR(>F) + C(A) 1.0 478.108752 478.108752 631.694471 4.061068e-26 + C(B) 3.0 153.241356 51.080452 67.489330 1.051893e-15 + C(A):C(B) 3.0 178.558140 59.519380 78.639144 8.022881e-17 + Residual 40.0 30.274683 0.756867 NaN NaN + \end{verbatim} + + \textbf{Результаты ANOVA} + \begin{itemize} + \item Фактор A: + $$ + F = 631.69,\ p\text{-value} < 0.001 \ \rightarrow \ \text{значимо влияет на } Y. + $$ + + \item Фактор B: + $$ + F = 67.49,\ p\text{-value} < 0.001 \ \rightarrow \ \text{значимо влияет на } Y. + $$ + + \item Взаимодействие $A \times B$: + $$ + F = 78.64,\ p\text{-value} < 0.001 \ \rightarrow \ \text{значимо влияет на } Y. + $$ + + \item Вывод: + На уровне значимости $\alpha=0.02$ все факторы (A, B) и их взаимодействие \textbf{значимо} ($p < 0.02$). Это означает, что влияние фактора A на Y зависит от уровня фактора B, и наоборот. + \end{itemize} + + \subsection{Пункт e} + + Для выбора оптимальной модели используются критерии: + \begin{itemize} + \item AIC оценивает баланс между качеством подгонки модели и её сложностью, накладывая штраф за избыточное количество параметров. + \item BIC работает аналогично AIC, но применяет более строгий штраф за сложность, особенно при больших объемах данных. + \end{itemize} + + Сравниваем две модели: + \begin{enumerate} + \item Полная модель (с взаимодействием): + $$ + Y \sim A + b + A : B. + $$ + \item Аддитивная модель (без взаимодействия): + $$ + Y \sim A + B. + $$ + \end{enumerate} + + \begin{verbatim} + Модель AIC BIC + Полная 130.10 145.07 + Аддитивная 216.79 226.15 + \end{verbatim} + + \textbf{Вывод о сравнении моделей} + + \begin{itemize} + \item \textbf{Результаты AIC и BIC:} + \begin{itemize} + \item Полная модель имеет AIC = 130.10, в то время как аддитивная модель имеет AIC = 216.79. Это указывает на значительное преимущество полной модели. + \item Полная модель также имеет BIC = 145.07, а аддитивная модель — BIC = 226.15. Разница подтверждает выбор полной модели. + \end{itemize} + + \item \textbf{Заключение:} + \begin{itemize} + \item Полная модель \textbf{предпочтительнее}, так как она лучше соответствует данным, что подтверждается меньшими значениями AIC и BIC. + \item Аддитивная модель не учитывает взаимодействие факторов. + \end{itemize} + \end{itemize} + + \subsection{Пункт f} + + \textbf{1. Основные эффекты факторов A и B} + \begin{itemize} + \item \textbf{Фактор A:} + Оказал сильное статистически значимое влияние на $Y$ ($F=631.69, p<0.001$). + + + \item \textbf{Фактор B:} + Также значимо влияет на $Y$ ($F=67.49, p<0.001$). + \end{itemize} + + \textbf{2. Взаимодействие факторов $A \times B$} + \begin{itemize} + \item \textbf{Статистическая значимость:} + Взаимодействие значимо ($F=78.64, p<0.001$). + + \item \textbf{Визуальное подтверждение:} + График зависимости $Y$ от $A$ при фиксированных $B$ показывает пересечение линий (особенно для $B=4$), что указывает на неаддитивность эффектов. + \end{itemize} + + + \textbf{3. Выбор оптимальной модели} + + AIC/BIC: + + \begin{tabularx}{\textwidth}{|c|X|X|} + \hline + Модель & AIC & BIC \\ + \hline + Полная (с взаимодействием) & 130.10 & 145.07 \\ + \hline + Аддитивная & 216.79 & 226.15 \\ + \hline + \end{tabularx} + + Разница $\Delta AIC = 86.69$ и $\Delta BIC = 81.08$ явно указывает на преимущество полной модели. + + Аддитивная модель не учитывает взаимодействие, что приводит к потере информации. + + + \textbf{4. Нормальность остатков} + + \begin{itemize} + \item Тест Шапиро-Уилка: + $$p\text{-value} = 0.949 \implies \text{гипотеза о нормальности остатков не отвергается}.$$ + \item Графическая проверка: + Гистограмма остатков близка к нормальной форме. + \item Q-Q график показывает совпадение точек с линией $y = x$. + \end{itemize} + + \textbf{Рекомендации:} + Для прогнозирования $Y$ необходимо учитывать взаимодействие $A \times B$, так как его игнорирование приведет к систематической ошибке. + + + \textbf{Итоговый вывод} + \begin{enumerate} + \item Полная модель с взаимодействием предпочтительна по критериям AIC/BIC и объясняет данные лучше аддитивной. + \item Нормальность остатков подтверждена тестами и графиками. + \end{enumerate} + + \textbf{Рекомендации:} + \begin{itemize} + \item Проверить данные на наличие выбросов для уровня $B=4$. + \item Использовать полную модель для прогнозирования и анализа эффектов. + \end{itemize} +\end{document} \ No newline at end of file diff --git a/idz4/ИДЗ 4_1 Артём.ipynb b/idz4/ИДЗ 4_1 Артём.ipynb new file mode 100644 index 0000000..9a99f67 --- /dev/null +++ b/idz4/ИДЗ 4_1 Артём.ipynb @@ -0,0 +1,1265 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "05af2cce", + "metadata": {}, + "source": [ + "![Задача №1](1.png)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "a34b5583", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Размер X: 50\n", + "Размер Y: 50\n" + ] + }, + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    XY
    0412.33
    1316.61
    2612.47
    3214.36
    4113.21
    \n", + "
    " + ], + "text/plain": [ + " X Y\n", + "0 4 12.33\n", + "1 3 16.61\n", + "2 6 12.47\n", + "3 2 14.36\n", + "4 1 13.21" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Данные\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "data = {\n", + " 'Y': [12.33, 16.61, 12.47, 14.36, 13.21, 13.76, 13.93, 13.96, 15.96, 15.99, \n", + " 17.32, 14.10, 12.97, 13.60, 16.37, 16.11, 9.24, 15.51, 14.24, 17.23, \n", + " 15.14, 14.73, 15.52, 10.07, 21.27, 16.86, 13.98, 11.07, 13.70, 13.91, \n", + " 17.70, 14.08, 15.65, 13.14, 17.43, 18.79, 12.59, 15.99, 12.53, 16.03, \n", + " 11.63, 18.01, 15.33, 11.65, 10.32, 18.06, 17.83, 14.46, 13.13, 17.11],\n", + " 'X': [4, 3, 6, 2, 1, 3, 4, 3, 4, 2, 5, 4, 4, 4, 3, 4, 2, 2, 3, 3, \n", + " 2, 3, 4, 4, 2, 4, 4, 4, 5, 4, 3, 4, 3, 4, 2, 4, 3, 2, 3, 5, \n", + " 3, 4, 3, 4, 3, 1, 3, 1, 5, 6]\n", + "}\n", + "Y = np.array([12.33, 16.61, 12.47, 14.36, 13.21, 13.76, 13.93, 13.96, 15.96, 15.99, \n", + " 17.32, 14.10, 12.97, 13.60, 16.37, 16.11, 9.24, 15.51, 14.24, 17.23, \n", + " 15.14, 14.73, 15.52, 10.07, 21.27, 16.86, 13.98, 11.07, 13.70, 13.91, \n", + " 17.70, 14.08, 15.65, 13.14, 17.43, 18.79, 12.59, 15.99, 12.53, 16.03, \n", + " 11.63, 18.01, 15.33, 11.65, 10.32, 18.06, 17.83, 14.46, 13.13, 17.11])\n", + "X = np.array([4, 3, 6, 2, 1, 3, 4, 3, 4, 2, 5, 4, 4, 4, 3, 4, 2, 2, 3, 3, \n", + " 2, 3, 4, 4, 2, 4, 4, 4, 5, 4, 3, 4, 3, 4, 2, 4, 3, 2, 3, 5, \n", + " 3, 4, 3, 4, 3, 1, 3, 1, 5, 6])\n", + "\n", + "# Проверка размеров массивов\n", + "print(f\"Размер X: {len(X)}\")\n", + "print(f\"Размер Y: {len(Y)}\")\n", + "\n", + "Y = list(map(float, \"12.33, 16.61, 12.47, 14.36, 13.21, 13.76, 13.93, 13.96, 15.96, 15.99, 17.32, 14.10, 12.97, 13.60, 16.37, 16.11, 9.24, 15.51, 14.24, 17.23, 15.14, 14.73, 15.52, 10.07, 21.27, 16.86, 13.98, 11.07, 13.70, 13.91, 17.70, 14.08, 15.65, 13.14, 17.43, 18.79, 12.59, 15.99, 12.53, 16.03, 11.63, 18.01, 15.33, 11.65, 10.32, 18.06, 17.83, 14.46, 13.13, 17.11\".split(\", \")))\n", + "X = list(map(int, \"4, 3, 6, 2, 1, 3, 4, 3, 4, 2, 5, 4, 4, 4, 3, 4, 2, 2, 3, 3, 2, 3, 4, 4, 2, 4, 4, 4, 5, 4, 3, 4, 3, 4, 2, 4, 3, 2, 3, 5, 3, 4, 3, 4, 3, 1, 3, 1, 5, 6\".split(\", \")))\n", + "\n", + "df = pd.DataFrame({\"X\": X, \"Y\": Y})\n", + "\n", + "Y = df[\"Y\"]\n", + "X = df[\"X\"]\n", + "\n", + "data_len = len(df)\n", + "alpha = 0.02\n", + "h = 1.40\n", + "\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "e2bdb245", + "metadata": {}, + "source": [ + "## Пункт а)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "76cc48d6", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAN2tJREFUeJzt3Ql8VNXZx/EnkBAJmCABBCSEIFRWEVFQkU1ZShFFWxdQwcLrbhBxKyoKFUtrF61ABSmFlyr4dhEUrQgqEEAF2arSikQCqIgCSiKJhEjm/TwHJ86EJGSZuXfOvb/v5zOO905yc3IyzPznnOfcGxcIBAICAABgqVpuNwAAAKAmCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGfjSvHnzJC4uruR20kknyY9+9CO544475IsvvnC7eQCAKoivyhcDXvPLX/5SMjIy5PDhw7JmzRp5+umn5V//+pd88MEHkpSU5HbzAACVQJiBrw0ePFjOOecc8///8z//I6mpqfKHP/xBXnzxRRk+fLjbzQMAVALTTECIiy66yNzn5OSU7Dt48KCMGzdO0tLSJDExUdq0aSO/+c1vpLi4uORrtm3bZr63adOm5mv0a2+55Rb56quvzOOHDh2SevXqyZ133nncz/z000+ldu3aMnXq1LD9ffv2DZsKC950iiz0azp16lTh71TWMUJvegx15MgRefjhh6Vbt26SkpJi2turVy9ZsWJFybF27tx5wuPdcMMNYVN5GzZsKLdt+rODP788ixcvlp49e0qDBg1Mm84//3z529/+dtzXtWrVquRnB910001mCnHlypVh+1999VXp06ePnHzyyZKcnCznnnuuLFiwIKxdFf2O2g+lj6d9pe3TYw4ZMkS2bt0a9jXatvr168uOHTtk0KBB5mubN29uRgcDgcBxfRz6d1a33357WP+G9nGdOnVk3759YV//9ttvl7S39N9g3bp18uMf/9j8nXUEUvti7dq1YV8zadIk87379+8P26/HCm2ftudEz4lgf+mHBO0b/b3138npp58ujz76qBw9evS4vydQFYzMACE+/vhjc68jNKqgoMC80H/22Wdy8803S8uWLeWtt96SCRMmyOeffy5PPvmk+br8/Hxp0aKFDB061Lw56jTVjBkzzPctWbLEvIldfvnl8n//939m5EfDS9DChQvNm9m11157XHvatWsnDz74oPl/fVO56667qvw7/fWvfy35/9WrV8szzzwjTzzxhDRq1MjsO/XUU819Xl6e/PnPfzYjUjfeeKN88803MmfOHPPGu379ejnrrLOkcePGYcd74YUXZNGiRWH79A0qkjRMtW/fXkaMGCGFhYUmOFx99dUmcN5///3lft8jjzxi2q99HhqY9E149OjR0rFjR/N31JC0efNmWbp0qfkZQfr3LB0wdQpS/16h9HcfNWqU6ScNufqc0enKCy+80BxXQ1aQvmlriDjvvPPk8ccfNz9T2/ndd9+ZUFOe7OxsmT17drmP6/Pp2WefDXt+zJ071wQ5nUIN9eabb5oRSQ2t+rNr1aplvlbDuD4/unfvLlWh/y769+9fsn399deb5/oVV1xRsk+fN8G+138L48ePN/faFg3Q+tz77W9/W6WfC4QJAD40d+5c/SgceP311wP79u0LfPLJJ4Hnn38+kJqaGqhbt27g008/NV/36KOPBurVqxf46KOPwr7/F7/4RaB27dqB3bt3l/szbrvttkD9+vVLtl977TXzM1999dWwrzvzzDMDffr0Oe77e/bsGejXr1/Jdk5Ojvl+bXuQfl/Hjh2r/HvrsUr77rvvAoWFhWH7vv7668Cpp54aGD16dJnHe+SRR8zxKvpZ7777brnt0faX9btXpLi4OHDdddeZ/g/9PdLT0wOjRo0y/z9r1izzs6dNmxb2vQcPHgycfPLJgR49egS+/fbb4457on797W9/G9Z/33zzTaBBgwaBG2+8Mezr9u7dG0hJSQnbr23T783MzAz7mUOGDAnUqVPHPA/L+ztfddVVgU6dOgXS0tJKfsfQPh4+fHigc+fOJfvz8/MDycnJgREjRoT9DfTntW3bNjBo0KCw37egoCCQkZERGDBgwHF/22C7gvRYpdsXSh/T7y2L/pzSbr755kBSUlLg8OHDZX4PUBlMM8HX9BOlfmrUaaFrrrnGfFrUkYbTTjvNPP73v//dTB+ccsopZmQkeNPv00/ZWVlZYcfLzc01q6HeeOMNeeWVV6R3795hP0uH15977rmSfTqC895778l11113XNt02keH4k9E2xFsl35Pdemne52uUDqFplNkOmKgNUWbNm2q9nG1T7RtOtJTXTpNF/wdDxw4YKZc9PfWkaHSdCrjtttuk3vvvdesTgu1fPly045f/OIXZtQilE6HVJUeT6chdTQr9PmhfdmjR4+wKbqg0Dbpz9Rt/bu9/vrrZf6MjRs3muehjhLpKEpZdDTkww8/LJlO+uc//2mmkC6++OKwr9uyZYts377djEBpPwbbqyOL+rX6fA6dPlX6PAj93fTvWV1169Yt+X/9O+jx9N+XjmZp+4HqYpoJvqZTQbokOz4+3ky3nHHGGWFvGPrCr2EjOExe2pdffhm2rVMNWo+gdDpBpziC9Lg6laRTEPrirbUKGmz0TfXKK6887tj6Jpmenn7C30HfBILt05+hNT06fRA6ZVJZ//u//yu///3vzTGLiopK9uuKr+oKnYLQKR1949cpBa0ZqSx9w9e2lTX9UvrNWutpNOgE65XKmkY8UZ1RZenzI7TWqjSdcgylf5/WrVuH7dPnnypdhxOkwUvf8C+55JLjwlmQ/v21FuUvf/mLCZ96r1NfpcNPsL36WHk0rGh4D9J/E5GidUQPPfSQmV7SqaXSPxeoLsIMfE3rA4Krmcqin1IHDBgg9913X5mPB9+IgqZNm2Y+bf7nP/8xn6S1CFhrGYJGjhxp3si1qFXf1LXoVN+k9FN0aXv37jXh6ES0JiNYT6Gftp966inzSV3fNLU2o7K0nVrMOWzYMDOq0aRJk5LC5GAIqElg1HoXLcT93e9+Z/b/6U9/qvQxtP9DR690xEjrPkr797//bfbrKIP+Dvo9JyowrongKIbWzWjxd2kakmti2bJlZsRGi3lPROuA9PmVmZlpRli0/klrYMpqrz4HtQaqLDo6GUpHeUJD2UcffWRGxqpKw7nWn+mxtD5Ia6s0yOuon9Y+lR4RAqqCMANUQF9wdYojdHShIroqRukbqoYBfXPRAl4tYA2OCHTt2tWMyGiB6e7du00AKmuFkw7DB7+vIjrCEdo+/RSv02T6RliVMPOPf/zDBCCdugmdctFRnkgFRh090MChha9V0aFDB3MLCk57lS427ty5s5mS0ekMvdfVTDqyFpxSCn69Tu/pCFZNBY+nf+vKPEf0DVtXM4WGYA0HKrRQWGn5iY7KaDFtZf6O+pzT31OnS7X4WNtWOswE26uBorLPaZ0qDRaLB0fXqkODrIZtfX6FTr+GrhwEqouaGaACV111lflU/Nprr5X5SVNHCMoTXNKqIxKhdNREg4auhNJVU2WNMDz//PMVTl9UJPgJN3TFVGUEvz50mbBOmVVmVKCq7atK20ov29X2BetHdBQp1Nlnn23CnT6mIxM6dRO6SmjgwIFm6bR+f+lVPqG/d2XpyJkGg1/96ldh03JBpZdLq+nTp4f9TN1OSEg4rr5FnwMaxEqvqCqPjgJpeNbv0VGasugKJg00OjqmIb0y7Y2Usp5fWitUlRE6oDyMzAAV0KmKl156yUwF6RSMvhloseT7779vRjL0zVI/teobpi7D1pEXLdrVkQNd7nrmmWeaWyitZdFpEy00vvXWW80bWZAWD+tIiL4R6ydsXZp9IvqmFBzp0DoRnWbSY+ooSFXo76ifmnUkQL9XPzHPnDnTjIiU9cZXWRqGNNgFp5m0OPqee+6p9PfrlIbWGOkIj775aR2SLhWfOHFihcvA9W+h0xe//vWvTV/q30GDhy5L1xMk6iia/i20PkRHi/RnlFWXUxE9ntZAaUDVIKU/R+tXdMRNC8D1/Dih4UVHTvRvpTUrWiCsy8z16x544IHj6rI08OoS+arUrOg5W/Q5G1rzEioY8jRA69L0n//852YUT5+7Wqysv4+eSiAaLrjgAtMu/d3Hjh1rRv90eq46IRIojTADVECLdFetWmU+eeu0xfz5880Lvk4TTJ48uaTWRd8YXn75ZfNpWj+h6xuE1i7oNEHpIkwtNNYRAj1nib4JhtLaFH2z1zdqPQdKZezatatkdEenALQtGsDKq4koj4Y1rdOZNWuWGYnSEKN1NPp7lz7pXFXoG5fSlVJ6nh49r0jw3DmV8ZOf/MScv0XfZHU0RQOenj+mvNGHUFpsqqFTw4uGKh0dGDNmjJkW0pCjb/4a/PSY1TmHj9JApKvU9Hhai6KhTf/+Ot2nYSGU/nwNMxpiNXToKJGGV+2T0nSqTE9cVxXax6FTQmXRGiLtC/3dNWhpUNV6Hw1Xes6YaNFRSP03cvfdd5u/iwYbrWnSEanK1IYBFYnT9dkVfgWAiNPRDx3dKb0aB96lYVGDVU1GuQCUjZoZwGF65mCdWig9KgMAqB6mmQCHaA2KXv9GaxZ0aiOaQ/oA4CeMzAAO0dobHY3RUKOFpmWdlwQAUHXUzAAAAKsxMgMAAKxGmAEAAFbzfAGwnm10z5495nwO1bkqLgAAcJ5WwehlXfQ8TuVdMd43YUaDTFpamtvNAAAA1fDJJ5+Ya9n5OszoiEywM0Kv/BoJeqZXPeW4ns019JT0iCz62Rn0szPoZ2fQz/b3c15enhmMCL6P+zrMBKeWNMhEI8zo6e71uPxjiR762Rn0szPoZ2fQz97p58qUiFAADAAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wg5u3cn2/udx0ocLspAIAYRJhBzDpYcERGzlkvl0xfY7aHTFtttnMLitxuGgAghhBmELPGLtwia7P3h+3T7cyFm11rEwAg9hBmEJN27DskWdv3ydFAIGy/buv+nO+nngAAIMwgJu36quL6mJ0HCDMAgGMIM4hJ6Q2TKny8VWo9x9oCAIhthBnEpNaN60vvto2ldlxc2H7d1v0ZjQgzAIBjCDOIWdOGd5WebRqF7dNt3Q8AQFB8yf8BMSYlKUHmj+ku2XtzZeu6lfJKZi9p0zTF7WYBAGIMIzOIeempSWH3AACEIswAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACruRpmpk6dKueee66cfPLJ0qRJExk2bJhs27Yt7GsOHz4st99+u6Smpkr9+vXlpz/9qXzxxReutRkAAMQWV8PMqlWrTFB55513ZPny5VJUVCQDBw6U/Pz8kq+56667ZMmSJfL3v//dfP2ePXvkiiuucLPZAAAghsS7+cOXLl0atj1v3jwzQrNx40bp3bu35Obmypw5c2TBggVy0UUXma+ZO3eutG/f3gSg8847z6WWAwCAWOFqmClNw4tq2LChuddQo6M1/fv3L/madu3aScuWLeXtt98uM8wUFhaaW1BeXp651+PoLZKCx4v0cRGOfnYG/ewM+tkZ9LP9/VyVY8ZMmCkuLpZx48ZJz549pVOnTmbf3r17pU6dOtKgQYOwrz311FPNY+XV4UyePPm4/cuWLZOkpKSotF2nyBB99LMz6Gdn0M/OoJ/t7eeCggL7wozWznzwwQeyZs2aGh1nwoQJMn78+LCRmbS0NFOLk5ycLJFOjfoHHDBggCQkJET02PgB/ewM+tkZ9LMz6Gf7+zk4s2JNmLnjjjvk5ZdflqysLGnRokXJ/qZNm8qRI0fk4MGDYaMzuppJHytLYmKiuZWmnRytJ3Q0j40f0M/OoJ+dQT87g362t5+rcjxXVzMFAgETZBYtWiRvvvmmZGRkhD3erVs388u88cYbJft06fbu3bvl/PPPd6HFAAAg1sS7PbWkK5VefPFFc66ZYB1MSkqK1K1b19yPGTPGTBtpUbBOE2VmZpogw0omAADgeph5+umnzX3fvn3D9uvy6xtuuMH8/xNPPCG1atUyJ8vTVUqDBg2SP/3pT660FwAAxJ54t6eZTuSkk06SGTNmmBsAAEBpXJsJAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMADho5/58c7/rQIHbTQE8gzADAA44WHBERs5ZL5dMX2O2h0xbbbZzC4rcbhpgPcIMADhg7MItsjZ7f9g+3c5cuNm1NgFeQZgBgCjbse+QZG3fJ0cDgbD9uq37c76fegJQPYQZAIiyXV9VXB+z8wBhBqgJwgwARFl6w6QKH2+VWs+xtgBeRJgBgChr3bi+9G7bWGrHxYXt123dn9GIMAPUBGEGABwwbXhX6dmmUdg+3db9AGomvobfDwCohJSkBJk/prtk782VretWyiuZvaRN0xS3mwV4AiMzAOCg9NSksHsANUeYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDM1sHN/vrnfdaDA7aYAAOBbroaZrKwsGTp0qDRv3lzi4uJk8eLFYY8fOnRI7rjjDmnRooXUrVtXOnToIDNnzhS3HSw4IiPnrJdLpq8x20OmrTbbuQVFbjcNQIzjQxDgsTCTn58vXbp0kRkzZpT5+Pjx42Xp0qXy7LPPyn//+18ZN26cCTcvvfSSuGnswi2yNnt/2D7dzly42bU2AYhtfAgCPBpmBg8eLFOmTJHLL7+8zMffeustGTVqlPTt21datWolN910kwk/69evF7fs2HdIsrbvk6OBQNh+3db9Od9/6gKAUHwIAqInXmLYBRdcYEZhRo8ebaaiVq5cKR999JE88cQT5X5PYWGhuQXl5eWZ+6KiInOrqZ378iSx9rEgk1gr/F7lfJkrLVLq1Pjn4AfBv1sk/n4oH/0c3amldTu+lPhapV83is3+7L25kp6a5HYzPYXns/39XJVjxgUCpYYYXKI1M4sWLZJhw4aV7NNQoqMx8+fPl/j4eKlVq5bMnj1bRo4cWe5xJk2aJJMnTz5u/4IFCyQpiRcLAABsUFBQICNGjJDc3FxJTk62d2Rm2rRp8s4775jRmfT0dFMwfPvtt5tRmv79+5f5PRMmTDC1NqEjM2lpaTJw4MATdkZl3fzXjfLOjgMSH1csj55TLBM31JLvArXkvNapMuv6bhH5GQhP58uXL5cBAwZIQkKC283xrI+/yJVtG9dKu24XSutTI/NvBT+MzARrZXREJvi6UVgcZ/a9ktmLkZkI43XD/n4OzqxURsyGmW+//VYeeOABM1ozZMgQs+/MM8+ULVu2yO9+97tyw0xiYqK5laadHKmOfuKabmaeW4eHlb4g9WjdWJ64piv/aKIokn9DhBemaj2HPp8f7y5y6dNvS4/WTWTa8K6SkkR/R0LbZg1Mnx6rmSkued34rriW9GzTSNo0TXG7iZ7F64a9/VyV48XseWaCNS46tRSqdu3aUlx87MXALfoCP39Md/NpSum9bvPCDxtRmOoMDYcaXELptu4HUDOujszoeWSys7NLtnNycszIS8OGDaVly5bSp08fuffee805ZnSaadWqVaZ+5g9/+IPEAh0W3vr9PWCj4Oq80i8GoavzMhrVc619XhL8EKTFvlvXrTQfghiRATwQZjZs2CD9+vUr2Q7Wuuhy7Hnz5snzzz9vamCuvfZa+eqrr0ygeeyxx+SWW25xsdWAd+z6quITt+08QJiJND4EAR4LM3r+mIoWUzVt2lTmzp3raJsAP0lvWPEbaqtUggyA2BezNTMAoq914/pySjm1XrqfURkANiDMAD6vmfm6nNPp637OaA3ABoQZwMcqUzMDALGOMAP4GDUzALyAMAP4vGamd9vGUjvu2Jlog3Rb91MzA8AGhBlYcSp4tetAxVMiqB5O5gbAdjF7OQOg9Gn2h0xbzWn2o4CTuQGwHSMziFmcZt9ZwZO4cTI3ALYhzCCmT7Ovp9WXck6zDwDlYXraXwgziEksGQZQ3enpkXPWyyXT15htnZ7W7dxyzqcEbyDMICaxZBhAdTA97U+EGcQklgw7j2F52I7paf8izCBmsWTYGQzLwyuYnvYvwgxifsmwLhVWeq/bLMuOLIbl4RVMT/sXYQYxjyXD0cOwPLyE6Wn/Tk8TZgAfY1geXsP0tD+npwkzgI8xLA+vYXran9PThBnAxxiWh1cxPe2v6WnCDOBzDMsDsH16mgtNAj7HhSYB2D49zcgMAINheQC2Tk8TZgDAh0tZAS9NTzPNBAAOLWXVFSDrdnwpj3c/tpS1R+sm5sWflTawTUqMTU8zMgMAPlzKCnhpepowAwA+XMoKeAlhBgB8uJQV8BLCDAD4cCkr4CWEGQDw4VJWwEsIMwAMlgz7aykr4CUszQZ8jiXD/lzKCngJIzOAz7Fk2J9LWQEvIcwAPsaSYQBeQJgBfIwlwwC8gDAD+BhLhgF4AWEG8DGWDAPwAsIM4HMsGQZgO8IM4HMBCS/+BQDbEGYAn2NpNgDbEWYAH2NpNgAvIMwAPsbSbABeQJgBfIyl2QC8gDAD+BhLswF4AWEG8DmWZjuLq5MDkcdVswGf42rOzuDq5ED0MDIDwOBqztHFEnhnMQLmL66GmaysLBk6dKg0b95c4uLiZPHixcd9zX//+1+59NJLJSUlRerVqyfnnnuu7N6925X2wh1rt+8z929/HP5GANiCJfDOjoCNnLNeLpm+xmzrCJhu5xYUud00eDXM5OfnS5cuXWTGjBllPv7xxx/LhRdeKO3atZOVK1fKe++9JxMnTpSTTjrJ8bbCebsO5EvXXy6Tm5/bZLZv/OtGs/0Jn7RgGZbAO4cRMH9ytWZm8ODB5laeBx98UH7yk5/I448/XrLv9NNPd6h1cNuwGWvl64IiSaz9wz7dvnTGGtn88EA3mwZUCUvgnR0BK/3mFjoCxgo9b4rZAuDi4mJ55ZVX5L777pNBgwbJ5s2bJSMjQyZMmCDDhg0r9/sKCwvNLSgvL8/cFxUVmVskBY8X6ePi2NRSQeERE2QSax0bmg/e6/6sDz+X808PX4GDmuH5HD1pDRKlaf14+frbouOez6fUTZAWKXXo9wjYuS9PEmuH92/wXuV8mWv6Gna8blTlmHGBQKlJXJdozcyiRYtKgsrevXulWbNmkpSUJFOmTJF+/frJ0qVL5YEHHpAVK1ZInz59yjzOpEmTZPLkycftX7BggTkWAACIfQUFBTJixAjJzc2V5ORkO8PMnj175LTTTpPhw4ebIBKkxcBaCLxw4cJKj8ykpaXJ/v37T9gZ1UmNy5cvlwEDBkhCAksrIz0yE6yV0U9Wj55TLBM31JLC4mMnd5t9fTdGZiKM53P0rN6+T26t4Pn89LVnS6+2jV1upTfc/NeN8s6OAxIfV1zSz98Fasl5rVNl1vXd3G6e5xRF8XVD378bNWpUqTATs9NM+gvEx8dLhw4dwva3b99e1qw5VqVelsTERHMrTTs5Wi/Q0Ty2X/Xt0FySEj8wNTJB+sJfeDROTklKkN7tmrnaPi/j+Rx5rRonm+duqODzWWU0SaHPI+SJa7qZYl89n0+wn3u0bixPXNOVPrbsdaMqx4vZ88zUqVPHLMPetm1b2P6PPvpI0tPTXWsXnPPS7Rea4BJKt3U/YBMuG+H8SSD15I9K73WbExN6m6sjM4cOHZLs7OyS7ZycHNmyZYs0bNhQWrZsKffee69cffXV0rt375KamSVLlphl2vC+tNQks2pJi32/3rbeTC0xIgNb6Zl+Q0cMFJeNiB49+eNWTgLpG66GmQ0bNpiQEjR+/HhzP2rUKJk3b55cfvnlMnPmTJk6daqMHTtWzjjjDPnnP/9pzj0D/9DamH9tO3YP2IrLRgAeDTN9+/aVE9Ufjx492twAOHf6d95ko4cRAyDyYrZmBoAzOP07ANsRZgCf4/TvAGxHmAF8jAsgAvACwgysquVAZHEBROfxfAYijzCDmEUtR/RxAUTn8HwGoocwg5hFLUf0cTI35/B8BqKHMIOYRC2Hc/SkbXrytlCczC2yeD4D0RWz12aCv1WmloNRg8jgZG7Rx/MZiC5GZhCTqOVw3olOYInq4/kMxEiY2bNnT3RbAoSglsM5FKZGH89nIEbCTMeOHWXBggXRbQ0QgloOZ1CY6gyez0AM1Mw89thjcvPNN8uiRYtk1qxZ5srWQDRRy+FcYWrpF4PQwlRGDSKD5zMQAyMzt912m7z33nty4MAB6dChgyxZsiSKzQJ+ELwgHxfmizxOmuc8ns+Ay6uZMjIy5M0335Tp06fLFVdcIe3bt5f4+PBDbNq0KdJthM9xNefooTAVgC+XZu/atUteeOEFOeWUU+Syyy47LswAkSxM1XqOdTu+lMe7HytM7dG6iakx0CF7RK4w9VjNTCCsMFXrOZhiAmCDKiWR2bNny9133y39+/eXrVu3SuPGjaPXMvhesDA1vtbxhalae4DI0HCofaqhMYjCVACeDDM//vGPZf369WaKaeTIkdFtFXyPwlTnUJgKwDdh5ujRo6YAuEWLFtFtEcAZU12hBalbKUwF4OUws3z58ui2BAhBYSoAoLK4nAFiEmdMBQBUFmEGMYszpgIAKoN11YhZFKYCACqDkRnEPM6YCgCoCGEGAABYjTADAACsRpgBcNw1sADAJoQZwOf0Glgj56yXS6avMdt6DSzdzi0ocrtpAFAphBnA54LXwAoVvAYWANiAMAP4WPAaWHrNKynnGlgAEOsIM4CPVeYaWAAQ6wgzgI9xDSwAXkCYAXyMa2AB8ALCTA2wlBVewDWwANiOazNVcymrrgBZt+NLebz7saWsPVo3MS/+ej0hwCZcAwuA7RiZqQaWssKLuAYWAFsRZqqIpazOYzoPAFARwkwVsZTVOZyZFgBQGYSZKmIpq3OYzgMAVAZhpopYyuoMpvOcx3QeAFsRZqqBpazRx3Sec5jOA2A7wkwNlrLqElal97rNsuzIYTrPOUznAbAdYaYGWMoaPUznOYPpPABeQJhBzGI6L/qYznMetUlA5HEGYMQszkwbfUznOYczhwPRw8gMYh7TedHDdJ5zbn12k5m6C6Xbtzy70bU2AV7hapjJysqSoUOHSvPmzSUuLk4WL15c7tfecsst5muefPJJR9sIeB3Tec7UJr2940CZj+l+apMAi8NMfn6+dOnSRWbMmFHh1y1atEjeeecdE3oARGc675nrzjbbs6/vxuq8CFuX81WFj79TTtABYEHNzODBg82tIp999plkZmbKa6+9JkOGDHGsbYBfazlu/OtGajkiLny1WGnhk3wAPFUAXFxcLNdff73ce++90rFjx0p9T2FhobkF5eXlmfuioiJzi6Tg8SJ9XISjn6Nr/PObZEPOAUmsdewNV+835OyTu57fKLOu7+Z28zzhnLQUSaz9Q/+G3pvHW6bw/I4wXjfs7+eqHDMuECh1ggmXaD2MTicNGzasZN/UqVNlxYoVZlRGH2/VqpWMGzfO3MozadIkmTx58nH7FyxYIElJFJACAGCDgoICGTFihOTm5kpycrKdIzMbN26UP/7xj7Jp0yYTZCprwoQJMn78+LCRmbS0NBk4cOAJO6M6qXH58uUyYMAASUhgOD5a6OfoWb19n9z63KaSkYJHzymWiRtqSWHxsX9zT197tvRq29jlVtpv5qpsmb7i43L7eexFbeSm3qe73Epv4XXD/n4OzqxURsyGmdWrV8uXX34pLVu2LNl39OhRufvuu82Kpp07d5b5fYmJieZWmnZytJ7Q0Tw2fkA/R16rxslSeDT8w4K+wQb3ZTRJoc8j4EBBcYX9vC//KP0cJbxu2NvPVTlezJ5nRmtl3nvvPdmyZUvJTVczaf2MTjsBqDnOM+OMfmdUPLp1cfsmjrUF8CJXR2YOHTok2dnZJds5OTkmtDRs2NCMyKSmph6X0po2bSpnnHGGC60FvGnKsI5y2Yy1UlB4pGRfct14eWxYJ1fb5SV9zmgiKXUTJPfb4wsadT9TedG9bARnDvc+V0dmNmzYIF27djU3pbUu+v8PP/ywm80CfOWhxVsl79vvwvbp9oOLP3CtTV708h0Xyimllrrrtu5HZE81MHLOerlk+hqzrZeN0O3cAlY1eZmrIzN9+/aVqiymKq9OBkDNrppd+sUg9KrZTDVFRlpqkmx+eKBkffi5fL1tvTk5Ye92zdxulufoOZPWZu+X+JCP6rqduXCzORkkvClma2YARB9XzXZes5S65r55A04VEa1wrmFcygnn8CbCDOBjXDXbOUx/RB/h3L8IM4CPsZrJ+emPUMHpD0QG4dy/CDOAz3HV7Ohj+sMZhHP/IswAPhe8avYrmb3Mtt5z1ezIYvrDOYRzf4rZMwADcFZ6apJs/f4ekcX0h/PhPHtvrmxdt9KEc84z432MzABAlDH94bxgKCec+wNhBgAcwPQHED1MMwGAA5j+AKKHkRkAcBDTH0DkEWYAAIDVCDMRuiorAABwB2GmGjgtOQAAsYMwUw2clhxAdTGi6wz62V8IM1XEackBVAcjus6gn/2JMFNFnJYcQHUwousM+tmfCDNVxGnJAVQVI7rOoJ/9izBTRZyWHEBVMaLrDPrZvwgz1cBpyQFUBSO6zqCf/YswU4PTkuvpyJXe67buB4CyRnQvOD21zMd0PyO6kcHIuX8RZmqA05IDqKxSZRwn3I/qYeTcn7jQJAA4UJj69o4DZT6m+7UwlVGDyOCCnv7EyAwARBmFqc5j5NxfCDMAEGUUpgLRRZgBgCijMBWILsIMADiAwlQgeigABgAHUJgKRA8jMwDgIApTgcgjzAAwdn5/3ZpdBypeeQMAsYYwA/jcwYIjMnLOerlk+hqzPWTaarOdW1DkdtMAoFIIM4DPjV24RdZm7w/bp9uZCze71iYAqArCDODzM9Nmbd8nR0udU1+3db+emRYAYh1hBvAxzkwLwAu1doQZwMdO9AIQXyv8JG8AEIu1doQZwMeKT/D4d8Vc0hlA7NfaEWYAH+OaQQC8UGtHmAF8jGsG+bfGAPBSrR1hBvA5rhnkzxoDwEsjuoQZwOeC1wzSawUpvddt3Q/v1hgAXhrRJcwAMLhmkL9qDAAvjehy1WwAiIEaA+qTYJOUGLsKPCMzAODDGgPASyO6hBkA8GGNAeAlhBkA8GGNAeAl1MwAgA9rDAAvcXVkJisrS4YOHSrNmzeXuLg4Wbx4ccljRUVFcv/990vnzp2lXr165mtGjhwpe/bscbPJAOCJGgPAS1wNM/n5+dKlSxeZMWPGcY8VFBTIpk2bZOLEieb+hRdekG3btsmll17qSlsBAEBscnWaafDgweZWlpSUFFm+fHnYvunTp0v37t1l9+7d0rJlS4daCQAAYplVNTO5ublmOqpBgwblfk1hYaG5BeXl5ZVMW+ktkoLHi/RxEY5+dgb97Az62Rn0s/39XJVjxgUCpU5J6RINKYsWLZJhw4aV+fjhw4elZ8+e0q5dO3nuuefKPc6kSZNk8uTJx+1fsGCBJCUxRw0AgA203GTEiBFmICM5Odn+MKPp7Kc//al8+umnsnLlygp/qbJGZtLS0mT//v0n7Iyq0nbpVNiAAQMkIYHr2EQL/ewM+tkZ9LMz6Gf7+1nfvxs1alSpMBNvQ0ddddVVsmvXLnnzzTdP+AslJiaaW2naydF6Qkfz2PgB/ewM+tkZ9LMz6Gd7+7kqx4u3Ichs375dVqxYIampqW43CQAAxBhXw8yhQ4ckOzu7ZDsnJ0e2bNkiDRs2lGbNmsnPfvYzsyz75ZdflqNHj8revXvN1+njderUcbHlAAAgVrgaZjZs2CD9+vUr2R4/fry5HzVqlCnkfemll8z2WWedFfZ9OkrTt29fh1sLAABikathRgNJRfXHMVKbDPjCzv355n7XgQJOsx9F9DMQeVxoEvC5gwVHZOSc9XLJ9DVme8i01WY7t4Dzc0QS/QxED2EG8LmxC7fI2uz9Yft0O3PhZtfa5EX0MxA9hBnAx3bsOyRZ2/fJ0VJTurqt+3O+nxJBzdDPQHQRZgAf2/VVQYWP7zzAm2wk0M9AdBFmAB9Lb1jxJT5apdZzrC1eRj8D0UWYAXysdeP60rttY6kdFxe2X7d1f0Yj3mQjgX4GooswA/jctOFdpWebRmH7dFv3I3LoZyB6YvpyBgCiLyUpQeaP6S7Ze3Nl67qV8kpmL85/EgX0MxA9jMwAMNJTk8LuER30MxB5hBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgDAQTu/v6jkrgMVX68JQOURZgDAAQcLjsjIOevlkulrzPaQaavNdm5BkdtNA6xHmAEAB4xduEXWZu8P26fbmQs3u9YmwCsIMwAQZTv2HZKs7fvkaCAQtl+3dX/O91NPAKqHMAMAUbbrq4rrY3YeIMwANUGYAYAoS29Y8XWYWqXWc6wtgBcRZgAgylo3ri+92zaW2nFxYft1W/dnNCLMADVBmAEAB0wb3lV6tmkUtk+3dT+Amomv4fcDACohJSlB5o/pLtl7c2XrupXySmYvadM0xe1mAZ7AyAwAOCg9NSnsHkDNEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDABj5/58c7/rQIHbTQGAKiHMAD53sOCIjJyzXi6ZvsZsD5m22mznFhS53TQAqBTCDOBzYxdukbXZ+8P26Xbmws2utQkAqoIwA/jYjn2HJGv7PjkaCITt123dn/P91BMAxDLCDOBju76quD5m5wHCDIDYR5gBfCy9YVKFj7dKredYWwCguggzgI+1blxferdtLLXj4sL267buz2hEmAEQ+wgzgM9NG95VerZpFLZPt3U/Io8l8IDHwkxWVpYMHTpUmjdvLnFxcbJ48eKwxwOBgDz88MPSrFkzqVu3rvTv31+2b9/uWnsBL0pJSpD5Y7rLK5m9zLbe67buR+SwBB7waJjJz8+XLl26yIwZM8p8/PHHH5ennnpKZs6cKevWrZN69erJoEGD5PDhw463FfC69NSksHtEFkvggeiJFxcNHjzY3MqiozJPPvmkPPTQQ3LZZZeZffPnz5dTTz3VjOBcc801DrcWAGq2BL70i27oEnjqkwAP1szk5OTI3r17zdRSUEpKivTo0UPefvttV9sGAFXBEnjAwyMzFdEgo3QkJpRuBx8rS2FhobkF5eXlmfuioiJzi6Tg8SJ9XISjn51BP0dPi+Q6klj72IkJE2uF36u0lET6PcJ4Ptvfz1U5ZsyGmeqaOnWqTJ48+bj9y5Ytk6Sk6NQCLF++PCrHRTj62Rn0c3Q83j18+9Fzikv+f+u6lbLV+Sb5As9ne/u5oKDA/jDTtGlTc//FF1+Y1UxBun3WWWeV+30TJkyQ8ePHh43MpKWlycCBAyU5OTniqVH/gAMGDJCEBFZ+RAv97Az6Obryvi2Se//xnmzI2WeCzMQNteScjMby25+dKcl16e9I4/lsfz8HZ1asDjMZGRkm0Lzxxhsl4UV/MV3VdOutt5b7fYmJieZWmnZytJ7Q0Tw2fkA/O4N+jo7UhAT5y+jzJHtvrhmJeeH23tKmaYrbzfI8ns/29nNVjudqmDl06JBkZ2eHFf1u2bJFGjZsKC1btpRx48bJlClTpG3btibcTJw40ZyTZtiwYW42GwCqTZe+65QSS+CByHE1zGzYsEH69etXsh2cHho1apTMmzdP7rvvPnMumptuukkOHjwoF154oSxdulROOukkF1sNAABiiathpm/fvuZ8MuXRswL/8pe/NDcAAACrzjMDAABQGYQZAABgNcIMAACwGmEGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYxb+f+fHO/60CB200BAMQgwgxi1sGCIzJyznq5ZPoasz1k2mqznVtQ5HbTAAAxhDCDmDV24RZZm70/bJ9uZy7c7FqbAACxhzCDmLRj3yHJ2r5PjgYCYft1W/fnfD/1BAAAYQYxaddXFdfH7DxAmAEAHEOYQUxKb5hU4eOtUus51hYAQGwjzCAmtW5cX3q3bSy14+LC9uu27s9oRJgBABxDmEHMmja8q/Rs0yhsn27rfgAAguJL/g+IMSlJCTJ/THfJ3psrW9etlFcye0mbpiluNwsAEGMYmUHMS09NCrsHACAUYQYAAFiNMAMAAKxGmAEAAFYjzAAAAKsRZgAAgNUIMwAAwGqEGQAAYDXCDAAAsBphBgAAWI0wAwAArOb5azMFAgFzn5eXF/FjFxUVSUFBgTl2QkJCxI+PY+hnZ9DPzqCfnUE/29/Pwfft4Pu4r8PMN998Y+7T0tLcbgoAAKjG+3hKSsUXGY4LVCbyWKy4uFj27NkjJ598ssTFxUU8NWpI+uSTTyQ5OTmix8YP6Gdn0M/OoJ+dQT/b388aTzTING/eXGrVquXvkRntgBYtWkT1Z+gfkH8s0Uc/O4N+dgb97Az62e5+PtGITBAFwAAAwGqEGQAAYDXCTA0kJibKI488Yu4RPfSzM+hnZ9DPzqCf/dXPni8ABgAA3sbIDAAAsBphBgAAWI0wAwAArEaYAQAAViPMVENWVpYMHTrUnJVQzyq8ePFit5vkOVOnTpVzzz3XnLm5SZMmMmzYMNm2bZvbzfKkp59+Ws4888ySk16df/758uqrr7rdLE/79a9/bV47xo0b53ZTPGfSpEmmb0Nv7dq1c7tZnvTZZ5/JddddJ6mpqVK3bl3p3LmzbNiwwZW2EGaqIT8/X7p06SIzZsxwuymetWrVKrn99tvlnXfekeXLl5uLmQ0cOND0PSJLz5Ctb64bN240L0QXXXSRXHbZZbJ161a3m+ZJ7777rsyaNcsESERHx44d5fPPPy+5rVmzxu0mec7XX38tPXv2NBeX1A8///nPf+T3v/+9nHLKKa60x/OXM4iGwYMHmxuiZ+nSpWHb8+bNMyM0+obbu3dv19rlRTrKGOqxxx4zozUaJPVNAZFz6NAhufbaa2X27NkyZcoUt5vjWfHx8dK0aVO3m+Fpv/nNb8w1mebOnVuyLyMjw7X2MDIDK+Tm5pr7hg0but0UTzt69Kg8//zzZgRMp5sQWTraOGTIEOnfv7/bTfG07du3mzKA1q1bm/C4e/dut5vkOS+99JKcc845cuWVV5oPml27djUh3S2MzMCKK59rbYEOaXbq1Mnt5njS+++/b8LL4cOHpX79+rJo0SLp0KGD283yFA2JmzZtMtNMiJ4ePXqYkdwzzjjDTDFNnjxZevXqJR988IGpwUNk7Nixw4zgjh8/Xh544AHzvB47dqzUqVNHRo0aJU4jzMCKT7P6QsS8d/ToC/+WLVvMCNg//vEP82KkdUsEmsj45JNP5M477zT1XyeddJLbzfG00BIArUvScJOeni5/+9vfZMyYMa62zWsfMs855xz51a9+ZbZ1ZEZfp2fOnOlKmGGaCTHtjjvukJdffllWrFhhClURHfppqk2bNtKtWzezkkwL3P/4xz+63SzP0FqvL7/8Us4++2xTz6E3DYtPPfWU+X+d3kN0NGjQQH70ox9Jdna2203xlGbNmh33Yad9+/auTekxMoOYpJcMy8zMNNMdK1eudLWwzK+fugoLC91uhmdcfPHFZiov1M9//nOzZPj++++X2rVru9Y2PxRdf/zxx3L99de73RRP6dmz53Gny/joo4/MKJgbCDPV/McRmvJzcnLMEL0Wp7Zs2dLVtnlpamnBggXy4osvmnnuvXv3mv0pKSnmfAaInAkTJpiheX3ufvPNN6bfNUC+9tprbjfNM/Q5XLreq169eub8HNSBRdY999xjVujpm+qePXvMFZ01LA4fPtztpnnKXXfdJRdccIGZZrrqqqtk/fr18swzz5ibK/Sq2aiaFStW6JXGj7uNGjXK7aZ5Rln9q7e5c+e63TTPGT16dCA9PT1Qp06dQOPGjQMXX3xxYNmyZW43y/P69OkTuPPOO91uhudcffXVgWbNmpnn82mnnWa2s7Oz3W6WJy1ZsiTQqVOnQGJiYqBdu3aBZ555xrW2xOl/3IlRAAAANUcBMAAAsBphBgAAWI0wAwAArEaYAQAAViPMAAAAqxFmAACA1QgzAADAaoQZAABgNcIMAKvoRRn1NOpXXHFF2H694ndaWpo8+OCDrrUNgDs4AzAA6+gF7c466yyZPXu2XHvttWbfyJEj5d///re8++675irgAPyDMAPASk899ZRMmjRJtm7dai5yd+WVV5og06VLF7ebBsBhhBkAVtKXrosuushcEfn999+XzMxMeeihh9xuFgAXEGYAWOvDDz+U9u3bS+fOnWXTpk0SHx/vdpMAuIACYADW+stf/iJJSUmSk5Mjn376qdvNAeASRmYAWOmtt96SPn36yLJly2TKlClm3+uvvy5xcXFuNw2AwxiZAWCdgoICueGGG+TWW2+Vfv36yZw5c0wR8MyZM91uGgAXMDIDwDp33nmn/Otf/zJLsXWaSc2aNUvuueceUwzcqlUrt5sIwEGEGQBWWbVqlVx88cWycuVKufDCC8MeGzRokHz33XdMNwE+Q5gBAABWo2YGAABYjTADAACsRpgBAABWI8wAAACrEWYAAIDVCDMAAMBqhBkAAGA1wgwAALAaYQYAAFiNMAMAAKxGmAEAAFYjzAAAALHZ/wN/floTsYbd3AAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Строим графически результаты эксперимента\n", + "df.plot(kind=\"scatter\", x=\"X\", y=\"Y\", grid=True, title = \"Результаты эксперимента\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "9ee4a1cb", + "metadata": {}, + "source": [ + "### Формулировка линейной регрессионной модели\n", + "Линейная регрессионная модель зависимости $Y$ от $X$ имеет вид:\n", + "$$\n", + "Y = \\beta_1 + \\beta_2 X + \\epsilon,\n", + "$$\n", + "где:\n", + "- $\\beta_1$ — параметр сдвига,\n", + "- $\\beta_2$ — параметр масштаба,\n", + "- $\\epsilon$ — случайная ошибка.\n" + ] + }, + { + "cell_type": "markdown", + "id": "24a6df07", + "metadata": {}, + "source": [ + "### Построение МНК-оценок параметров\n", + "Метод наименьших квадратов (МНК) используется для нахождения оценок $\\hat{\\beta_1}$ и $\\hat{\\beta_2}$, которые минимизируют сумму квадратов остатков." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "161fc934", + "metadata": {}, + "outputs": [], + "source": [ + "# import statsmodels.api as sm\n", + "# # МНК оценки параметров линейной модели\n", + "# X_with_const = sm.add_constant(X)\n", + "# linear_model = sm.OLS(Y, X_with_const)\n", + "# linear_results = linear_model.fit()\n", + "\n", + "# # Построение линии регрессии\n", + "# # x_line = np.linspace(min(X), max(X), 100)\n", + "# # y_line = linear_results.params[0] + linear_results.params[1] * x_line\n", + "# # plt.plot(x_line, y_line, 'r', label=f'Y = {linear_results.params[0]:.4f} + {linear_results.params[1]:.4f}X')\n", + "# # plt.legend()\n", + "# # plt.show()\n", + "\n", + "# print(\"a) Линейная регрессионная модель:\")\n", + "# print(f\"β₁ (сдвиг) = {linear_results.params[0]:.4f}\")\n", + "# print(f\"β₂ (масштаб) = {linear_results.params[1]:.4f}\")\n", + "# print(linear_results.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "cd0ce073", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "β₁ = 15.5869 β₂ = -0.2522\n", + "\n", + "R² линейной модели: 0.0144\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAIjCAYAAAA9VuvLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUvtJREFUeJzt3Ql0VOX5x/EnZCMLSYSwRYLGSgWVIG5URQRlETUVxQ2t4FY3QBEXxGoFRQFb6wKpWutfahWsiqDYFsUFAm6ABHFBAYkCIkjQJCSBJJD8z/PipDM3k0wmJHPvnfl+zpkzufdOMu9MLsz95XmXqJqamhoBAAAAANRq9b8vAQAAAACKoAQAAAAAFgQlAAAAALAgKAEAAACABUEJAAAAACwISgAAAABgQVACAAAAAAuCEgAAAABYEJQAAAAAwIKgBABh5Pnnn5dvv/22dnvWrFny/fff29omAADciKAEAA3QoBEVFeX3dvTRR4vTLF26VO644w4Tlt58800ZPXq0tGrFf/XwVVVVJT179pRf/epXsnv37jrH9fxJTEyUCy+8UOy0aNEi829t8uTJdY4VFBSYNl5wwQW2tA1A+OPTEwAa4b777pN//vOftbfu3buLE91yyy2Sl5cnWVlZcuaZZ8r1118vnTt3trtZcJjY2Fj529/+ZsLG/fffX+f4mDFjJC4uTh5//HGx06BBg+TSSy+VqVOnyrp163yO3XjjjeZ12N1GAOErxu4GAICT1dTUmPuzzjpLjjvuuNr9f//736WwsFCcRgPcN998I59//rmkp6ebigHgz0knnWSC9J///Ge57LLL5KijjjL7586dK//+97/lr3/9qyNC9iOPPCL//e9/TVvfffdds+/FF1+UhQsXmpCUkZFhdxMBhCkqSgAQoIuSio6ODvhY7SI0adIkn31/+tOfzP7+/fvX7lu8eLHZ98orr9T5GcnJyXLFFVf47CsqKpJx48ZJZmamxMfHy+GHHy7Tp0+X6upqn65S+jO1q2BSUpL06dPHhCTteqf7vX+mpzvhypUrfZ5Hg5/1NXz33XfmL/dHHHGEJCQkSLt27Ux3LO9xUB75+fmmitW+fXufLornnHNOg++bp+16wa4XxYcccoh5rtNOO80EPquvvvrKdLdq27attG7dWo4//nh5/fXXG91lcsuWLeYx+p7o+71x40YZMmSIed/0olurh56A7KHv9aOPPmrChD5nx44d5brrrpOff/65Tvv0ol7b3qZNG0lJSZETTjhBZs+e7fOYjz/+2ITvgw46yDxvdna2PPbYY7XHtW2HHnqoz/ds3rzZvC/6Grzf/71798qUKVPk17/+tTk/vF+r9XdspZUaDdQaQvQ1l5aWmnPNE6IC+fHHH+Xqq68274e+L7169ZJ//OMfdX63Dd2s57tVhw4dzPn+3nvvmZ+t/x60cqrvq57fANBSqCgBQAMqKyvNvXZDCpZe0OmF6IEoLy83F906IYNemHft2lU++OADmThxovzwww/m4r0+GzZskKeffvqAnn/FihXm+S655BLp0qWLufB94oknTPD78ssvzRgRVVxcLEOHDjUX2+PHjzehTukFbWM999xzsmvXLnPxu2fPHhMcTj/9dPnss8/Mhbj64osv5JRTTpGDDz5Y7rzzThMyXnrpJRk2bJiphJx33nk+P1NDj3ZD9KYBy2Pfvn0m3P3mN7+Rhx56yFQp7r33XhM+9Hs99L3X8HXllVfKTTfdZLqszZw504TD999/33QBU/qYq666ygQq/R2lpaWZx+jP1S5knnE3Gh61WnPzzTdLp06dZO3atfLGG2+Y7fr88Y9/NO+L1cMPPyz33HOPee0TJkwwYUnHqmnXukBSU1NNVUbDr1ZJ9Xe6fft2E/Y0xDRExzbpeaDnmXbV0/f55ZdfNsFHz319LRqatauqx6uvvirz5s3z2deYquc111xjQtJtt91mxt7t2LFD/vOf/zD+DkDLqgEA1GvKlClaWqjZuHGjz/7TTjut5qijjvLZp4+79957a7fvuOOOmg4dOtQcd9xx5vEe7733nnnsyy+/XOf5kpKSakaNGlW7ff/995t969at83ncnXfeWRMdHV2zadMms11QUGB+5rPPPlv7mIsuuqjm6KOPrsnMzPT5mfoYfeyKFSt8fuaOHTvqvIby8vI6bfzwww/N45577rnafW+++abZN2fOHJ/HHnLIITVnn312TUM8bU9ISKjZsmVL7f6PP/7Y7L/llltq951xxhk1PXv2rNmzZ0/tvurq6pqTTz65plu3bgFfozd9T/QxY8eO9flZ2t64uDjzfqilS5eax73wwgs+379w4UKf/UVFRTVt2rSp6dOnT83u3bt9Hqs/V+3du7cmKyvLvC8///yz38d42qaP8fj8889rWrVqVTN06FDznPqeeZx00kk1PXr08Pn+xrx+b+ecc05NamqqOacmTpzYqO959NFHzXM8//zztfsqKytNe5KTk2tKSkrqfI+eW0299ND3IDY21nz/uHHjmvQzACAY/CkGABrg6VqlXc6CoRWgGTNmmL/0a/cuf7R6ot3dvG9W+hf6U0891XTR8n7cwIEDTTVEJ27w55NPPjHfqxWt+v7qrlUg75/5008/1XmMdvXy7oa4c+dO0/VPKyWrVq3yeS1NeZ+8aVVIK0UeJ554oulCqJUDpe3TMSoXXXSRz3unbdKuc+vXr2/SVOhaDfHQKopuayXx7bffNvv0fdTKi04s4P1+6Zg1/d1qlzBPpUjbpZUu7YbmzVOd0eqSVqO0e5u+h/4e449Wp4499li/s9Dpc+r5EagC1JDc3FzzmrUSqOdsY+jvRathI0aMqN2nlTWtuGkXviVLlkhz0m6Mnsru4MGDm/VnA4A/dL0DgAboGB3tXqYXacHQ7ls63kW7bPkbi6S0i1YgevG/Zs0a04WpvjEi/ujFugYs7eLlHQS8adgKRLtXadh69tlnTQjxHrujQctDxwnpRbKOb9IxL56ud97jqALp1q1bnX067ka71int4qXPrxfy9V3M6/vhHbYC0RB52GGH1XlO5RkHpL8Dfa06Vqa+51Q6iYZqaNr4xjzGatmyZbJgwQJ55513ZNOmTXWO63gi7Tb31FNPmd+3dr3ToBIM7dKpr0+7DHqH40D/NvR3Zg3iPXr0qD3enPQ81ufSMWy33nqrOX89XR4BoCUQlACgAV9//bWZyCAYOt5Ex6ro4q8NXcjpmBMNM95ycnJ8tjVoaCVD10byx3NR7+2tt94y1ZAPP/wwYBXB+/tLSkpk+PDhPo8ZO3asCUmeAf5aWdHKhY5Z8g5BevGqj9NxKVr58KYTFTQHz/PpOBWtIPmj1a7mps+rIeKFF17we7y+ENtcdNyRvl4dr6XnlZUGWQ2xjZl8wa10bJNO2KFj8jScnX322WailLvuusvupgEIYwQlAKiHdq/SyQOCvQDVblLHHHOMXHzxxQ0+Thf8tFZ1rLPr6UB3rQ40pvqjtOKi1SQd2K8TFDREu7ZpJcjDX9c/rYaNGjXKTBjgoRMK6GB9K51iWiseujioDtbX7mC/+93vpLG0cmOla+d4Zn/zVH40fDb2/WhMCNJZ77wDo2e9Hs/z6u9Ag6dOItFQtcUzKYHO1FdfYPN+TGNew/z5803g9e7maKXdHfX91mpQ3759TRVTw7IGiZak4VirnfoeeleVdFZCz/HmoF0LtTufBnCtKum/EQ30OtOfdvuzTtYBAM2FMUoA4Ide/GkVR+91TExj6UXta6+9JtOmTTugMSMe+tz6M3WmLysNKzo7mzddX0YvXg90tj0PvSi1TpWtY690fJSVXsxrl0N97TqWRoOAdaxOoFDgPcZo+fLlZhptnU1PaVVHZ1nTLmY645+VzoTWFDp7nYe+Vt3WMHbGGWfU/g709fpbmFXff09o1HEzOiW4vvfW2ek876Fe7OuFvVZGrGHT+j7rc2rFRGfL0+DdkGuvvdaM39EuePq+H3nkkdLSdHrzbdu2yb/+9S+f90PPDx27pbM1Noe7777b/L719+75Q4LOiKhf19etFACaAxUlAPAzJbauDaPTUv/+978P6oJP/5KvXeWaq+Jx++23my5HOvZEp13WCQTKyspM27Tao+NodEyQ9/Nrm4PtLlgffV6tVmiXO7341tCm1RXrpA06jble0GuQaWiK64ZoFUYrIjfccINUVFSYMKHP493tULsL6mO0GqevU6tMOp21tkvXR/r000+Dek4Ncjp1t1bNdOIInRZbF1vVgOLpUqe/f63SaABavXq1CUQapLQCphM96EW7ruuk49h0HSidylrX+NH3Q6tq2iZ9f3R6a6286PTq2sVSw49ON67ThGsVRquX3oFYX4+GH89kFvV55plnzJTbOqmE/p5CRcOZhhc9L3XyEK3A6Tmp06Xr705D44HSn6u/c50y3rv6qePQdPp2nYpep4W3dhkFgOZAUAIAC+16pRd5emF7+eWXB/W9WkXSikpz0YkkdPawBx980FyU61pDekGuXcW0i5v1wli7hlkXvT0Qnr/c6/gcrZJo9zMNStYxQrpeknbd01npmlpJGzlypAkSepGtEyRo10Ct7miQ8NCwpouo6mvX8To6451Wmnr37m3GfAVLX5sGJQ1nGkr1965VMevPevLJJ01I1WCgISomJsYEA+1aqO+JhwZsbY+eA1qB0kDVvXt3n/Wk9L3TUKOvQbs0atVSu+Rp8LPSdlkXnvWmE1xoMNVxTP369ZNQ0nNNF0/Wrp76b0XHuGlA17FqgRaRbQytqGkY0zW0tJudlXbH038POn5O39P6ZpcEgKaK0jnCm/zdAAAcIK2KaXc0HVOjEzWEil7MawUk2BniAACRgTFKAAAAAGBBUAIAAAAAC4ISAAAAAFgwRgkAAAAALKgoAQAAAIAFQQkAAAAAIm0dJV2fYuvWrWZtjKau7QEAAADA/XTU0a5duyQjI8Os3RfRQUlDUmZmpt3NAAAAAOAQmzdvli5dukR2UNJKkufN0NXs7VRVVSVvvfWWDB482KzWDgTCOYNgcc4gWJwzCBbnDNx8zpSUlJgiiicjRHRQ8nS305DkhKCUmJho2mH3SQJ34JxBsDhnECzOGQSLcwbhcM40ZkgOkzkAAAAAgAVBCQAAAAAsCEoAAAAAEGljlAAAAMJxiuO9e/fKvn37bBlvEhMTI3v27LHl+eE+VSE8Z6Kjo81zNceyQAQlAAAAF6msrJQffvhBysvLbQtpnTp1MjMKs0YlnHjO6MQRnTt3lri4uAP6OQQlAAAAl6iurpaCggLzV3NdMFMvBEMdVrQNpaWlkpycHHDBTiCU54wGMv1Dwo4dO8y/k27duh3Q8xGUAAAAXEIvAvWiU9eB0b+a20GfX9vRunVrghIcd84kJCSYKci/++672udsKs5uAAAAlyGgAC3/74N/ZQAAAABgQVACAAAAAAuCEgAAAABYEJQAAAAAwIKgBAAAgJApKioyU5pbb2lpaXY3DfBBUAIAAIhAxeWV8s2PpZK/6Wf5Zkep2Q6luXPnmoVz9fboo4+G9LmBxiAoAQ6lH1gFO8rM1wWFZSH/AAMAhK+tRbtlzJx8OeMvS+S8v34gZzy8RMbOyTf7W9revXvNfbt27aRTp07mlpqa6vOYv/zlL9KzZ09JSkoya0bdeOONZsFSj1mzZtWpQH377bemMrV69WqzvXjxYrOtFSxvum/+/Pl+v8dKn0Ofy2Pz5s1y0UUXmf1t27aVc8891/wMhCeCEuDgD7Cc3GVmO2fmspB9gAEAwpv+4W3C3DWydH2hz/689YVy59w1Lf6HuYqKCnMfHx/f4Do4jz/+uHzxxRfyj3/8Q95991254447xE5VVVUyZMgQadOmjSxdulTef/99SU5OljPPPNMsbIrwQ1ACHMbuDzAAQHgrLK2s8xnj/Vmjx1vSTz/9ZO41cNRn3LhxMmDAADn00EPl9NNPlylTpshLL70kdvrXv/4l1dXV8ve//91Uu3r06CHPPvusbNq0yVSvEH5i7G4AgOA/wFIT40LeLgBAeCjZU9Xg8V0Bjh+o77//3tx37ty53se8/fbbMnXqVPnqq6+kpKTEdNfbs2ePlJeXS2JionlMcXGxqeh41NTU+P1ZXbp0Cdimk08+WaKjo02XOv364YcfrvN9n376qWzYsKFOwNN2ffPNNwGfA+5DUAIcxu4PMABAeEtpHdvg8TYBjh+oL7/8Utq3b2/G+PijY37OOeccueGGG+SBBx4wj1u2bJlcffXVpoubJyhpYFm1apVPAOvfv3+dn6fd5LzDTbdu3fxWi7RCtG3bNrnpppvk+uuvlzfeeMPnMTpG6rjjjpMXXnihzvfr60H4ISgBDmP3BxgAILylJ8dJv27pppeCle7X4y3pnXfeMVWb+nzyySemi5tWdXSskvLX7U6PHX744bXbMTH+L2uzsrICTj2uE0boz9KbBjKtZlkde+yxJlB16NBBUlJSGvx5CA+MUQIc+gHmTyg+wAAA4U27b08bnl3ns0a3pw/PbrHu3bt375ZnnnlG/vvf/5pJEbR647lpNzrtOqdfa1jRiRNmzJghGzdulH/+85/y5JNPSkvSSpV2ofvuu+/klVdekaOPPrrOYy677DJJT083M91plaqgoMCMTdIK1JYtW1q0fbAHFSXAoR9gOnHDxxt3hOwDDAAQOTLSEmTGiN5m3Kt26dbeCvqHuJb8jNFqzDXXXGO+1um+9Wal45Y0gOj04NOnT5eJEydKv379TIVn5MiRLda2Pn36mHutPPXt21dmzpxZ5zHa5S8vL08mTJgg559/vuzatUsOPvhgOeOMM6gwhSmCEuDgD7DtReWydsUSWTC6r3RMSyQkAQCajX6mhPpz5bTTTmtwhjhd00jdcsst5ubt8ssvr/36iiuuMDdvOkOe94QOOl7J3wQP3vus32NlXYNJ13zS6coRGQhKgEPph1dibJSs1f7V7ZMkNpaxSQAA90pISKh3AgePjh07mtnnACcgKAEAAKDFXXzxxebWEB2jBDgFkzkAAAAAgAVBCQAAAAAsCEoAAAAAYEFQAgAAAAALghIAAAAAWBCUAAAAAMCCoAQAAICItWDBAvn9738v1dXV8u9//1suuOACu5sEh2AdJQAAAIRMVFSU3/01NTVih4EDB8p9990n8fHxkpiYKK+//rot7YDzUFECAABASD377LPyww8/mJt+baeEhARZvny5bNq0SX788Uc57bTTbG0PnIOgBAAA4GZaiSkrs+cWZBVo79695r5t27bSqVMnc0tLS/N5zKxZs+rs69evn6lErV692mwvXrzYbBcVFfk8TvfNnz+/dnvz5s1y0UUXmZ+nz3nuuefKt99+W3v8iiuukGHDhpnv69y5s5SWlspBBx3k8/yTJk2SY445xud5rM+/c+dOGTFihBx88MGmKtWzZ0+ZM2eOz/foz9bn69ixo/lez83zmvzR40888YQMHTrUBLrDDjtMXnnlFZ/HNOY1ej+f3o4//nif16FdDrOzs6V169bym9/8Rj7//HOf51i2bJmceuqppg2ZmZly0003SZn+/n9RUVEhEyZMMMe0Mnf44YfLM888U3v8iy++kIsvvti0sU2bNuZnffPNNz6/Aw99L62/AzVt2jQ59NBDJSYmpvZ1PProo9KSCEoAAABuVl4ukpwcslurlBRJ69LF3JvnDkJlZaW5j4uLa/T3vPrqq5Kfnx/021JVVSVDhgwxF+ZLly6V999/X5KTk+XMM8+sbYfV5MmTa8NcMPbs2SPHHXecCRwaMq699lq5/PLLTaXK48EHH5S33npLXnrpJVNJ8z7WkHvuuUeGDx8un376qVx22WVyySWXyNq1a4N6jbrtqeDp7c033/R5jttvv10efvhhWbFihbRv315ycnLMz1YaaPT7tQ1r1qyRf/3rXyY4jRkzpvb7R44caYLh448/btr21FNPmXao77//Xvr3728C1Ntvvy2ffPKJXHXVVfW+z/5+B/q+/eEPfzDHvvvuO/MaunTpIi2NMUoAAAAIiZ9//tncey6iA9GLda1U6E0DQzD0gl4naPj73/9eOy5Ku/lppUIrKYMHD/Z5/Lp16+T//u//ZPz48eaCPxhaSbrttttqt8eOHWvCiIaiE0880ezTytE555xT27VPw1VjXHjhhXLNNdeYr++//35ZtGiRzJgxQ/761782+jVqSNHqXX3uvfdeGTRokPn6H//4hwkh8+bNM5WqqVOnmoA2btw4c7xbt27m/dHXodUu7bKor1PbpeO9lFa+PHJzcyU1NdVUmNq1ayetWrWSX//6137bUd/vQN+7X/3qVzJq1KjafdHR0dLSCEoAAABulpio/bpC9nR6YV5SUiIpKSnSSp87CNu2bTP32v2sMTwX2Xqh7i8oNVRV0ArMhg0bTLXFmwYUT7cvb3fccYdcd911Phf5Hp999plPuNu3b5/Pcd3WipEGBq2gaDVHu6NpNzyPrKwsEyb0uAarxjrppJPqbHu66wX7GhvzHNp974gjjqitWulzaCXphRde8Jl4Q8+DgoIC895oaKlvbJe2tW/fvhIbGxuwHfX9DvS90+6EWjE75ZRTJFQISgAAAG6mlYSkpNA9X3W1JoP9z1nPDHb10Ytv7XanF76NqT5pBUUrG/XNlKfdzbxDglY7vMcEaXc47wt8D+1e5m3JkiXmZ2k15rXXXqvzeA0O3rPhffzxx/K73/2udvtPf/qTPPbYY2bMjI5PSkpKMhUY7+5vf/zjH03FRMOdHm+OWf6CeY0H8hzXXXedGZdk1bVrVxPUGqLjmhqjod+BdvvTCtnpp59uKlIazMqD7PbZFAQlAAAAhMR//vMfOfnkk82A/EA0JOmgf53IwXtyAm8auKyD/j2OPfZY0zWtQ4cOpvpVHw0st956q6lY6SQC/mi40wkKPLZs2eJzXCsdOomCJzxptUVD0ZFHHln7GK2i3XzzzbJq1SrzPmjVR8fuBPLRRx+ZMUDe27179w7qNTbmOTT0eAKqtr1Hjx61z/Hll1/6vH5vGgz19WrQ8XS986aTRGh3Ps+Yp6b8DjQcafdLrdjpWCo9hxrz3h0oJnMAAABAi9q6davpVqUXunfeeWfAx2u14G9/+5s89NBDTX5O7a6Xnp5uAoxWKrSbmFYltDLiHXTeeecdKS4ultGjRzf5ubSSpd3qPvjgA1M10wrM9u3bfR6zceNGM8bmueeekz59+sghhxzSqJ/98ssvm3E7Gl50LJFOAuGZSKGxrzEQXUdK3wediEJnodOfOeyXmeg0oOjr0ufUbnTr1683FR9PG3QmOn1dOkGDzjjoaYP+rpU+TrtqXn311bJy5Urz/f/85z/l66+/bvTvQLsxalVJn0NDo4a2xoTtA0VQAgAAQIuaPXu2uUheuHChmaUtEK0+XHnllfUO+m8MHR+Ul5dnKiXnn3++qZDoxbpWcryrLzrNtU493ZgxNPW5++67TeVFX5tWOnTiBO8pr3fv3m0u9G+88UY5++yzg/rZOtPbiy++aCozGrJ0djlPpaqxrzEQff1a7dJufDqObMGCBbUzE+rzarVIg5pW+LSapd0IMzIyar9fJ3W44IILzOvr3r27/P73v6+dPlwncNDZ7nR7wIAB5jmefvppn/c70O9Ag5+OEdNxYKEUVWPXMsghoglWBwFqSj2QkmRz0H/0Wmo966yzDugfIyIH5wyCxTmDYHHOuIteAOtf7LXLma55YwefyRxa8Tf3lqRjs3SMlnfoak5a+dHwot3t6uvC6MZzpqF/J8FkA85uAAAAALAgKAEAAACABbPeAQAAAA7U0iNkdDxVmI/COSBUlAAAAADAgqAEAADgMlQBgJb/90FQAgAAcAnPzIS6zhAA/zz/Pg50Jk/GKAEAALhEdHS0mcb5xx9/rF1HR6eQDiWd6rmystJMwcz04HDSOaOVJA1J+u9D/53ov5cDQVACAABwEV3MVHnCUqjpxaguoJqQkBDykAZ3qgnxOaMhyfPv5EAQlAAAAFxELzQ7d+4sHTp0MAsGh5o+Z15envTr149FiuG4c0Z//oFWkjwISgAAAC6kF4PNdUEY7PPu3btXWrduTVBCWJ8zdCwFAAAAAAuCEgAAAABYEJQAAAAAwIKgBAAAAAAWBCUAAAAAcFJQmjp1qpxwwgnSpk0bM8XlsGHD5Ouvv/Z5jC5MNXr0aGnXrp0kJyfL8OHDZfv27ba1GQAAAED4szUoLVmyxISgjz76SBYtWmTmWB88eLCUlZXVPuaWW26RBQsWyMsvv2wev3XrVjn//PPtbDYAAACAMGfrOkoLFy702Z41a5apLH3yySdmQari4mJ55plnZPbs2XL66aebxzz77LPSo0cPE65+85vf2NRyAAAAAOHMUQvOajBSbdu2NfcamLTKNHDgwNrHdO/eXbp27Soffvih36BUUVFhbh4lJSXmXn+OHatXe/M8v93tgHtwziBYnDMIFucMgsU5AzefM8G0wTFBqbq6WsaNGyennHKKHH300Wbftm3bJC4uTtLS0nwe27FjR3OsvnFPkydPrrP/rbfeksTERHEC7WYIBINzBsHinEGwOGcQLM4ZuPGcKS8vd19Q0rFKn3/+uSxbtuyAfs7EiRNl/PjxPhWlzMxMM/YpJSVF7E6weoIMGjRIYmNjbW0L3IFzBsHinEGwOGcQLM4ZuPmc8fQ2c01QGjNmjLzxxhuSl5cnXbp0qd3fqVMnqayslKKiIp+qks56p8f8iY+PNzcr/aXY/YtxYlvgDpwzCBbnDILFOYNgcc7AjedMMM9v66x3NTU1JiTNmzdP3n33XcnKyvI5ftxxx5kX884779Tu0+nDN23aJCeddJINLQYAAAAQCWLs7m6nM9q99tprZi0lz7ij1NRUSUhIMPdXX3216UqnEzxo17mxY8eakMSMdwAAAADCMig98cQT5r5///4++3UK8CuuuMJ8/cgjj0irVq3MQrM6m92QIUPkr3/9qy3tBQAAABAZYuzuehdI69atJTc319wAAAAAIBRsHaMEAAAAAE5EUAIAAAAAC4ISAAAAAFgQlAAAAADAgqAEAAAAABYEJQAAAACwICgBAAAAgAVBCQAAAAAsCEoAAAAAYEFQAgAAAAALghIAAAAAWBCUAAAAAMCCoAQAAAAAFgQlAAAAALAgKAEAAACABUEJAAAAACwISgAAAABgQVACAAAAAAuCEgAAAABYEJQAAAAAwIKgBAAAAAAWBCUAAAAAsCAoAQAAAIAFQQkAAAAALAhKAAAAAGBBUAIAAAAAC4ISAAAAAFgQlAAAAADAgqAEAAAAABYEJQAAAACwICgBAAAAgAVBCQCACFVcXikFO8rM1wWFZWYbALAfQQkAgAi0tWi3jJmTLzm5y8x2zsxlMnZOvtkPACAoAQAQcbRyNGHuGlm6vtBnf976Qrlz7hoqSwBAUAIAIPIUllbWCUneYUmPA0CkIygBABBhSvZUNXh8V4DjABAJCEoAAESYlNaxDR5vE+A4AEQCghIAABEmPTlO+nVL93tM9+txAIh0BCUAACJMamKcTBueXScs6fb04dnmOABEuhi7GwAAAEIvIy1BZozoLduLymXtiiWyYHRf6ZiWSEgCgF8QlAAAiFAaihJjo2StiGS1T5LYWMYmAYAHXe8AAAAAwIKgBAAAAAAWBCUAAAAAsCAoAQAAAIAFQQkAAAAALAhKAAAAAGBBUAIAAAAAC4ISAAAAAFgQlAAAAADAgqAEAAAAABYEJQAAAACwICgBAAAAgAVBCQAAAAAsCEoAAAAAYEFQAgAAAAALghIAAAAAWBCUQqS4vFIKdpSZrwsKy8w2AAAAAGciKIXA1qLdMmZOvuTkLjPbOTOXydg5+WY/AAAAAOexNSjl5eVJTk6OZGRkSFRUlMyfP9/neGlpqYwZM0a6dOkiCQkJcuSRR8qTTz4pbqKVowlz18jS9YU++/PWF8qdc9dQWQIA2IbeDgDg0KBUVlYmvXr1ktzcXL/Hx48fLwsXLpTnn39e1q5dK+PGjTPB6fXXXxe3KCytrBOSvMOSHgcAINTo7QAADg5KQ4cOlSlTpsh5553n9/gHH3wgo0aNkv79+8uhhx4q1157rQlWy5cvF7co2VPV4PFdAY4DANDc6O0AAIHFiIOdfPLJpnp01VVXme55ixcvlnXr1skjjzxS7/dUVFSYm0dJSYm5r6qqMrdQS4qJkvjoGvN1fCvfe5UYE2VLu+AOnnODcwSNxTmDxtheVC7LN+6Q+Oi6n00fb9xhjifGRtncSjgV/8/AzedMMG2Iqqmp+d9Vu410jNK8efNk2LBhtfs08GgV6bnnnpOYmBhp1aqVPP300zJy5Mh6f86kSZNk8uTJdfbPnj1bEhMTW6z9AAAAAJytvLxcLr30UikuLpaUlBT3VpRmzJghH330kakqHXLIIWbyh9GjR5vq0sCBA/1+z8SJE83YJu+KUmZmpgwePDjgm9FSthXvkXtf/1xWFhTK/cdXyz0rW8nxWely32+Plo6prW1pE9xB/+qxaNEiGTRokMTGxtrdHLgA5wwaQydw8IxN0kqS57Oponp/FWnB6L6S1T7J5lbCqfh/Bm4+Zzy9zRrDsUFp9+7dctddd5kq09lnn232ZWdny+rVq+XPf/5zvUEpPj7e3Kz0l2LXLyYzPVYeueQ405Vh7Yol8soNp0rHtERJTYyzpT1wHzvPX7iHjivZXrR/bMmW4krpmBrD/zPwSz+D+hzW3oxJ8tCQVLEvSvp1SzfH+T8HgfDZBDeeM8E8v2PXUfKMKdLudt6io6Olurpa3EYvVjx/ndN7Ll4ANCdmMEMw9DNo2vBsE4q86fb04dl8RgGA3RUlXSdpw4YNtdsFBQWmYtS2bVvp2rWrnHbaaXL77bebNZS0692SJUvMeKW//OUvdjYbABw7g5kOzrfOYDZjRG8ufFFHRlqCOTc8vR20ux29HQDAIUFp5cqVMmDAgNptz9ginRJ81qxZ8uKLL5oxR5dddpn89NNPJiw98MADcv3119vYagBw33ptXPzCHz0vdHa7tb/0drC7SwwAOImtQUnXR2po0r1OnTrJs88+G9I2AYDbsF4bAADNz7FjlAAAjZPSuuEqQJsAxwEAQF0EJQBwueTWMdL38HZ+j+l+PQ4AAILDpycAuFxZxV654pQs0Y7Mul6bxymHtzP79TgAAAgOFSUAcLni3VVy05x86d31IMkd0dvs03vd1v0luxmjBABAsKgoAUAYjFEqr9wnM9/dIPHRNfLQiSKj5+SbxUMVY5QAAAgeFSUAcLn05Lg6C4d66H49DgAAgkNQAoAwWAtn2vDsOmFJt6cPz2YNJQAAmoCudwAQBjLSEmTGiN6yvahc1q5YIgtG95WOaYmEJAAAmoigBABhQkNRYmyUrBWRrPZJEhvL2CQAAJqKrneAQxWXV0rBjjLzdUFhmdkGAABAaBCUAAfaWrRbxszJl5zcZWY7Z+YyGTsn3+wHAABAyyMoAQ6jlaMJc9fI0vX/WzhU5a0vlDvnrqGyBAAAEAIEJcBhCksr64Qk77CkxwEAANCyCEqAw5TsqWrw+K4AxwEAaCmMn0UkISgBDpPSuuGZytoEOA4AQEtg/CwiDUEJcJj05Lg6C4d66H49DgBAKDF+FpGIoAQ4cC2cacOz64Ql3Z4+PJsFRFEvusQAaCmMn0UkYsFZwIEy0hJkxojesr2oXNauWCILRveVjmmJhCTUS7u+6F97l2/cIQ+duL9LTJ/D2pvQrecTABwIxs8iElFRAhxKQ1FW+yTztd4TklAfusQAaGmMn0UkIigBgMvRJQZAS2P8LCIRQQkAXI4uMQBaGuNnEYnjZxmjBAAuR5cYAKHA+FlE2vhZKkoA4HJ0iQEQKoyfRSSNnyUoAYDL0SUGAOA0hWEwfpaudwAQBugSAwBwkpIwGD9LUAKAMKGhKDE2Stb+0iUmNpaxSQAAe6SEwfhZut4BAAAAaFbpYTB+lqAEAAAAoFmlhsH4WbreAQAAAGh2GS4fP0tFCQCACOXmhSABuEOqi6eUJygBABChC0GOmZMvObnLzLYuBDl2Tr7ZDwAgKAEAEHHCYSFIAGhpBCUAACJMOCwECQAtjaAEAECECYeFIAGgpRGUAACIMOGwECQAtDSCEgAAESYcFoIEgJZGUAIAIMKEw0KQANDSWHAWAMKEzlSmi/p51sTpmOqeRf0Qem5fCBIAWhoVJQAIA6yJg0hbCBIAWhpBCQBcjjVxAABofgQlAHA51sQBAKD5EZQAwOVYEwcAgOZHUAIAl2NNHAAAmh9BCQBcjjVxAABofgQlAHA51sQBAKD5sY4SAIQB1sQBAKB5UVECgHAUZXcDAABwN4ISAIQBFpwFAKB5EZQAwOVYcBYAgOZHUAIAl2PBWQAAmh9BCQBcjgVnAQBofgQlAHA5FpwFAKD5EZQAwOVYcBYAgOZHUAIAl2PBWQAAmh8LzgJAGGDBWQAAmhcVJQAIExqKstonma/1npCEQHTq+IIdZebrgsIyppIHAC8EJQAAIhCLFANAwwhKAABEGBYpBoDACEoAAEQYFilGU9FdE5HE1qCUl5cnOTk5kpGRIVFRUTJ//vw6j1m7dq389re/ldTUVElKSpITTjhBNm3aZEt7gVDaXrJH1m3fZb7We90GgObAIsVoCrprItLYGpTKysqkV69ekpub6/f4N998I3379pXu3bvL4sWLZc2aNXLPPfdI69atQ95WIJQ27SyT8S+tlvOf+MBs6/2tL602+wHgQLFIMYJFd01EIlunBx86dKi51ecPf/iDnHXWWfLQQw/V7vvVr34VotYB9tDK0cR5n8n7G3ZKfPT/9i/bsFPumveZPHzRMdIxhT8WAGg6XYT41G7pfrvf6X4WKUZTumsy0ybCjWPXUaqurpZ///vfcscdd8iQIUMkPz9fsrKyZOLEiTJs2LB6v6+iosLcPEpKSsx9VVWVudnJ8/x2twPOVlhSLisLCk1Iim9VY/Z57lcUFJrjbRO8EhTghf9n0Bh791bJDf0OlVayT/K/3Vn7/8xvDmsr1/U71Byvqoqyu5lwkKKy3RIf7fuZ5LlXxWW7paoq3rb2wdmqHPTZFEwbompqav53lttIxyjNmzevNgRt27ZNOnfuLImJiTJlyhQZMGCALFy4UO666y5577335LTTTvP7cyZNmiSTJ0+us3/27NnmZwEAAACITOXl5XLppZdKcXGxpKSkuDMobd26VQ4++GAZMWKECTkeOrGDTuowZ86cRleUMjMzpbCwMOCbEYoEu2jRIhk0aJDExtL/G/7pxA2esUn617r7j6+We1a2korq/X/dffWGk+XXHdvY3Eo4Ff/PoDHWbCmSS//+cb3/z8y5po/07JJmcyvhJCW7K+X2V9bI+9/srHPOnPKrdvKnC7IlJYGud3D+Z5Nmg/T09EYFJcd2vdMXEBMTI0ceeaTP/h49esiyZftnW/EnPj7e3Kz0l2L3L8aJbYHzpKckyglZ6WZMkod+EFXsi5K+h7czxzl/EAj/z6AhaUkJ5v8Ub57/Z1RqUgLnD3y0i42VKecfYyZu+Hjjjtpzps9h7eWB87OlXUqC3U2EC8Q64LMpmOd37DpKcXFxZirwr7/+2mf/unXr5JBDDrGtXUBL04kaHjyvpwlF3nRb9zORA4ADpZM19OuW7veY7mcyB/iTkZYgM0b0lgWj+5ptvdftzmmEJIQnWytKpaWlsmHDhtrtgoICWb16tbRt21a6du0qt99+u1x88cXSr1+/2jFKCxYsMFOFA+Gsa7skM7udTtyw4ZOlprudVpIISQCag85ONm14tk91wBOSpg/PZvYy1EvPjcTYKFkrIlntk2yvDgBhG5RWrlxpApDH+PHjzf2oUaNk1qxZct5558mTTz4pU6dOlZtuukmOOOIImTt3rllbCQh3Gop0djv9U4KOSeLDCEBLVAe2F5XL2hVLTHWgY1oiIQkAnBCU+vfvL4HmkrjqqqvMDQAANC+qAwDgwjFKAAAAAGAXghIAhIni8kop2FFmvi4oLDPbAACgaQhKABAGthbtljFz8iUnd//yCTkzl8nYOflmPwAACB5BCQBcTitHE+aukaXrC332560vNLOaUVkCACB4BCUAcLnC0so6Ick7LOlxAAAQHIISALhcyZ6qBo/vCnAckYtxbQBQP4IS4FBcwKCxUlo3PKVzmwDHEZkY1wYADSMoAQ7EBQyCkZ4cJ/26pfs9pvv1OOCNcW0AEBhBCXAYLmDQlEVDpw3PrhOWdHv68GxzHPDGuDYACCymEY8B4LALGC58YZWRliAzRvSW7UXlsnbFElkwuq90TEvkXIFfjGsDgMAISoDDcAGDptJQlBgbJWtFJKt9ksTGMjYJ/jGuDQACo+sd4DBcwABoaYxrA4DACEqAw3ABg6ZipkQ0FuPaACAwghLgMFzAoCmYKRFNHdem49mU3ut257QEu5sGAI7AGKVQ2rJF4n/+WWTPHhHGDqABDMxHU2dKjI+uO1OinkucO/CHcW0A0AxBaevWrZKRkdHYh8OP6MsvlzPff1/kyitF4uNF0tLq3g46yP9+602/H2GNCxg0FjMlAgBgY1A66qijJDc3Vy699NIWaEaE2LdPaqKiJKqmRqSiQmT79v23pmjd2n+ASk1tXNDS7wcQFpgpEQAAG4PSAw88INddd53MmzdPnnrqKWnbtm0LNCe87cvLk/+88YacdeqpEltWJlJU5HvTbnnFxXX3ex/TmwYt7b63bdv+W1PUV9Fq7I2gBTgGMyUCAGBjULrxxhtl6NChcvXVV8uRRx4pTz/9tOTk5LRAk8Jcq1b7qz7p6SKHHBL891dXi+zaFXzA8mx7gtaBVrSCCVrW7oT6+glaQLPPlKjd7KyYKREAgBBM5pCVlSXvvvuuzJw5U84//3zp0aOHxMT4/ohVq1Y1sSkIKmjp7UCDlr+A5dluKHyFOmhFaEVLB+jrZA6eqZ47pjKZAxqeKVEnbvh4447a/cyUCABACGe9++677+TVV1+Vgw46SM4999w6QQkRELRKSwNXsfztt6ui5cKgpVM66yxmyzfukIdO3D/Vc5/D2puLYZ0RD7BipkQAAJpXUClHu9vdeuutMnDgQPniiy+kffv2zdwcuCJopaTsvzWFv66D/roJWkOY97EwD1pM9YymYqZEAABsCEpnnnmmLF++3HS7GzlyZDM2ARGluSpaTR2j5YKgxVTPAAAALgpK+/btkzVr1kiXLl1atkVAYytaXbseWNAKNmB59rVw0Epu1Vpu+LJISuKTpDwhSTrEJEiv79vIzthkKYlPltKiXSIdkpv2vAAAAGjeoLRo0aLGPhQI76ClXQe9p2sPZpp33a8/o4Gg1VFEJnjveE3kJO/tXK+g1dh1s/xVtKKimvIOAgAARARmYgCa2nWwKfx1HbQErIodO+Xj/I1SvmOnpFWUSffoUindWSrJFeWSUlEmrZqjohUXF3gadxdPhgEAAHCgCEqAwypa8SJyeNHu2qmeHzpxn9yxPNrMejf9vKOlc8y+Ax+jVVkp8uOP+29hNhkGAABAcyAoAW6c6tmOMVqN7DrYKHQdBAAADkdQAhyqRaZ6bq7JMJoSsppz1kF/XQeD6UpIRQsAAARAUAIQ2nW0AozRanCxYr3XnxHqroPWyhcVLQAAwh5BCUDoHGhFS6tR/tbRqi9cWcNXc3UdbExFq6FbQkLTnhcAAIQMQQmAe2gVp02b/bfMzJYbo1XfcU/QYjIMAADCHkEJQOQIlzFa1qDl1TWwVZs20m37dmm1ebNIu3ZMhgEAQBMRlADAzjFanlBVX8DS/d4LHAfoOhgtIkfqF88/33JdBwlaAIAIQFACALdVtPxUsIp/2CFvf/i1lPzwo5zeplS+3lwuXaIq5PD4fRK3q6R5uw4StAAAEYCgBAAuD1rF5ZUyZk6+LO3eXeKPqpG2vyxSXLEvSvp1Szdrcpk1uLwnw2jKGK3mmnWQoAUAcAGCEgC4XGFppSxdX+j3WN76QnPcBKUDnQzDE7QOZIwWQQsA4BIEJQBwuZI9VQ0e3xXgeKN5B62WWkervnFazbmOVqCgZV03y7qAMUELACICQQkAXC6ldWyDx9sEOO76dbSCqW5R0QIANBJBCQBcLj05zoxF0m52Vrpfj4eF5uo62NSQRdACgIhCUAIAl9PxR9OGZ8udc9fIxxt3+ISk6cOz949PQuSM0fLXddD7lpBA0AKARiAoAUAYyEhLMLPbbS8ql7UrlsiC0X2lY1oiIak5HegYLX9dB4OtbjVH0IqN9QlO0ampcnx5uUQvWCDStq3/cMUYLQARiKAUIjp9r17AqILCMumYygUMgOal/6ckxkbJWhHJap8ksXpBjPDtOtjUMVpVVSI7duy/6dAxETlYv/jgg+brOthQVYuKFgCXICiFwNai3TJh7hpZvnGHPHSiSM7MZdLnsPamq4z+FRgAAFuCVnGx7C0slC8/+ECOOvhgid61638hq6W6DloqWkHfCFoAQoSgFIJKkoYkXeMkPvp/+3XQtY4nqF0IEgAAG4JWTVWVFBx0kPQ46yyJbqgK2VxjtCwVraARtACECEHJKQtBAgDgZHaM0dJ93sf27TvwoOXpOhho0guCFhDxCErhshAkwg7j2gCEleboOlhWFlwFy9qFkK6DAIJAUGphrlkIEo7CuDYAsNBwkZy8/9ali33raNF1EIgYBKUWFjELQaLZMK4NAFy0jpb314EqXM3RddA7aPnrPug9lTtBCzggBKUWxkKQCBbj2gAgTMdoWbsOBlvdau6g1dSKFhAhCEohwEKQCAbj2tBUjGsDwrzroL8xWvVVr7xDVjMHrZi0NDkjNlaiMzICV7CsVa/ERCpacA2CUoiwECQai3FtaArGtQFhrrmDVlPGaP0StKJ27JBk/ZlbtwbfjpiY4KtY3mGMroMIIYIS4DCMa0OwGNcGIGRB6+efpaqwUD5auFBO6tFDYho7QYYnaO3dK1JYuP/WFEyGgRAiKAEOw7g2BItxbQBCGrQ6dZKfNm2SmrPO2h9c3D5GK5g1teg6GFEISoADMa4NwWBcG4CIHaMVaB0t7+PNEbSa0nWQoOVaBCXAoRjXhsZiXBuaiglA4BpOGaNlV9dBT9WLoBVSBCUAcDnGtaEpfijaLYvX7ZD2ifsHtm3+qVw+2Vwi/X/dXjozAQjCTTOO0WqwitVQ+KKi5ToEJQBwOca1oSmVpO9+Kpc31myVlQWFZqbEG2evkuOz0iUrPUkS46I5b4D6glZTFyxujjFaB1rRImgFhaAEAGGAcW0IRlF5lcx4d728v2Gnz0yJuq0eHNaTcwdw+hitYLsQ2hm0kpIkes8ecRtbg1JeXp786U9/kk8++UR++OEHmTdvngwbNszvY6+//np56qmn5JFHHpFx48aFvK0A4HSMa0NjlVXurQ1FVrpfjwMIw6DlCU7BjtH6+ecDClr6aTSgQweR888XN7E1KJWVlUmvXr3kqquukvMbeOM0QH300UeSoStAAwD8YmA+Gquscl+Dx8sDHAfg4qB18MFNC1rl5f8LUXrfUMCyBK2aoiKpSkoSt30i2RqUhg4dam4N+f7772Xs2LHy5ptvytlnnx2ytgGAm2wt2m0WnV2+cYcZb5Izc5n0Oay9Gbuk3fIAb6kBZkIMNJMigAgMWklJ+29NqGjtrayUpa+9JmeKuzh6jFJ1dbVcfvnlcvvtt8tRRx3VqO+pqKgwN4+SkhJzX1VVZW528jy/3e2Ae3DOoDFKdlfKH17VkLRT4lvVmH16rxM73P3qavnTBdmSkuC2v+OhJcVItZzW7SD5aONPPueM+s1hbc1x/t9BffhsQrCq9u6V6rg4R5wzwbQhqqZGa2n2i4qKqjNGaerUqfLee++ZapIeP/TQQ834pIbGKE2aNEkmT55cZ//s2bMlUWfqAAAAABCRysvL5dJLL5Xi4mJJSUlxZ0VJJ3h47LHHZNWqVSYkNdbEiRNl/PjxPhWlzMxMGTx4cMA3IxQJdtGiRTJo0CAGWaNROGfQGGu2FMmlf/+4tipw//HVcs/KVlJRvf//zjnX9JGeXdJsbiWc5LvCMnnoza+ke+cU6dk5WcoL8iUxq7d89kOpfPVDidwxpLsckp5kdzPhUHw2wc3njKe3WWM4NigtXbpUfvzxR+natWvtvn379smtt94qjz76qHz77bd+vy8+Pt7crPSXYvcvxoltgTtwzqAhaUkJUrHP9w9KGpI8+1KTEjh/4GOvtJK3vtppbvHRNWZc25h/rak9Z8YPacU5g4D4bIIbz5lgnt+xQUnHJg0cONBn35AhQ8z+K6+80rZ2AYDTpCfHmcVl89bXna5V9+txwNuuioan/y4NcBwAIoGtQam0tFQ2bNhQu11QUCCrV6+Wtm3bmkpSu3bt6iTATp06yRFHHGFDawHAmXQKcJ3d7s65a8wEDt4hafrwbKYIRx1pCQ3/RTU1wHEAiAS2BqWVK1fKgAEDarc9Y4tGjRols2bNsrFlAOAu2mFqaM/OMrJPFyn7ZqXkjugtO8pZCwf+dWgTL6d2S5elfqqQul+PA0CkszUo9e/fX4KZdK++cUkAEOkLzd4xd4256PWMNxk9J9+MN9Gq0owRvakqwYeeD1ptpAqJYLGwNSKJY8coAQAap7C00m9lQOm4JT3OhQysdCFiDdF60bt2xRJZMLqvdEzjohf1Y2FrRJpWdjcAAHBgSvY0vHjergDHEbk0FGW13z8NuN4TktBQJUlDkvWPMvrHGK1M6nEg3BCUAMDlUlo3PPC+TYDjANAclWsg3BCUACBMpgf3h+nB0RCtAhTsKKsdb0JVAPWhco1IRFACgDCZHtwalhiYj0DjTcbMyZec3GVmW8ebjJ2Tb/YDVlSuEYkISgAQRgPzdUC+0nvd7swAa/jBeBMEi8o1IhFBCQDCBAPz0ViMN0GwqFwjEjE9OAAAEYbxJmgKppRHpCEoAQAQYRhvgqbSUJQYGyVrf6lcx8ZyriB80fUOAIAIw3gTAAiMoAQAQIRhvAkABEbXOwAAIhDjTQCgYQQlAAAiFONNAKB+dL0DAAAAAAuCEgAAAABYEJQAAAAAwIKgFCLF5ZVSsKPMfF1QWGa2AQAAADgTQSkEthbtljFz8iUnd5nZzpm5TMbOyTf7AQAAADgPQamFaeVowtw1snR9oc/+vPWFcufcNVSWAAAAAAciKLWwwtLKOiHJOyzpcQAA7EC3cASLcwaRhKDUwkr2VDV4fFeA4wAAtAS6hSNYnDOINASlFpbSuuHF+9oEOA4AQHOjWziCxTmDSERQamHpyXHSr1u632O6X48DABBKdAtHsDhnEIkISi0sNTFOpg3PrhOWdHv68GxzHACAUKJbOILFOYNIFGN3AyJBRlqCzBjRW7YXlcvaFUtkwei+0jEtkZAEALAF3cIRLM4ZRCIqSiGioSirfZL5Wu8JSQAAu2i371Pr6Rau++kWDiuGEiASEZQAAIhAowccLqcc3s5nn27rfsCKoQSIRAQlAAAijA68v2rWCund9SDJHdHb7NN73db9DMxHQ0MJdAiB0nvd7pyWYHfTgBbBGCUAACJwYH555T6Z+e4GiY+ukYdOFBk9J18q9kWZ4wzMR320cpQYGyVrfxlKEBvL2CSELypKAABEGAbmA0BgBCUAACIMA/MBIDCCEgAAEYaB+QAQGGOUAACIQKzxBwANIygBABChGJgPAPWj6x0AAAAAWBCUAAAAAMCCoAQAAAAAFgQlAAAAALAgKAFAmCgur5SCHWXm64LCMrMNAACahqAEAGFga9FuGTMnX3Jyl5ntnJnLZOycfLMfAAAEj6AEAC6nlaM/vva59MpMk9wRvc2+v156rGRnpsm9r31OZQkAgCYgKAGAy+0sq5RLTuwq+Zt+ltFz8s2+G2evMtsXn9jVHAcAAMEhKAGAy+2trpFn3y+Q9zfs9Nmv27p/X3WNbW0DAES2YhePnyUoAYDLVVfX1AlJHrqfoAQAsMNWl4+fJSgBgMuVV+4NcHxfyNoCAIDSytGEuWtk6fpC8Za3vlDunLvGFZUlghIAuFxqQlyA47EhawsAAKqwtLJOSPIOS3rc6QhKAOBy6clx0q9but9jul+PAwAQSiV7qho8vivAcScgKAGAy6Umxsm04dl1wpJuTx+ebY4D4TbIGoCzpbRuuDdDmwDHnYCgBABhICMtQWaM6C0LRvc123qv253TEuxuGhzK7YOsAThbehj0diAoAUCY0MpRVvsk87XeU0lCOA+yBuBsqWHQ2yHG7gYAAADnDbJ2w0UMAHf0dtheVC5rVywxvR06piW65v8XghIAABEmHAZZA3CH1MQ4SYyNkrW/9HaIjXX+2CQPut4BABBhwmGQNQC0NIISAAARJhwGWQNASyMoAQAQYcJhkDUAtDTGKAEAEIHcPsgaAFoaQQkAgAjl5kHWANDS6HoHAAAAAE4KSnl5eZKTkyMZGRkSFRUl8+fPrz1WVVUlEyZMkJ49e0pSUpJ5zMiRI2Xr1q12NhkAAABABLA1KJWVlUmvXr0kNze3zrHy8nJZtWqV3HPPPeb+1Vdfla+//lp++9vf2tJWAAAAAJHD1jFKQ4cONTd/UlNTZdGiRT77Zs6cKSeeeKJs2rRJunbtGqJWAgAAAIg0rprMobi42HTRS0tLq/cxFRUV5uZRUlJS25VPb3byPL/d7YB7cM4gWJwzCBbnDILFOQM3nzPBtCGqpqamRhxAA9C8efNk2LBhfo/v2bNHTjnlFOnevbu88MIL9f6cSZMmyeTJk+vsnz17tiQmJjZrmwEAAAC4hw7vufTSS00BJiUlxf1BSZPf8OHDZcuWLbJ48eIGX5S/ilJmZqYUFhYGfDNamr4O7U44aNAgpmBFo3DOIFicMwgW5wyCxTkDN58zmg3S09MbFZRi3PDGXnTRRfLdd9/Ju+++G/AFxcfHm5uV/lLs/sU4sS1wB84ZBItzBsHinEGwOGfgxnMmmOePcUNIWr9+vbz33nvSrl07u5sEAAAAIALYGpRKS0tlw4YNtdsFBQWyevVqadu2rXTu3FkuuOACMzX4G2+8Ifv27ZNt27aZx+nxuLg4G1sOAAAAIJzZGpRWrlwpAwYMqN0eP368uR81apSZlOH1118328ccc4zP92l1qX///iFuLQAAAIBIYWtQ0rDT0FwSDplnAgAAAECEaWV3AwAAAADAaQhKAAAAAGBBUAKAMFFcXikFO8rM1wWFZWYbaAjnDADUj6AEAGFga9FuGTMnX3Jyl5ntnJnLZOycfLMf8IdzBgAaRlACAJfTKsCEuWtk6fpCn/156wvlzrlrqBKgDs4ZAAiMoAQALldYWlnngtf7wlePA944ZwAgMIISALhcyZ6qBo/vCnAckYdzBgACIygBgMultI5t8HibAMcReThnACAwghIAuFx6cpz065bu95ju1+OAN84ZAAiMoAQALpeaGCfThmfXufDV7enDs81xwBvnDAAEFtOIxwAAHC4jLUFmjOgt24vKZe2KJbJgdF/pmJbIBS/qxTkDAA0jKAFAmNAL3MTYKFkrIlntkyQ2lnEmaBjnDADUj653AAAAAGBBUAIAAAAAC4ISAAAAAFgQlAAAAADAgqAEAAAAABYEJQAAAACwICgBAAAAgAVBCQAAAAAsCEoAAAAAYEFQAgAAAAALghIAABGquLxSCnaUma8LCsvMNgBgP4ISAAARaGvRbhkzJ19ycpeZ7ZyZy2TsnHyzHwBAUAIAIOJo5WjC3DWydH2hz/689YVy59w1VJYAgKAEAEDkKSytrBOSvMOSHgeASEdQAgAgwpTsqWrw+K4AxwEgEhCUAACIMCmtYxs83ibAcQCIBAQlAAAiTHpynPTrlu73mO7X4wAQ6QhKAABEmNTEOJk2PLtOWNLt6cOzzXEAiHQxdjcAAACEXkZagswY0Vu2F5XL2hVLZMHovtIxLZGQBAC/ICgBABChNBQlxkbJWhHJap8ksbGMTQIAD7reAQAAAIAFQQkAAAAALAhKAAAAAGBBUAIAAAAAC4ISAAAAAFgQlAAAAADAgqAEAAAAABYEJQAAAACwICgBAAAAgAVBCQAAAAAsCEoAAAAAYEFQAgAAAAALghIAAAAAWBCUAAAAAMCCoAQAAAAAFgQlAAAAALAgKAFAmCgur5SCHWXm64LCMrMNAACahqAEAGFga9FuGTMnX3Jyl5ntnJnLZOycfLMfAAAEj6AEAC6nlaMJc9fI0vWFPvvz1hfKnXPXUFkCAKAJCEoA4HKFpZV1QpJ3WNLjAAAgOAQlAHC5kj1VDR7fFeA4AACoi6AEAC6X0jq2weNtAhwHAAB1EZQAwOXSk+OkX7d0v8d0vx4HAADBISgBgMulJsbJtOHZdcKSbk8fnm2OAwCA4MQE+XgAgANlpCXIjBG9ZXtRuaxdsUQWjO4rHdMSCUkAADQRFSUACBMairLaJ5mv9Z6QhEBYpBgA6kdQAgAgArFIMQA4OCjl5eVJTk6OZGRkSFRUlMyfP9/neE1Njfzxj3+Uzp07S0JCggwcOFDWr19vW3sBAAgHLFIMAA4PSmVlZdKrVy/Jzc31e/yhhx6Sxx9/XJ588kn5+OOPJSkpSYYMGSJ79uwJeVsBAAgXLFIMAA6fzGHo0KHm5o9Wkx599FG5++675dxzzzX7nnvuOenYsaOpPF1yySUhbi0AAOGBRYoBwMWz3hUUFMi2bdtMdzuP1NRU6dOnj3z44Yf1BqWKigpz8ygpKTH3VVVV5mYnz/Pb3Q64B+cMgsU5g8ZIiomS+Oga83V8K997lRgTxTmEevH/DNx8zgTTBscGJQ1JSitI3nTbc8yfqVOnyuTJk+vsf+uttyQxMVGcYNGiRXY3AS7DOYNgcc4gkIdO9N2+//jq2q91ivm1oW8SXIb/Z+DGc6a8vNz9QampJk6cKOPHj/epKGVmZsrgwYMlJSXF9gSrJ8igQYMkNjbW1rbAHThnECzOGTTWtuI9cu/rn8vKgkITku5Z2UqOz0qX+357tHRMbW138+Bg/D8DN58znt5mrg5KnTp1Mvfbt283s9556PYxxxxT7/fFx8ebm5X+Uuz+xTixLXAHzhkEi3MGgWSmx8ojlxxXu0jxKzecyiLFCAr/z8CN50wwz+/YdZSysrJMWHrnnXd8EqDOfnfSSSfZ2jYAAMIBixQDgEMrSqWlpbJhwwafCRxWr14tbdu2la5du8q4ceNkypQp0q1bNxOc7rnnHrPm0rBhw+xsNgAAAIAwZ2tQWrlypQwYMKB22zO2aNSoUTJr1iy54447zFpL1157rRQVFUnfvn1l4cKF0ro1facBAAAAhGlQ6t+/v1kvqT5RUVFy3333mRsAAAAAhIpjxygBAAAAgF0ISgAAAABgQVACAAAAAAuCEgAAAABYEJQAAAAAwIKgBAAAAAAWBCUAAAAAsCAoAQAAAIAFQQkAAAAALAhKAAAAAGBBUAIAAAAAC4ISAAAAAFgQlAAAAADAgqAEAAAAABYEJQAAAACwICgBAAAAgAVBCXCo4vJKKdhRZr4uKCwz2wAAAAgNghLgQFuLdsuYOfmSk7vMbOfMXCZj5+Sb/QAAAGh5BCXAYbRyNGHuGlm6vtBnf976Qrlz7hoqSwAAACFAUAIcprC0sk5I8g5LehwAAAAti6AEOEzJnqoGj+8KcBwAAAAHjqAEOExK69gGj7cJcBwAAAAHjqAEOEx6cpz065bu95ju1+MAAABoWQQlwGFSE+Nk2vDsOmFJt6cPzzbHAQAA0LJiWvjnA2iCjLQEmTGit2wvKpe1K5bIgtF9pWNaIiEJAAAgRAhKgENpKEqMjZK1IpLVPkliYxmbBAAAECp0vQMAAAAAC4ISAAAAAFgQlAAAAADAgqAEAAAAABYEJQAAAACwICgBAAAAgAVBCQAAAAAsCEoAAAAAYEFQAgAAAAALghIAAAAAWBCUAAAAAMCCoAQAAAAAFgQlAAAAALAgKAEAAACARYyEuZqaGnNfUlJid1OkqqpKysvLTVtiY2Ptbg5cgHMGweKcQbA4ZxAszhm4+ZzxZAJPRojooLRr1y5zn5mZaXdTAAAAADgkI6Smpjb4mKiaxsQpF6uurpatW7dKmzZtJCoqyvYEq4Ft8+bNkpKSYmtb4A6cMwgW5wyCxTmDYHHOwM3njEYfDUkZGRnSqlWryK4o6RvQpUsXcRI9Qew+SeAunDMIFucMgsU5g2BxzsCt50ygSpIHkzkAAAAAgAVBCQAAAAAsCEohFB8fL/fee6+5BxqDcwbB4pxBsDhnECzOGUTKORP2kzkAAAAAQLCoKAEAAACABUEJAAAAACwISgAAAABgQVACAAAAAAuCUgjk5eVJTk6OWQE4KipK5s+fb3eT4HBTp06VE044Qdq0aSMdOnSQYcOGyddff213s+BgTzzxhGRnZ9cu5nfSSSfJf//7X7ubBZeYNm2a+XwaN26c3U2Bg02aNMmcJ9637t27290sONj3338vv/vd76Rdu3aSkJAgPXv2lJUrV4pbEJRCoKysTHr16iW5ubl2NwUusWTJEhk9erR89NFHsmjRIqmqqpLBgwebcwnwp0uXLuZi95NPPjEfQqeffrqce+658sUXX9jdNDjcihUr5KmnnjJBGwjkqKOOkh9++KH2tmzZMrubBIf6+eef5ZRTTpHY2Fjzh7svv/xSHn74YTnooIPELWLsbkAkGDp0qLkBjbVw4UKf7VmzZpnKkl4E9+vXz7Z2wbm0au3tgQceMFUmDdt6YQP4U1paKpdddpk8/fTTMmXKFLubAxeIiYmRTp062d0MuMD06dMlMzNTnn322dp9WVlZ4iZUlAAXKC4uNvdt27a1uylwgX379smLL75oKpDaBQ+oj1auzz77bBk4cKDdTYFLrF+/3gwlOOyww0zI3rRpk91NgkO9/vrrcvzxx8uFF15o/tjbu3dv80cZN6GiBDhcdXW1GTeg5eujjz7a7ubAwT777DMTjPbs2SPJyckyb948OfLII+1uFhxKw/SqVatM1zugMfr06WN6OBxxxBGm293kyZPl1FNPlc8//9yMqQW8bdy40fRsGD9+vNx1113m/5qbbrpJ4uLiZNSoUeIGBCXABX/x1Q8h+oEjEL14Wb16talAvvLKK+aDSMe7EZZgtXnzZrn55pvNGMjWrVvb3Ry4hPcwAh3TpsHpkEMOkZdeekmuvvpqW9sGZ/6h9/jjj5cHH3zQbGtFSa9nnnzySdcEJbreAQ42ZswYeeONN+S9994zg/WBhuhf6Q4//HA57rjjzMyJOonMY489Znez4EA63vHHH3+UY4891ow50ZuG6scff9x8rd03gUDS0tLk17/+tWzYsMHupsCBOnfuXOcPdT169HBVd00qSoAD1dTUyNixY03XqcWLF7tu8COc89e8iooKu5sBBzrjjDNMV01vV155pZnqecKECRIdHW1b2+CuyUC++eYbufzyy+1uChzolFNOqbO0ybp160wV0i0ISiH6j8T7ry0FBQWme4wOzO/atautbYNzu9vNnj1bXnvtNdPve9u2bWZ/amqqWYcAsJo4caLpFqP/p+zatcucPxqy33zzTbubBgfS/1esYx6TkpLMWieMhUR9brvtNjPDpl7obt26Ve69914TqkeMGGF30+BAt9xyi5x88smm691FF10ky5cvl7/97W/m5hYEpRDQNU0GDBhQu62D2pT2z9RBkYCVDn5U/fv399mvU2xeccUVNrUKTqbdqEaOHGkGWGug1vEDGpIGDRpkd9MAhIktW7aYULRz505p37699O3b1yxBoF8DVieccILpGaN/yLvvvvtM75hHH33UzJboFlE12scHAAAAAFCLyRwAAAAAwIKgBAAAAAAWBCUAAAAAsCAoAQAAAIAFQQkAAAAALAhKAAAAAGBBUAIAAAAAC4ISAAAAAFgQlAAAAADAgqAEAAhL+/btk5NPPlnOP/98n/3FxcWSmZkpf/jDH2xrGwDA+aJqampq7G4EAAAtYd26dXLMMcfI008/LZdddpnZN3LkSPn0009lxYoVEhcXZ3cTAQAORVACAIS1xx9/XCZNmiRffPGFLF++XC688EITknr16mV30wAADkZQAgCENf2YO/300yU6Olo+++wzGTt2rNx99912NwsA4HAEJQBA2Pvqq6+kR48e0rNnT1m1apXExMTY3SQAgMMxmQMAIOz93//9nyQmJkpBQYFs2bLF7uYAAFyAihIAIKx98MEHctppp8lbb70lU6ZMMfvefvttiYqKsrtpAAAHo6IEAAhb5eXlcsUVV8gNN9wgAwYMkGeeecZM6PDkk0/a3TQAgMNRUQIAhK2bb75Z/vOf/5jpwLXrnXrqqafktttuMxM7HHrooXY3EQDgUAQlAEBYWrJkiZxxxhmyePFi6du3r8+xIUOGyN69e+mCBwCoF0EJAAAAACwYowQAAAAAFgQlAAAAALAgKAEAAACABUEJAAAAACwISgAAAABgQVACAAAAAAuCEgAAAABYEJQAAAAAwIKgBAAAAAAWBCUAAAAAsCAoAQAAAID4+n9c8tcLKNoc2wAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "import statsmodels.api as sm\n", + "\n", + "plt.figure(figsize=(10, 6))\n", + "sns.scatterplot(x='X', y='Y', data=df, label='Данные')\n", + "X = sm.add_constant(df['X'])\n", + "model_lin = sm.OLS(df['Y'], X).fit()\n", + "beta1_lin, beta2_lin = model_lin.params\n", + "x_vals = np.linspace(df['X'].min(), df['X'].max(), 100)\n", + "y_lin = beta1_lin + beta2_lin * x_vals\n", + "print(f\"\\nβ₁ = {beta1_lin:.4f} β₂ = {beta2_lin:.4f}\")\n", + "print(f\"\\nR² линейной модели: {model_lin.rsquared:.4f}\")\n", + "\n", + "plt.plot(x_vals, y_lin, color='red', label='Линейная регрессия')\n", + "plt.title('Линейная регрессия Y от X')\n", + "plt.xlabel('X')\n", + "plt.ylabel('Y')\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "ed0c79e5", + "metadata": {}, + "source": [ + "*Распределение точек относительно линии*: Точки разбросаны, линия не отражает тренд, что говорит о плохом соответствии.\n", + "\n", + "*Наклон линии*: Линия близка к горизонтальной, зависимость слабая.\n", + "\n", + "##### Таким образом, Между $X$ и $Y$ нет линейной зависимости. Линейная модель не подходит для описания данных." + ] + }, + { + "cell_type": "markdown", + "id": "f0ab745c", + "metadata": {}, + "source": [ + "## Пункт b)" + ] + }, + { + "cell_type": "markdown", + "id": "4523a637", + "metadata": {}, + "source": [ + "### Формулировка полиномиальной регрессионной модели\n", + "Полиномиальная регрессионная модель зависимости $Y$ от $X$ имеет вид:\n", + "$$\n", + "Y = \\beta_1 + \\beta_2 X + \\beta_3 X^2 + \\epsilon,\n", + "$$\n", + "где:\n", + "- $\\beta_1$ — параметр сдвига,\n", + "- $\\beta_2$ — линейный коэффициент при $X$,\n", + "- $\\beta_3$ — квадратичный коэффициент при $X^2$,\n", + "- $\\epsilon$ — случайная ошибка" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "00f87b02", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAIjCAYAAAA9VuvLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYrBJREFUeJzt3Ql8FOX9x/Ffjs19AQkhSJCoCKiAeFEFEVREtFGU1hb9C1ZtbQWspSriUcWjiK3WKlitWumhWFsExVoqKoJ4ggTxQA0Q5YggAXKfJPt//R6YdXeyyWZDkr0+b1/j7Mxsdmd3h2S++3ueZ6KcTqdTAAAAAAAu0d/dBAAAAAAoghIAAAAA2BCUAAAAAMCGoAQAAAAANgQlAAAAALAhKAEAAACADUEJAAAAAGwISgAAAABgQ1ACAAAAABuCEgAAAADYEJQABKUFCxZIVFRUq9Nxxx0X6N0E0A5FRUWSlJQkkyZN8rr9n//8p/k3Pn/+fAmk2267zezHm2++2Wzbc889Z7bNmzcvIPsGoPNFOZ1OZxc8DwD4HZR+8pOfyF133SV5eXnNtt97770SExMjn3zySUD2D8ChmTt3rtx8883yv//9T8455xzX+vLychk4cKD07dtX3nnnHYmODtx3urW1teYLmdjYWNmwYYPExcWZ9aWlpTJo0CDJzc2V9957L6D7CKDzxHbiYwPAIRs/frycdNJJzdY/+eSTUlJSEpB9AnDofv3rX8szzzwj1157rXz88ceSmJho1t96662ye/duWbZsWcADSEJCgvzpT38yQW7OnDlyxx13mPUa8HQf//vf/wZ8HwF0Hv51Awgb+/fvl7vvvluOPPJIiY+Pl379+sktt9widXV1ze6rTWm8NefTn7Hfx97s5vzzzzfr77zzTtc6va3r7OFt7dq1Zr1WyNy98cYbcvrpp0tycrJkZGTIhRdeKBs3bvS4j/WYPXv2lIaGBo9tCxcudO2z+3Pq/l9xxRUe9/3Xv/7V7LWp3//+93LaaadJjx49zEnqiSeeKP/+97/9ago5evToZvfR19wa3b+UlJRm6/W57e/3W2+9JT/84Q9NdUE/U/0G/1e/+pXU1NR4/XkN1ampqR77qK+zNdZ+r1q1Sq655hrzfqSlpcnkyZNl3759ze6vJ8fWZ6fPpcfDp59+2uw1enu/jjrqKNd99PP4/ve/L6+++qocf/zx5qT8mGOOkRdeeKHZc2oF4/rrrzevX98HfRytyDQ1NXncT5f/+Mc/yuDBg83jZWVlybnnntvsM/nHP/4hp5xyimn+1q1bNxk1apTZj/YcR99++61cddVV5jPSKq/1Wr19xu60SvPnP//ZNMO75557zLoPP/xQHn30UROihgwZIr4UFBSYL1P089LnO+uss0yFx58mvPZ/m3Zjx46VSy+91ASlL7/8Ut59912z37/85S/N5wYgfFFRAhA2rr76avnrX/8qP/jBD8yJ1vvvv29ObjSALF682OvPaJDSJjRKT362bt3a6nPoyfQrr7xySPv52muvmZO7I444woQhPel/5JFHZMSIEbJu3bpmJ6IVFRXy8ssvy0UXXeRa9/TTT5sTYW0a5Cs86jf03ugJ9QUXXCCXXXaZ1NfXmz4XGkr0ufTk35s//OEPkpmZ6Wr+2Nn05Ly6ulp+8YtfmADzwQcfmPdq+/btZptFT14vueQSGTp0qNx3332Snp5uAqSGqraaNm2aCa36mXzxxRemkvD111+7ArP6+9//LlOmTJFx48aZoKL7pvcbOXKkOWl3/+w00Gjl050GK3eFhYXyox/9SH7+85+bx9XPVT8DraboCbrS5zjjjDNkx44dJshZTdJmzZol33zzjTz00EOux9PAoif+enzpvwf9/DVsaniwKrOzZ882r1FDsjZt1eZk+m9Fw7t7E7i2Hke633pMT58+3bz/Gpb035Iey75873vfM5/t7373O/nxj39sXp++h1blpjUaTjWwaki66aabxOFwyOOPP27C+8qVK2X48OEmAOpnZrGOWffXou+DLw8++KAJyLp/e/bskT59+pj3EUCY0z5KABBsnn76ae0/6VyzZo3X7WeccYbz2GOPdS2vX7/e3P/qq6/2uN8NN9xg1r/xxhse65cvX27Wr1y50rVuypQpzsMPP9y1vGLFCnMfnVuGDx/uHD9+vFl/xx13uNbrbV23e/duj+fR/df1+nosxx9/vLNnz57OPXv2uNZ99NFHzujoaOfkyZObPeakSZOc3//+913rv/76a3NfXW9/Tt1/fR2WRx991BkfH+8cM2aMx2tT1dXVHsv19fXO4447znnmmWfa3m2n84knnjDPpc/t/hno1NbPzKL7l5yc3Gz9v/71r2bvt30f1Zw5c5xRUVEe+zJr1izzs998841rXVFRkVn3u9/9rtX9sfb7xBNPNO+B5f777zfrX3zxRbNcUVHhzMjIcP70pz/1+PmdO3c609PTPda39Brd6eehj79o0SLXurKyMmdOTo5z2LBhrnV33323eawvv/zS4+dvvvlmZ0xMjHPr1q1mWY9xfbzrrruu2XM1NTWZeWFhoTl2LrroImdjY6PX+/hzHNXU1JjHu+aaazweqy2v3/019+7d29m9e3ez/8uWLWvTz02YMMEZFxfn3Lx5s2tdcXGxMzU11Tlq1CivP2M/Zv3x+OOPm/3TacmSJe16DAChhaZ3AMKCVeWZMWOGx3qtLKn//Oc/Huu1gmJ9699W2iRqzZo1pmLRkr1795pKhjWVlZV5bNcKwPr1602zpu7du7vWazMjrSB4q1ZdeeWVpsKwc+dOs6xVs1NPPVWOPvroVvdXKxFaMdBKiVYh7Kw+IUqbmOm+6jf03ioB/rxf+jj62rUS1hr396ml+7vvY1VVlbmfVgB0HCKt4Fj0Z7WviFaE2utnP/uZqUpYtNKhzcOsz2T58uWmCZyO1Oa+31pB0erFihUr/H7O3r17e1QKrSZ/+tqsz1srZ/q5aBM59+c9++yzpbGx0VQ51aJFi0zly1s1xqqILVmyxDTP+81vftOsb411H3+OI/1M9PG02tde+pq1Kqb/drS6ptU6X/R1a1PBCRMmmMqsJScnxzSTW716tRkUoiNZlVRtrqgVRADhj6AEICxoEyk98XPvA6J69eplTp51uzs94VW++lG4n5hpMz1tptZa34kBAwaYfiHWpCez9v207menTQD1BFhPPt1pPwgdeetvf/ubCQjWiIBtaS6kTfN0v73RJnba9Emb8Glo0/3VZmT2cOfv+6WvWR9LT4D15F4769tfky67v086aSC006aQVqjU59b7aTM05b6fGhz1hF37jWzevNm8j976F7Wmf//+Hsv6fHri/dVXX7mayakzzzyz2b7rSbv21fGXHq/2gGIFYPfn1aBsf07r2LKeV1+3Bi/3AG6n99F/J9oXqq1aO440IOn7pk0MrfdA33tv/QJbc/LJJ5u5t4FbvNGBFDTAtfTvSI+Fbdu2SUfRIH7dddeZ59MvDWbOnNlhjw0geNFHCUBYaelbcTvr23oNUm3x1FNPmRNXHcq4NfqtvgYEi3b+njp1qhwqDRHayV074Ou+a3+cBx54oMX768mq9vvQfizeTpy134r2T9I+HPq4Ggi0mqJ9ZJ599tlm99fn1OCgAxj4ote+0ZN9PVnW/j3WYAr6PBYNZ0uXLm22T1q5cA+nWmXTSoOemOqQ0fr82ldHw5P7QAbav0UrYdp/SfvHdAbr+bTPi7fjRqtPnfW8+j5oPxxvfFUWD4Wv48i65pF+gWCvBLXlWAkV2qdJ/w1oHznty6fHtH5Zof0KAYQvghKAsHD44YebE0r99t0anEHt2rXLVEN0u7vPPvvMfCvfliZD+s21dtzWyoj9cew0eFhNdJS9KZj18zpYgN3nn39uftbbCaaeiN54442mYqKDVdgHBbDTUcT0Pnr/lgKdhhUNfu7N6TQoeaPvl/v72hoNc1ZlQAeF+Oijj0xFxJ02V7NX26yqlUWHjNagqU0NtTmaRZvA2WmVRE9e9Wd0FDUNZfrZ/9///Z+0lR47Y8aMcS1XVlaappLnnXeeWdbRFJWOQmjf9/batGmTqRK6B3x9zcoaGEKfV/fF13Pq/fTz1GDZUqjR++i/E/082zJim6/jSA0bNkyeeOIJ0zxQg65WKTVcvf3229JZ9N+uNoFr6d+RHg86QmBH0BEDNfzrYBUnnHCCqSppONQBOLSJZGcFZACBR9M7AGHBOpl1HwHMajak3Edx02Y02u9Em1C1hY4Op03FWhr1yx9audETVD35dw8GeuFcbbpkvQ47PfHVIcT1opfemqi508qXNqHTkc3c+/i4s4Zx1qqN+89pHxY7bcKkJ71tfb/s9MRcn89f1s+4Xxddb+vn4Y1Wk3TkNr02j4YKf7/t10qU+zDs+h7qaG86gpzSiolWC3/72982G67dag7mr+LiYo8RGbVfjTax1GPEqlpp9VBH9fNWzdRjSPdRTZw40bw/3kZjs95D7dOjIUIDjX1ocfv159tyHFn7fPnll5sK5W233Wbeez3OO5MeGzpC34svvuhqoqg0HGtFVPsQuVd220v/fehId/p69NIDSr/I0GNN/83qKJAAwhdfgwAICzossQ5TrCe7evKo/Vi0mYwGEj05tCoFzz//vDmR1P4retHIttAAo8MKH0qHdXf6bbuefGu/Gh3O2RoeXIe0dr82k532TdJvtt0rVt7o0Mha/WmtH5MGRw2Reo0d7fyufUv0sbXPjIYxi54o6xDr+u299tFoCz2pt/qpaNO7119/XW644Qbxlza10wqI/qw2t9MTX62Eeet7pENFa9M0ff+s/i7+0r4neh0eDSZaqdCqlJ5wawBQ+vz6fmgo0MqCNvfTyob2o9LBQjSYzZs3z6/n1GZzegzoICHZ2dnyl7/8xZzsu1f2tJL40ksvmWsuaZNDvd6VBnetnum1ozQo6DGhx7ju28MPP2yqY/rZahjSJo26TQdj0M9XA7+e9GsF6OKLLzYVRX1+7d+kn7U/x5HSpqV6DNuHQu9sWu3S6qJ+Rlrt1cqODg+ux93999/fIc+h76U26dTjzr2Kq8eETvq7RAeg8DZYCoAwEOhh9wCgI4YHVw0NDc7Zs2c78/LynA6Hw5mbm2uGja6trXXdR4dF1uG933///WaP2dLw4Dpcc1VVlcd9D2V4cPXaa685R4wY4UxMTHSmpaU58/PznZ999pnHfVp6zNa2W0NOL168uNXXpp566iln//79zbDPAwcONPtoPabllFNOcf7whz90fv75582ev6Xhwa1Jh24+6qijnL/5zW+cdXV17RoeXN+Ts88+25mSkuLMzMw0Q3DrUOru76l+vkOGDHGOHDnSuX///nYPD65Dxf/sZz9zduvWzTzfZZdd5jGEu0X3b9y4cWZI8ISEBOeRRx7pvOKKK5xr1671+Rrd6edx/vnnO//3v/+Z/bc+B30f7HRocj2W9f3U91Xfi9NOO835+9//3mNIc339+nr1cfR+WVlZ5nj/8MMPPR7vL3/5ixmCXJ9TX69+jjpkvr/H0cKFC81Q7fYhvf0ZHtyfz8pu3bp15rPQzyspKckMX/7OO++0eH9/hgfftm2beVz3ofnd6fD0+hovuOACv/YZQOiI0v8FOqwBABAo1iiCWlVp66hrHUH7IOlohjr6IAAg+NBHCQAAAABsCEoAAAAAYENQAgAAAAAb+igBAAAAgA0VJQAAAACwISgBAAAAQKRdcFYvtqdXPtcLxelV6AEAAABEJqfTKRUVFeYi29HR0ZEdlDQk5ebmBno3AAAAAASJbdu2SZ8+fSI7KGklyXoz0tLSArovDQ0N8uqrr8o555wjDocjoPuC0MAxA39xzMBfHDPwF8cMQvmYKS8vN0UUKyNEdFCymttpSAqGoJSUlGT2I9AHCUIDxwz8xTEDf3HMwF8cMwiHY6YtXXIYzAEAAAAAbAhKAAAAAGBDUAIAAACASOujBAAAIltjY6PpI4GOoe9lbGys1NbWmvcWCKZjJiYmxjxXR1wWiKAEAADCVmVlpWzfvt1cOwUdQ9/LXr16mRGFuUYlgvGY0YEjcnJyJC4u7pAeh6AEAADCkn5zrSFJT5qysrI4qe8gTU1NJoCmpKT4vGAn0JXHjAay+vp62b17txQVFUn//v0P6fkISgAAIGyb++iJk4akxMTEQO9OWJ306sloQkICQQlBd8zov3Udgvzrr792PWd7cXQDAICwRiUJiCzRHRTGCEoAAAAAYENQAgAAAAAbghIAAAAA2BCUAAAAAMCGoAQAABCESktLzUAU9ikjIyPQuwZEBIISAABAK8qq62Xzt5VSsHWfbN5daZa70qJFi+Sbb74x00MPPdSlzw1EMoISEKT0D3HR7ipzu6ikqsv/MAMARIpLa2TawgI568GVctGj78hZD6yU6QsLzPrOtn//fjPv0aOH9OrVy0zp6eke93nwwQdl8ODBkpycLLm5uXLttdeaC3taFixY0KwC9dVXX5nK1Pr1683ym2++aZa1guVO1y1ZssTrz9jpc+hzWbZt2yaXXHKJWd+9e3e58MILzWMAoYSgBATxH+b8+avNcv681V32hxkAcIB+QTVz0QZ5q7DEY/2qwhK5edGGTv8Cq66uzszj4+NbvV7Mww8/LJ9++qn89a9/lTfeeENuuukmCfSFfseNGyepqany1ltvydtvvy0pKSly7rnnmguAAqGCoAQEmUD/YQYAHFBSWd/sd7H772Td3pn27t1r5ho4WnL99dfLmDFjpF+/fnLmmWfKPffcI88//7wE0j//+U9pamqSJ5980lS7Bg0aJE8//bRs3brVVK+AUBEb6B0A4P8f5vSkuC7fLwCINOW1Da1ur/Cx/VDt2LHDzHNyclq8z2uvvSZz5syRzz//XMrLy01zvdraWqmurpakpCRzn7KyMlPRsTidTq+P1adPH5/7dNppp0lMTIykpaXJiBEjTNM/+8999NFHsmnTpmYBT/dr8+bNPp8DCBYEJSDIBPoPMwDggLQER6vbU31sP1SfffaZZGVlmT4+3mifn+9///vyi1/8Qu69915zv9WrV8tVV11lmrhZQUkDy7p16zwC2OjRo5s9njaTcw83/fv391otGjBggAk8t956q/z85z+Xl19+2eM+2kfqxBNPlGeeeabZz+vrAUIFQQkIMoH+wwwAOCAzJU5G9c801Xw7Xa/bO9Prr79uKjgt+fDDD00TtwceeMD0VVLemt3ptqOOOsq1HBvr/fQvLy/P59DjOmCEPlbPnj3lyiuvlPvuu6/ZfU444QQTqPQ+WnkCQhV9lIAg/cPsTVf8YQYAHKDNnO+bOKTZ72RdnjtxSKc1g66pqZGnnnpK/vvf/5pBEXbu3OmatBmdNp3T2xpYdOCERx55RLZs2SJ///vf5bHHHpPOpJUqbUKn/Y102PLjjjuu2X0uu+wyyczMNCPdaZWqqKjI9E267rrrZPv27Z26f0BHoqIEBOkfZh244f0tu7vsDzMAoLneGYnyyKRhpn+oNn3Wqr5+YdWZv4u1GnP11Veb2zrct0522m9JA4j2EZo7d67MmjVLRo0aZforTZ48udP2bfjw4Wauw5SPHDlS5s+f3+w+2uRv1apVMnPmTLn44ouloqJCDjvsMDnrrLOoMCGkEJSAIP7DvKu0WjauWSlLp46U7IwkQhIABID+7u3q379nnHFGqyPE6TWN1K9+9Sszubv88stdt6+44gozudMR8twHdND+St4GeHBf5/4z2txPB47Q0GM1+bNfg0mv+aTDlQOhjKAEBCn9o5zkiJKN2m48K1kcDvomAUAkSExMbHEAB0t2drYZfQ5A5yEoAQAABJEf/ehHZmqN9lEC0LkYzAEAAAAAbAhKAAAAAGBDUAIAAAAAG4ISAAAAANgQlAAAAADAhqAEAAAAADYEJQAAAACwISgBAAAEkSuuuEKioqJanEpLSwO9i0BEICgBAAAEmXPPPVe++eYbj2nRokWB3i0gohCUAABARHA6nVJVXxWQSZ/bH/Hx8dKrVy+PqXv37s3up+Hp2GOPNffv16+fPPDAA83uc+eddzarSk2YMMG1XX/uoYceci2//vrrze4zevRouf766z0ed/bs2XL88ce7lpuamuSuu+6SPn36mP3RbcuWLXNt/+qrr8zjZmVlSX19vWv9Rx99ZNbrfrhX1dyff8+ePdKtWzfJyMhwrdu8ebNceOGFkp2dLSkpKXLyySfLa6+9dsiv387ba9fHdH/ta9askbFjx0pmZqakp6fLGWecIevWrfP4mc8//9zcR7db++H+euzefPNNc5///Oc/MmTIEElISJDvfe978sknn3jcb/Xq1XL66adLYmKi5ObmynXXXSdVVVUer8/++m+44QaP1/H444+bn01KSpJLLrlEysrKPJ7jySeflEGDBpl9GDhwoDz66KMe27dv3y6TJk0yx2hycrKcdNJJ8v7777u2L126VM4880zz+PoeXXTRRX4df5WVleaY0M/a/XWsX79eOlNspz46AABAkKhuqJaUOSkBee7KWZWSHJfcoY/54YcfmpNaPdn90Y9+JO+8845ce+210qNHD3NSadGQpmHKChG//OUvpa6uzutjatj59a9/bYKHv/74xz+aoKYn3cOGDZO//OUvcsEFF8inn34q/fv3d91PQ9QLL7wgP/7xj82y3v+www5r9bE1lO3fv19iYmI8Tp7PO+88uffee81j/u1vf5P8/Hz54osvpG/fvu16/e1VUVEhU6ZMkUceecQ8n74Pum+FhYWSmppq7nPllVdKXFycvP322yYs/POf/5Q77rjD52PfeOON5r3VsHzLLbeY1/jll1+Kw+EwYVGrj/fcc495v3fv3i3Tpk0z09NPP+16DA2wP/3pT13LGmYsmzZtkueff96EmfLycrnqqqvMcfTMM8+Y7Tr/zW9+I/PmzTOfa0FBgXksfQx9zfo5aDDUz/Cll14y+6khUY8lpUFv4sSJ5rj6+9//bj7HV155xa/j77e//a28+uqrZj8HDBgg27Ztk1NOOUU6G0EJAAAgBD344INy1llnye23326Wjz76aPnss8/kd7/7nUdQamhoMNUGPYFVeruloPDXv/7VbNNKjZ4A++P3v/+9zJw50xWA5s6dKytWrDDVgvnz57vup4HhiSeeMPerrq42J7964r1w4UKvj6uhQEPAjBkz5OGHH3atHzp0qJksd999tyxevNicrGtQaM/rby+tlrj785//bKpFK1eulO9///tmnVY/tDJz3HHHmWWtLLWFhimtRFmfj1bs9HVqSJ4zZ45cdtllroqXBlJ9jzS4/OlPfzIVIKVhzXr9drW1tSZkWmFVw975559vwp7+jD6/3r744ovN9ry8PHOcacDVoPTss8+agKZVNavqedRRR7keX4OsBvlZs2ZJWlqaREdHe3xubTn+9L3T91Ffl7XPXYGgBAAAIkKSI8lUdgL13B1t48aN5oTS3YgRI0wwaWxsdFVftErgXkFoiYaW2267TR577DGv/aG0uZWe6Fu0+dwxxxzjeo7i4mLz/Pb90aZ17rTKpI+jlYxVq1aZk19tUtWSm266Sa655ho54ogjPNbribRW07RioX24tFJRU1MjW7du9bhfW16/Bjx97do0TF+Tnty7v5bWXrvatWuX+XltLvftt9+a91/fT/d90YChAUeblOnztNWpp57quq1BRCsq+tkrfW83bNjgqv4orWhpZaaoqMg0l/NFq2/uFT19Pv35L774wgQsrVpplcm9IqXvtRX0NMRopclb01Bru/78oRx/+t4tX75cduzY4bP62JEISgAAICJon4aObv4WCjTA9O7d2+f9tBKlJ+HatMtbUNLKxa233mpOojWkaNOut956y+/9iY2NNRUvDR5acdJmYdaJv51WZPQ59LlefPFFj23az0ZPnrWSpRUMrRT94Ac/8Oj/1NbXr83bdJ+0b4++D/oe7Ny50zSVc3/tFq3aaMizaGVF+1FpE7nDDz/cNAXUwOG+L0899ZS5n4YP3VcNG1bFp730c9AQqf2S7NybHx7K4yutAA4fPlzcWUFcX0trfG1vy/GnTf+0sqjVNA29/vb5ay8GcwAAAAhBWi3Q/i7udFmb4FknsRpqtL+IfuPfGq3IaPMqb4NBWLSCoIFEJ63uuFcQtEmVhhFv++NeebFodUKbhmn1xWpWZqcnw9pfRZsW6kAOdvrYGm50YIDBgwebZmI6YIS7tr5+7TOkr0ubhGkTsX379nlUg9xfu0726onui4YV7ZdkDa5RUlLicR8diEGraTrQgfbz0YDYFu+9957rtu6XBgarUnTCCSeYZnDu+2ZNVsjzRV+nhkn359PmcQMGDDCVPv1ct2zZ0uzxtcqjdKAJrRrt3bvX6+Pr9jfeeOOQjj/dD+1bpu+7DvbQUh+njkZFCQAAIARpiNCR3rRvjvYBeffdd02He2tEMu3wrk3TNIzo9tZoHyLtcO8rUPiqymh/liOPPNKMpKZVID2Bdm8WZtGTbO1jpRUCPSn3Rk+Ic3JyZOrUqV63a38cHRRCKxBaLdRAZQ0g4O/r1+qO9nvRipL2h9JgpKPAtZXuiw5UoCFIm/rpe2GvpGiVZMGCBWYQDq329OzZs02PrYFKB+jQsKBVLQ111ohw2mRQA5j2ybr66qtNtUWDk1ba9FhoC61qaaVLK3O67xr4tP9Tr4N9mnQgDV2n74kOHKF9iNauXWtCm/Yb09HudLAF3SftM6WfmQZBDVhaVdNjQvvS6Wc9efJk8xlp0NF9b+vxp0FN91H7Umllyx6IOwsVJQAAgBCk1QQdCOG5554zAwRo8yQ9qbYGctBmYNoPSEcL89UMS09etV/OodCTaT1x1gCnFR4dGlwHVnAf8c6d9lsZN25ci4+noeW+++4zo7t5o0FLK02nnXaaCUv6WPqeWPx5/Vaw0XCkTf20L5FWhdpKm9VpcNDnv/zyy8174R6EtAqkQUYHPvC3SZy+B1pNOfHEE01zQB2dzqoWabVGmyfq4+sQ4Ro09DhoS1NLi1aHdKAGrYadc8455jHdh/+++uqrTTNJDb76uWqfMg18VkVJ90XfY329+hh6H91nq6qpw6vrCH///e9/zfujA1988MEHbT7+tN+ZhigdiU8HmehKUc6uauQXIJqMNQHrePBaFg4kHXVFE7QeRC39owfccczAXxwz8Fc4HzNaIdAO7XpCd6h9QeB5UqvnV9YIZugcOjDEmDFjTABr7XpLh0IrbkuWLOn06xE1dfEx09q/fX+yAUc3AAAAANgQlAAAAADAhqAEAAAABBnt26M9ZDqr2Z3V9K6zm92FMoISAAAAANgQlAAAQFgL83GrAHTSv3mCEgAACEvW8MT19fWB3hUAXai6utrMD3UkTy44CwAAwlJsbKwkJSXJ7t27zQkTQ1l33FDPGj51CGbeUwTTMaOVJA1JepFh7dtlfVnSXgQlAAAQlqKioiQnJ8dcT+Xrr78O9O6EDT0Z1YuA6gVa9T0Ggu2Y0ZDUq1evQ34cghIAAAhbcXFx0r9/f5rfdfBFiletWiWjRo0Ku4sUI/SPGYfDcciVJAtBCQAAhDVt6pOQkBDo3QgbehK6f/9+854SlBDOxwwNSwEAAADAhqAEAAAAADYEJQAAAACwISgBAAAAgA1BCQAAAACCKSjNmTNHTj75ZElNTZWePXvKhAkT5IsvvvC4j16YaurUqdKjRw9JSUmRiRMnyq5duwK2zwAAAADCX0CD0sqVK00Ieu+992T58uVmjPVzzjlHqqqqXPf51a9+JUuXLpV//etf5v7FxcVy8cUXB3K3AQAAAIS5gF5HadmyZR7LCxYsMJWlDz/80FyQqqysTJ566il59tln5cwzzzT3efrpp2XQoEEmXH3ve98L0J4DAAAACGdBdcFZDUaqe/fuZq6BSatMZ599tus+AwcOlL59+8q7777rNSjV1dWZyVJeXm7m+jg6BZL1/IHeD4QOjhn4i2MG/uKYgb84ZhDKx4w/+xA0QampqUmuv/56GTFihBx33HFm3c6dOyUuLk4yMjI87pudnW22tdTvafbs2c3Wv/rqq5KUlCTBQJsZAv7gmIG/OGbgL44Z+ItjBqF4zFRXV4deUNK+Sp988omsXr36kB5n1qxZMmPGDI+KUm5urun7lJaWJoFOsHqAjB07VhwOR0D3BaGBYwb+4piBvzhm4C+OGYTyMWO1NguZoDRt2jR5+eWXZdWqVdKnTx/X+l69ekl9fb2UlpZ6VJV01Dvd5k18fLyZ7PRDCfQHE4z7gtDAMQN/cczAXxwz8BfHDELxmPHn+QM66p3T6TQhafHixfLGG29IXl6ex/YTTzzRvJjXX3/dtU6HD9+6dauceuqpAdhjAAAAAJEgNtDN7XREuxdffNFcS8nqd5Seni6JiYlmftVVV5mmdDrAgzadmz59uglJjHgHAAAAICyD0p/+9CczHz16tMd6HQL8iiuuMLf/8Ic/SHR0tLnQrI5mN27cOHn00UcDsr8AAAAAIkNsoJve+ZKQkCDz5883EwAAAAB0hYD2UQIAAACAYERQAgAAAAAbghIAAAAA2BCUAAAAAMCGoAQAAAAANgQlAAAAALAhKAEAAACADUEJAAAAAGwISgAAAABgQ1ACAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2BCUAAAAAsCEoAQAAAIANQQkAAAAAbAhKAAAAAGBDUAIAAAAAG4ISAAAAANgQlAAAAADAhqAEAAAAADYEJQAAAACwISgBAAAAgA1BCQAAAABsCEoAAAAAYENQAgAAAAAbghIAAAAA2BCUAAAAAMCGoAQAAAAANgQlAAAAALAhKAEAAACADUEJAIAIVVZdL0W7q8ztopIqswwAOICgBABABCourZFpCwskf/5qs5w/b7VMX1hg1gMACEoAAEQcrRzNXLRB3ios8Vi/qrBEbl60gcoSABCUAACIPCWV9c1CkntY0u0AEOkISgAARJjy2oZWt1f42A4AkYCgBABAhElLcLS6PdXHdgCIBAQlAAAiTGZKnIzqn+l1m67X7QAQ6QhKAABEmPSkOLlv4pBmYUmX504cYrYDQKSLDfQOAACArtc7I1EemTRMdpVWy8Y1K2Xp1JGSnZFESAKAgwhKAABEKA1FSY4o2SgieVnJ4nDQNwkALDS9AwAAAAAbghIAAAAA2BCUAAAAAMCGoAQAAAAANgQlAAAAALAhKAEAAACADUEJAAAAAGwISgAAAABgQ1ACAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2BCUAAAAAsCEoAQAAAIANQQkAAAAAbAhKAAAAAGBDUOoiZdX1UrS7ytwuKqkyywAAAACCE0GpCxSX1si0hQWSP3+1Wc6ft1qmLyww6wEAAAAEn4AGpVWrVkl+fr707t1boqKiZMmSJR7bKysrZdq0adKnTx9JTEyUY445Rh577DEJJVo5mrlog7xVWOKxflVhidy8aAOVJQBAwNDaAQCCNChVVVXJ0KFDZf78+V63z5gxQ5YtWyb/+Mc/ZOPGjXL99deb4PTSSy9JqCiprG8WktzDkm4HAKCr0doBAII4KI0fP17uueceueiii7xuf+edd2TKlCkyevRo6devn/zsZz8zweqDDz6QUFFe29Dq9gof2wEA6Gi0dgAA32IliJ122mmmenTllVea5nlvvvmmfPnll/KHP/yhxZ+pq6szk6W8vNzMGxoazNTVkmOjJD7GaW7HR3vOVVJsVED2C6HBOjY4RtBWHDNoi12l1fLBlt0SH9P8b9P7W3ab7UmOqADvJYIVv2cQyseMP/sQ5XQ6vztrDyDto7R48WKZMGGCa50GHq0i/e1vf5PY2FiJjo6WJ554QiZPntzi49x5550ye/bsZuufffZZSUpK6rT9BwAAABDcqqur5dJLL5WysjJJS0sL3YrSI488Iu+9956pKh1++OFm8IepU6ea6tLZZ5/t9WdmzZpl+ja5V5Ryc3PlnHPO8flmdJadZbVyx0ufyNqiErn7pCa5fW20nJSXKXddcJxkpycEZJ8QGvRbj+XLl8vYsWPF4XAEencQAjhm0BY6gIPVN0krSdbfprqmA1WkpVNHSl5WcoD3EsGK3zMI5WPGam3WFkEblGpqauSWW24xVabzzz/frBsyZIisX79efv/737cYlOLj481kpx9KoD6Y3EyH/OHHJ5qmDBvXrJR//+J0yc5IkvSkuIDsD0JPII9fhA7tV7Kr9EDfku1l9ZKdHsvvGXilf4OGH5Fl+iRZNCTVNUbJqP6ZZju/c+ALf5sQiseMP88ftNdRsvoUaXM7dzExMdLU1CShRk9WrG/ndM7JC4COxAhm8If+Dbpv4hATitzp8tyJQ/gbBQCBrijpdZI2bdrkWi4qKjIVo+7du0vfvn3ljDPOkBtvvNFcQ0mb3q1cudL0V3rwwQcDudsAELQjmGnnfPsIZo9MGsaJL5rpnZFojg2rtYM2t6O1AwAESVBau3atjBkzxrVs9S3SIcEXLFggzz33nOlzdNlll8nevXtNWLr33nvl5z//eQD3GgBC73ptnPzCGz0udHS7jQdbOwS6SQwABJOABiW9PlJrg+716tVLnn766S7dJwAINVyvDQCAjhe0fZQAAG2TltB6FSDVx3YAANAcQQkAQlxKQqyMPKqH1226XrcDAAD/8NcTAEJcVd1+uWJEnmhDZr1em2XEUT3Met0OAAD8Q0UJAEJcWU2DXLewQIb17SbzJw0z63Suy7q+vIY+SgAA+IuKEgCEQR+l6vpGmffGJomPccr9p4hMXVhgLh6q6KMEAID/qCgBQIjLTIlrduFQi67X7QAAwD8EJQAIg2vh3DdxSLOwpMtzJw7hGkoAALQDTe8AIAz0zkiURyYNk12l1bJxzUpZOnWkZGckEZIAAGgnghIAhAkNRUmOKNkoInlZyeJw0DcJAID2oukdEKTKquulaHeVuV1UUmWWAQAA0DUISkAQKi6tkWkLCyR//mqznD9vtUxfWGDWAwAAoPMRlIAgo5WjmYs2yFuF3104VK0qLJGbF22gsgQAANAFCEpAkCmprG8WktzDkm4HAABA5yIoAUGmvLah1e0VPrYDANBZ6D+LSEJQAoJMWkLrI5Wl+tgOAEBnoP8sIg1BCQgymSlxzS4catH1uh0AgK5E/1lEIoISEITXwrlv4pBmYUmX504cwgVE0SKaxADoLPSfRSTigrNAEOqdkSiPTBomu0qrZeOalbJ06kjJzkgiJKFF2vRFv+39YMtuuf+UA01ihh+RZUK3Hk8AcCjoP4tIREUJCFIaivKyks1tnROS0BKaxADobPSfRSQiKAFAiKNJDIDORv9ZRCKCEgCEOJrEAOhs9J9FJPafpY8SAIQ4msQA6Ar0n0Wk9Z+logQAIY4mMQC6Cv1nEUn9ZwlKABDiaBIDAAg2JWHQf5amdwAQBmgSAwAIJuVh0H+WoAQAYUJDUZIjSjYebBLjcNA3CQAQGGlh0H+WpncAAAAAOlRmGPSfJSgBAAAA6FDpYdB/lqZ3AAAAADpc7xDvP0tFCQCACBXKF4IEEBrSQ3hIeYISAAAReiHIaQsLJH/+arOsF4KcvrDArAcAEJQAAIg44XAhSADobAQlAAAiTDhcCBIAOhtBCQCACBMOF4IEgM5GUAIAIMKEw4UgAaCzEZQAAIgw4XAhSADobAQlAAAiTDhcCBIAOhsXnAWAMKEjlelF/axr4mSnh85F/dD1Qv1CkADQ2agoAUAY4Jo4iLQLQQJAZyMoAUCI45o4AAB0PIISAIQ4rokDAEDHIygBQIjjmjgAAHQ8ghIAhDiuiQMAQMcjKAFAiOOaOAAAdDyCEgCEOK6JAwBAx+M6SgAQBrgmDgAAHYuKEgCEo6hA7wAAAKGNoAQAYYALzgIA0LEISgAQ4rjgLAAAHY+gBAAhjgvOAgDQ8QhKABDiuOAsAAAdj6AEACGOC84CANDxCEoAEOK44CwAAB2PoAQAIY4LzgIA0PG44CwAhAEuOAsAQMeiogQAYUJDUV5Wsrmtc0ISfNGh44t2V5nbRSVVDCUPAG4ISgAARCAuUgwArSMoAQAQYbhIMQD4RlACACDCcJFitBfNNRFJAhqUVq1aJfn5+dK7d2+JioqSJUuWNLvPxo0b5YILLpD09HRJTk6Wk08+WbZu3RqQ/QW60q7yWvlyV4W5rXNdBoCOwEWK0R4010SkCWhQqqqqkqFDh8r8+fO9bt+8ebOMHDlSBg4cKG+++aZs2LBBbr/9dklISOjyfQW60tY9VTLj+fVy8Z/eMcs6//Xz6816ADhUXKQY/qK5JiJRQIcHHz9+vJlacuutt8p5550n999/v2vdkUce2UV7BwSGVo5mLf5Y3t60R+Jjvlu/etMeuWXxx/LAJcdLdhpfFgBoP70I8en9M702v9P1XKQY7WmuyUibCDdBex2lpqYm+c9//iM33XSTjBs3TgoKCiQvL09mzZolEyZMaPHn6urqzGQpLy8384aGBjMFkvX8gd4PBLeS8mpZW1RiQlJ8tNOss+ZrikrM9u6JbgkKcMPvGbTF/v0N8otR/SRaGqXgqz2u3zPfO6K7XDOqn9ne0BAV6N1EECmtqpH4GM+/SdZclVXVSENDfMD2D8GtIYj+NvmzD1FOp/O7ozyAtI/S4sWLXSFo586dkpOTI0lJSXLPPffImDFjZNmyZXLLLbfIihUr5IwzzvD6OHfeeafMnj272fpnn33WPBYAAACAyFRdXS2XXnqplJWVSVpaWmgGpeLiYjnssMNk0qRJJuRYdGAHHdRh4cKFba4o5ebmSklJic83oysS7PLly2Xs2LHicND+G97pwA1W3yT9tu7uk5rk9rXRUtd04NvdF35xmhydnRrgvUSw4vcM2mLD9lK59Mn3W/w9s/Dq4TK4T0aA9xLBpLymXm789wZ5e/OeZsfMiCN7yO9+METSEml6h+D/26TZIDMzs01BKWib3ukLiI2NlWOOOcZj/aBBg2T16gOjrXgTHx9vJjv9UAL9waz7Zp1srdkq0THRAd8XBK/MtCQ5OS/T9Emy6B+iusYoGXlUD7Od4we+BMPvPASvjORE8zvFnfV7RqUnJ3L8wEMPh0Puufh4M3DD+1t2u46Z4Udkyb0XD5EeaYmB3kWEAEcQ/G3y5/mD9jpKcXFxZijwL774wmP9l19+KYcffriEollvzJLrvrhOej7YU87865ly82s3ywsbX5Dt5dsDvWsIIjpQw28vGmxCkTtd1vUM5ADgUOlgDaP6Z3rdpusZzAHe9M5IlEcmDZOlU0eaZZ3rck4GIQnhKaAVpcrKStm0aZNruaioSNavXy/du3eXvn37yo033ig/+tGPZNSoUa4+SkuXLjVDhYeiREeixEfHS0V9haz4aoWZLL1Te8sph50iJ/c+2cxP6n2SZCTQ7CFS9e2RbEa304EbNn34lmlup5UkQhKAjqCjk903cYhHdcAKSXMnDmH0MrRIj40kR5RsFJG8rOSAVweAsA1Ka9euNQHIMmPGDDOfMmWKLFiwQC666CJ57LHHZM6cOXLdddfJgAEDZNGiRebaSqFoySVLZOl/lkq/k/tJwa4CeX/H+/LBjg/kk28/keKKYlny+RIzWfp37+8KTycfdrIM6zXMhC1EBg1FOrqdfpWgfZL4YwSgM6oDu0qrZeOalaY6kJ2RREgCgGAISqNHjxZfY0lceeWVZgoXMVExMrjnYDnhsBPkqhOuMuuq6qukYGeBvL/9fVlTvMZMW/ZtkcK9hWZ65uNnXD97XM/jTHDSipOGJ12Oi+GPGgDAf1QHACAEB3OIJMlxyTKy70gzWUqqS2Rt8VpZs+NAcNLK066qXfLRro/M9GTBk+Z+8THxMrTXUDkp5yQTnk7sfaIck3WMxEbz0QIAAADtxdl0kMpMypRzjzrXTEorbzsqdriCk4YonfbV7jMhSidLYmyiHN/r+APBKedEE54GZg4kPAFhrqy63jSjUkUlVZKdTjMqAADaizPnEKHXmeqT1sdMFw26yBWeNu/bbMLTh998eGAq/tAMFvHu9nfNZA9PVnDS+aCsQYQnIEwUl9bIzEUb5IMtu+X+U0Ty5602w/Zqh33tiwIAAPzDWXKIh6ejuh9lpkmDJ5l1Tc4mKdxTaKpNGpx0rv2fKusrvYYnbbZ3Qq8T5IScA9OxPY+lzxMQgpUkDUlvFZZIfMx361cVlphRzbTDPpUlAAD8Q1AKM9FR0TIgc4CZLhtymVnX2NRoBoXQapNVedKL32p4em/7e2ayaEgyg03knGBG2RuWM0yGZA+RJEdSAF8VgNaUVNabkOSNhiXdTlACAMA/BKUIEBMdY/oo6WSFJ6vypIHJTDsPzEtrS11hyj186c+a4HQwPOm8W2K3AL4qAJby2oZWt1f42I7IRb82AGgZQSlCuVeerGZ72ufpq9KvXOFJm+zpXEfb+2z3Z2ayhipXh6cfbkLT8dnHm/5Pejs3Ldc0CcSh4wQGbZWW0PqQzqk+tiMy0a8NAFpHUIKLBpy8bnlmmnjMRNf6byq+cQUnKzxpoPq67GszuV8kt1tCNxOadBqaPdTMddAI+j35hxMY+CMzJU5G9c80zezsdL1uB9zRrw0AfCMowaec1Bw5P/V8Of/o813rtIne+p3rXZMGKK046XDlK75aYSaLI9phru1khScdQELnPZJ6BOgVBTdOYOAvPR40ROvx8f6W3R4hae7EIRwvaIZ+bQDgG0EJ7ZKRkCGj+402k6Vuf518uvtTE5w+2vmRrN91IESV15W7LpTr7rDUw1yhSQeM0Hn/Hv0jfshyTmDQHlpp1BCtzTU3rlkpS6eOlOwMmmvCO/q1AYBvkX1Gig4VHxvvGmbcov2etHmee3jasGuDbNm3xVxAV6dXCl9x3T8hNsFUnzQ4Dek55MA8e4hkJWdJpOAEBu2loSjJESUbRSQvK1kcDvomwTv6tQGAbwQldHq/p34Z/cw0YeAE13qtMn2862MTmqxqky5XNVS5BpNwl52cLYOzB5vwpHMdwlwDVaIj/PrrcAIDoLPRrw0AfCMoISDS4tNkRN8RZrLokOVF+4pMeDLTtwfmm/duNiPv7dqyS17b8prHyH16sV0NTTod1/M4E6KO7HakGRI9VHECg/ZipES0Ff3aAMA3ghKChgafI7sfaaaLBl3kWq8Xxv3k209Mxenjbw9Ouz6WPTV75Ms9X5pp0cZFHs33BmUOOhCceg6WY3sea26HytDlnMCgPRgpEf6iXxsAtI6ghKCXEpci3+vzPTO5933aWbnTFZo+2f2JCVOffvup1OyvcQ1l7i41LtWEpmOzDgQnnetyTkpO0AUoTmDgD0ZKRHvRrw0AOiAoFRcXS+/evdt6d6BTabDRYct1OufIc1zrG5sapai0yIQmU4X69mMTnr7Y84VU1FfIe9vfM5N9BD/t72SCU9axB24HQYDiBAZtxUiJAAAEMCgde+yxMn/+fLn00ks7YTeAjqF9k7Tfkk7ug0fUN9ZL4Z5CM3y5qTwdnG/au8lcE+qdbe+YyV16fLoJTfYpVJrwIXIwUiIAAAEMSvfee69cc801snjxYnn88cele/funbA7QOeIi4k70Oyu57FyybGXuNbX7q81fZy06qThSS+aq3MNUGV1ZfLu9nfN5C7ZkSyDsgaZflA6DcwcaJZ1EAlHDFUfdD1GSgQAIIBB6dprr5Xx48fLVVddJcccc4w88cQTkp+f3wm7BHQdHfjBulaTOw1QWoHS4GSmks9k4+6NJlTpEOZri9eayZ0j2mEqWRqaBvY4EJ40RA3oMUBS41O7+JUhkjBSIgAAAR7MIS8vT9544w2ZN2+eXHzxxTJo0CCJjfV8iHXrPK9/A4RqgDLXa8oe7LG+obFBNu/bbELTxpIDkwapz0s+l+qGatc6u8NSDzOhyQpOAzIHmNt90vqY0f68YahntBUjJQIAEASj3n399dfywgsvSLdu3eTCCy9sFpSAcKZN66zAc5Fc5HENqG1l20xg0qCkc2vSa0DtqNhhpteLXvd4vMTYRDm6x9EeAUqXU2Ny5Z6Xv2KoZ7QZIyUCANCx/Eo52tzu17/+tZx99tny6aefSlZWVgfvDhCatCp0eMbhZhp31DiPbftq9plR96zgZN3WC+nqUOYf7frITHYxzm4SF9tb5m/rLXuj+8iyzX2k7Lmv5MnLzpes1JQufHUIFYyUCABAAILSueeeKx988IFpdjd58uQO3AUgvHVL7NbsOlBqf9N+KdpX5ApPX5R8IV/u/VI++/ZzKan5Vhqj9klN1D5ZvufTA/9SY0Ve2iXS6w/R0i+jn6k89e/e3zXv36O/9E3vK7HRVHkBAAAOVZvPqBobG2XDhg3Sp0+fQ35SAGICjYYbnfLlu4FRCrbukwsfXS4NUTtEYnfIqMO2ySvFxVIf9Y00RBVLk9TIln1bzLRMljUbUCKvW96B4HQwPOlcB5nITc8lRAEAALRRm8+ali9f3ta7AjjEoZ6jJVninUdLfFN/uTSnUdZvi5G6xihxilOeu2ag1EftkMK9hWYUPp30tjblq2usc62zs0KUuc5UtwPXmjqy+5FmWHOtUMXHxgfk9QIAAAQjvl4GQmio5zP6Z8kx2X0lPekoOaPfGR7bdECJ7eXbzbDmGpysuY7S5ytERUmUqThpaDIBqtuRJkQd0e0IM2UkZHTqawYAAAg2BCUgTIZ61gEltI+STmcdcVazELWjfIe5kK41uYcovTbU1rKtZlrx1Ypmj909sbsrNGmI0nleRp6Z06QPAACEI85ugAgY6llDlAYancbkjfHY5nQ65duqb12hSecapKx+UDq8+d6avWayX2RXxUTFmMd1D0/alE9va1O/7ORsiYqKavd7AQAAEAgEJSBIddVQzxpislOyzXRa7mnNtlfWV5rR+TRAWeFJb+u6r0q/Mk36dK5TSxfv1eBkhSfrtjVlJWURpAAAQNAhKAFoVUpcigzOHmwmO23S903FN1JUWmQClIYnva2TBiftM1W7v9Z1DSlv9KK7GpjMdajSD07W7YzDJSclR2KiY7rglQIAAHyHoASg3bRJ32Fph5lpZN+RzbbXN9absOQKUPuK5Ouyr02I0rn2m9KL7m4s2Wgmb7T/U25arglNpg9W2oF+WNaybkuOS+6CVwsAACIJQQlAp4mLiXMNAuGNBqltZdtcTfc0PJmp9MBct5kL8x6sUrVEB5uwQpOZ0nO/W07Pld6pvc2+AAAAtBVBCUDAaHgx13LqfqTX7RqSiiuKTXDaVr7NNTKfNWmYKq8rdw02sX7neq+Po8Ofax8sDU590vq45u6ThimuJQUAACwEJQBBS5vdWUOet6SstswVorQC5bp9cK5N/7RytbNyp5nWFK9p8bF0YAkrOB2WeqBJoQYo67bO9ZpSwTr4RFl1vRkpURWVVEl2evtHSgQAoK3076z2Wd5RscM0q3ef699hvZ28P1nOk/MklBCUAIS09IR0Mx3X8ziv23X4893Vu80vag1SZl5+IFDpL27zC7xihxl0Qu+nU8HOghafTwefsAKUmVIOzt2mnNQcMwhGVyourZGZizbIB1t2y/2niOTPWy3Dj8gy1+TS4eYBAPDX/qb95hIi2rpDg5DOrUn/dlq39W+nL5mOTAk1BCUAYU2rPz2Te5rphJwTWgxT2nTPCk0aqKw/AO7fiul9dPAJ66K9rdGgpCP2aWjSuQlQKTnSK6WXWadznXok9jjkCpVWkjQkvVVYIvFuAwSuKiwxFy7Wa3JRWQIAWPTLQW1loeHHzCsPziu+Mbd1Kq4oNiFJR7htC0e040ArjIMtMNxbZ2QnZkvhh4USaghKACKeBpUeST3MNLTX0BbvV9NQY/54aHCyvkWz/pi4f8Om157SqXBvoZl8/WHR/lNWcNIL9HrMD27ToJcen+41VJVU1puQ5I2GJd1OUAKA8G/+psFmV+Uuc7F4a241PdfJWi6tLW3z48ZExZi/RdaXfxp+rGbp7q0p9G+ojobrTUNDg5R/Ui6hhqAEAG2U6EhsdRQ/i4Yk61s5q7mCddv9D9aemj3S0NRgKlk6+RIfE28Ck7lAcHL2gdvJ2dLQkCqVMXslxpkhEpUuextSxCndNIaZn6uobeiw9wAA0DW0tUNFfYUJP9ak4ce1XO0ZivbV7vPr8fVvitXKwdXiwd4SIjXH9N+N1OsZEpQAoINps7v+Pfqbyde3f/rHzWr24P7tn2t+cLv+saxrrHP1r2rGrWB05acHlqOdKRLtTJef/rev5Gb0Mn/sspKzPOaZSZmuSYMgAKBzaBO2fTX7pKS6xPTpMfOqg/Pq3Sb8mL6yVd/d1r8T/tDqj/sXahp0rBYK7q0VdArmwYmCBUEJAAI4PLpe50knX7TZn/k28eA3h+63d5TvlLeLtsiemt3SFFUmzqhyadL/oirNtHbnDlm70/f+JDuSXaFJm1CYeeJ3c/d1eluvX6U/wx9aAJE4yIF1aYo91XtMCwFrrsFHJ4/bB7e1tb+PO/09q8HH6m/bM+ng/OBkhSKd6+/llpq/wX8EJQAIAVrtOTzjcDO1NOqdDtzw/pbdMufkerlpTY0ckxstU0Z2l6aocte3lNbIfta3mNakTQCrGqqkqqzKXJ/Kn7Cnf5g1PJm5BqiE7tItsZtZtqZuCQeWdb3eTotPi9imHACCh34JpU3WtNKjocf9tmuqdbt9MBiV1ZW1+zm1v6lW9d0r+hp+dJ0GH6vqb92m2h84BCUACAM6BLiObqfXUdq4ZqW8MvV8yc5o23WUrHbw9vBkfRuqJwUlNd99I6rr9GRBm4S4X6PKH3oRYA1LVnCy5toUxNukJxY6DLx1OzU+lW9NAZjR2/R6ejo4gYYXM68tc93WSYNPaZ3bbZ0fDETapPlQ6O8k68siq+qemeilKp/Uw4QenesXTAgNBKUuwoUgAXQ2/Z2S5IiSjSKSl5UsDseBwRx80aZzGlp0OrL7kW36GQ1XWoGyvl0184NNTzy+ka3d6/HtrG6rbqgWpzjNiYxOX8lXfr9WDVoalqzgZO2/hqm0OLfb8WmSGpd6YB6f2mxZ+5PphY0BdB39/aGXWqioqzBf0pTXlZvbZn5w2Zp0vfW7QgOQrrNu69zfPjwt9evR3yXuX9xYVXL7pNvNKKmJPcz9+P0R3vh0uwAXggQQbjRcacjQqW96X79+Vk9s7N/q6tz69td9sta7f2OsP69ByzqROlQJsQkmPGlw0rm+JitEmclxYJ4cl+xap30GdLmluV6YmKaFCIdAo//eTLPc+irzJYfeLqsuk3Xl66RmY43UNdWZkT6t+1iXR6hsODDXoGOt0xBkhaP29NVpjb3qbOYJ6a5Ktb1i7R6K9N89fS3hDUGpk3EhSADwpM1OTOfjlOxDampjNa1x//bZ+sbZ+tbZ/g219a21Ttovy3o8ndpyZXl/h97V0JTkSPKYNESZuSPxu9uxia5lDW5628zdlvXx9LY1xcceWNb1elvn+u02J3zhSYNF3f4601TMmutxq7etY9g+adXGzBtqzO1m8/01JvzopOus29ak4afVQLPl0F+X+WLiYJXX26TbrOqwVT3WZffbeh++mEBnICh1Mi4ECQAdywSFlIR2By2LnmBqiLK+9Xb/ttt8Q+7+7fjBSU8cdbtus75Bd5/ryaXr8fWEtqbONDnsKtokUUOThlErQOntlia94HFsVKyUfFsi/3zxn5LgSDDrHDGOA9uiY82ky67b0Q5zUmota7Ml1+3oGLNszbUfmfs6XXafdH9dt6N0Kcpjbt3HHv50nTutMJq509lsWU/0ddnMnU6P243ORnPbmhqbDizrevtt97mOeNba1NDYYIK4/bZWZ/S2mTcemLuv02PSWqfHj7VOb+vPB5J+7u7Bv6mmSXJ65EhqQqpHRdWqyjarzB4MRO6VW/0Z+hoimBGUOlm5jws9ciFItIR+bUDnMlWY2HjT0bqj6Im1foNvvo0/2FTJ/dt561t761t967bOrW/+axsPzg9WBPS2VT2wJvcqgp64WzQEWOv99Xbp2x32PqDzuVcSrQqkt8m9WuleobSqma5Kp+O7Zd1mhSINPzrXsGxpaGiQV155Rc4777w294UEQhFBqZOlJbT+CyTVx3ZEJvq1AaFJvx23TjY7MoC1Rqsc7s2x3OdWdcJ9sioVVlWjtqFW1n+8XvoP7G+uv2Wvhpi5rTpiVVd0nVVhcV9uqRpjVXPsk7XNqvjY5+6sqpG5LU5XdcmqOtmX3atS7rf1P/fKlzVZlS/3yph97l5hc6+oWRU39yqcVaHT21YVz8xjDs4PbtfAYyqBbhVBq/JnBSKryaX+DE0sgc5HUOpkmSlxMqp/pmlmZ6frdTvgjn5tAPyhJ+9J0QfCWXuY6sDOV+S84VQHAMAdDUM7mZ7QahVAQ5E7XZ47cQgnvGhXvzYAAAB0LipKAbgQ5NKpI9t8IUhEHvq1ob3o1wYAQMehotRF9GRFLwCpdM7JC1pCvza0t1/btIUFkj9/tVnWfm3TFxaY9QAAwH8EJSBI+7V5Q782+OrX5s7q16bbAQCAfwhKQJChXxv8Rb82AAA6Hn2UgCBEvzb4g35tAAB0PCpKQJCiXxvain5taC9tllm0u8o1AAjNNAHgOwQlAAhx9GtDe3xTWiOvfLJTtu49EJS27a02y7oeAEBQAoCQR782+EsrR1/vrZaXNxTL1IUFZt21z64zy7qeyhIA0EcJAMIC/drgj9LqBnnkjUJ5e9MeiY/5br0uq99OGMyxAyDiBbSitGrVKsnPz5fevXtLVFSULFmypMX7/vznPzf3eeihh7p0HwEgVNCvDW1VVb/fFYrsdL1uB4BIF9CgVFVVJUOHDpX58+e3er/FixfLe++9ZwIVAMA7OuajrarqG1vdXu1jOwBEgoA2vRs/fryZWrNjxw6ZPn26/O9//5Pzzz+/y/YNAEJJcWmNuejsB1t2y/2niOTPWy3Dj8gyfZe0WR7gLt3HSIi+RlIEgEgQ1H2Umpqa5PLLL5cbb7xRjj322Db9TF1dnZks5eXlZt7Q0GCmQLKeP9D7gdDBMYO2KK+pl1tf0JC0R+KjnWadzt/fsltue2G9/O4HQyQtkWZ4+E6sNMkZ/bvJe1v2ehwz6ntHdDfb+b2DlvC3CaF8zPizD1FOp/PAb8YA0/5H2sRuwoQJrnVz5syRFStWmGqSbu/Xr59cf/31ZmrJnXfeKbNnz262/tlnn5WkpKRO238AAAAAwa26ulouvfRSKSsrk7S0tNCsKH344Yfyxz/+UdatW2dCUlvNmjVLZsyY4VFRys3NlXPOOcfnm9EVCXb58uUyduxYcTho1gDfOGbQFhu2l8qlT77vqgrcfVKT3L42WuqaDvzuXHj1cBncJyPAe4lg8nVJldz/v89lYE6aDM5JkeqiAknKGyYff1Mpn39TLjeNGyiHZx4YGASw428TQvmYsVqbtUXQBqW33npLvv32W+nbt69rXWNjo/z61782I9999dVXXn8uPj7eTHb6oQT6gwnGfUFo4JhBazKSE6Wu0fMLJQ1J1rr05ESOH3jYL9Hy6ud7zBQf4zT92qb9c4PrmJkxLppjBj7xtwmheMz48/xBG5S0b9LZZ5/tsW7cuHFm/U9+8pOA7RcABJvMlDhzcdlVhSXNtul63Q64q6hrffjvSh/bASASBDQoVVZWyqZNm1zLRUVFsn79eunevbupJPXo0aNZAuzVq5cMGDAgAHsLAMFJr5eko9vdvGiDGcDBPSTNnTiE6ymhmYzE1r9RTfexHQAiQUCD0tq1a2XMmDGuZatv0ZQpU2TBggUB3DMACC3aYGr84ByZPLyPVG1eK/MnDZPd1VwLB971TI2X0/tnylteqpC6XrcDQKQLaFAaPXq0+DPoXkv9kgAgkumFZW9atMGc9Fr9TaYuLDD9TbSq9MikYVSV4EGPB602UoVEe37f7Cqtdl3YOjs9ieMFYSto+ygBANqmpLLea2VAab8l3c6JDOz0QsQaovWkd+OalbJ06kjJzuCkFy3jwtaINNGB3gEAwKEpr2394nkVPrYjcmkoyss6MAy4zglJaK2SpCHJ/qWMfhmjlUndDoQbghIAhLi0hNY73qf62A4AHVG5BsINQQkAwmR4cG8YHhyt0SpA0e4qV38TqgJoCZVrRCKCEgCEyfDg9rBEx3z46m8ybWGB5M9fbZa1v8n0hQVmPWBH5RqRiKAEAGHUMV875Cud63IOHazhBf1N4C8q14hEBCUACBN0zEdb0d8E/qJyjUjE8OAAAEQY+pugPRhSHpGGoAQAQIShvwnaS0NRkiNKNh6sXDscHCsIXzS9AwAgwtDfBAB8IygBABBh6G8CAL7R9A4AgAhEfxMAaB1BCQCACEV/EwBoGU3vAAAAAMCGoAQAAAAANgQlAAAAALAhKHWRsup6KdpdZW4XlVSZZQAAAADBiaDUBYpLa2TawgLJn7/aLOfPWy3TFxaY9QAAAACCD0Gpk2nlaOaiDfJWYYnH+lWFJXLzog1UlgAAAIAgRFDqZCWV9c1CkntY0u0AAAQCzcLhL44ZRBKCUicrr21odXuFj+0AAHQGmoXDXxwziDQEpU6WltD6xftSfWwHAKCj0Swc/uKYQSQiKHWyzJQ4GdU/0+s2Xa/bAQDoSjQLh784ZhCJCEqdLD0pTu6bOKRZWNLluROHmO0AAHQlmoXDXxwziESxgd6BSNA7I1EemTRMdpVWy8Y1K2Xp1JGSnZFESAIABATNwuEvjhlEIipKXURDUV5Wsrmtc0ISACBQtNn36S00C9f1NAuHHV0JEIkISgAARKCpY46SEUf18Finy7oesKMrASIRQQkAgAijHe+vXLBGhvXtJvMnDTPrdK7Lup6O+WitK4F2IVA61+WcjMRA7xrQKeijBABABHbMr65vlHlvbJL4GKfcf4rI1IUFUtcYZbbTMR8t0cpRkiNKNh7sSuBw0DcJ4YuKEgAAEYaO+QDgG0EJAIAIQ8d8APCNoAQAQIShYz4A+EYfJQAAIhDX+AOA1hGUAACIUHTMB4CW0fQOAAAAAGwISgAAAABgQ1ACAAAAABuCEgAAAADYEJQAIEyUVddL0e4qc7uopMosAwCA9iEoAUAYKC6tkWkLCyR//mqznD9vtUxfWGDWAwAA/xGUACDEaeXoNy9+IkNzM2T+pGFm3aOXniBDcjPkjhc/obIEAEA7EJQAIMTtqaqXH5/SVwq27pOpCwvMumufXWeWf3RKX7MdAAD4h6AEACFuf5NTnn67SN7etMdjvS7r+sYmZ8D2DQAQ2cpCuP8sQQkAQlxTk7NZSLLoeoISACAQikO8/yxBCQBCXHX9fh/bG7tsXwAAUFo5mrlog7xVWCLuVhWWyM2LNoREZYmgBAAhLj0xzsd2R5ftCwAAqqSyvllIcg9Luj3YEZQAIMRlpsTJqP6ZXrfpet0OAEBXKq9taHV7hY/twYCgBAAhLj0pTu6bOKRZWNLluROHmO1AuHWyBhDc0hJab82Q6mN7MCAoAUAY6J2RKI9MGiZLp440yzrX5ZyMxEDvGoJUqHeyBhDcMsOgtQNBCQDChFaO8rKSzW2dU0lCOHeyBhDc0sOgtUNsoHcAAAAEXyfrUDiJARAarR12lVbLxjUrTWuH7IykkPn9QlACACDChEMnawChIT0pTpIcUbLxYGsHhyP4+yZZaHoHAECECYdO1gDQ2QhKAABEmHDoZA0AnY2gBABAhAmHTtYA0NnoowQAQAQK9U7WANDZCEoAAESoUO5kDQCdjaZ3AAAAABBMQWnVqlWSn58vvXv3lqioKFmyZIlrW0NDg8ycOVMGDx4sycnJ5j6TJ0+W4uLiQO4yAAAAgAgQ0KBUVVUlQ4cOlfnz5zfbVl1dLevWrZPbb7/dzF944QX54osv5IILLgjIvgIAAACIHAHtozR+/HgzeZOeni7Lly/3WDdv3jw55ZRTZOvWrdK3b98u2ksAAAAAkSakBnMoKyszTfQyMjJavE9dXZ2ZLOXl5a6mfDoFkvX8gd4PhA6OGfiLYwb+4piBvzhmEMrHjD/7EOV0Op0SBDQALV68WCZMmOB1e21trYwYMUIGDhwozzzzTIuPc+edd8rs2bObrX/22WclKSmpQ/cZAAAAQOjQ7j2XXnqpKcCkpaWFflDS5Ddx4kTZvn27vPnmm62+KG8VpdzcXCkpKfH5ZnQ2fR3anHDs2LEMwYo24ZiBvzhm4C+OGfiLYwahfMxoNsjMzGxTUIoNhTf2kksuka+//lreeOMNny8oPj7eTHb6oQT6gwnGfUFo4JiBvzhm4C+OGfiLYwaheMz48/yxoRCSCgsLZcWKFdKjR49A7xIAAACACBDQoFRZWSmbNm1yLRcVFcn69eule/fukpOTIz/4wQ/M0OAvv/yyNDY2ys6dO839dHtcXFwA9xwAAABAOAtoUFq7dq2MGTPGtTxjxgwznzJlihmU4aWXXjLLxx9/vMfPaXVp9OjRXby3AAAAACJFQIOShp3WxpIIknEmAAAAAESY6EDvAAAAAAAEG4ISAAAAANgQlAAgTJRV10vR7ipzu6ikyiwDreGYAYCWEZQAIAwUl9bItIUFkj9/tVnOn7dapi8sMOsBbzhmAKB1BCUACHFaBZi5aIO8VVjisX5VYYncvGgDVQI0wzEDAL4RlAAgxJVU1jc74XU/8dXtgDuOGQDwjaAEACGuvLah1e0VPrYj8nDMAIBvBCUACHFpCY5Wt6f62I7IwzEDAL4RlAAgxGWmxMmo/plet+l63Q6445gBAN8ISgAQ4tKT4uS+iUOanfjq8tyJQ8x2wB3HDAD4FtuG+wAAglzvjER5ZNIw2VVaLRvXrJSlU0dKdkYSJ7xoEccMALSOoAQAYUJPcJMcUbJRRPKyksXhoJ8JWscxAwAto+kdAAAAANgQlAAAAADAhqAEAAAAADYEJQAAAACwISgBAAAAgA1BCQAAAABsCEoAAAAAYENQAgAAAAAbghIAAAAA2BCUAAAAAMCGoAQAQIQqq66Xot1V5nZRSZVZBgAcQFACACACFZfWyLSFBZI/f7VZzp+3WqYvLDDrAQAEJQAAIo5WjmYu2iBvFZZ4rF9VWCI3L9pAZQkACEoAAESeksr6ZiHJPSzpdgCIdAQlAAAiTHltQ6vbK3xsB4BIQFACACDCpCU4Wt2e6mM7AEQCghIAABEmMyVORvXP9LpN1+t2AIh0BCUAACJMelKc3DdxSLOwpMtzJw4x2wEg0sUGegcAAEDX652RKI9MGia7Sqtl45qVsnTqSMnOSCIkAcBBBCUAACKUhqIkR5RsFJG8rGRxOOibBAAWmt4BAAAAgA1BCQAAAABsCEoAAAAAYENQAgAAAAAbghIAAAAA2BCUAAAAAMCGoAQAAAAANgQlAAAAALAhKAEAAACADUEJAAAAAGwISgAAAABgQ1ACAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2BCUAAAAAsCEoAUCYKKuul6LdVeZ2UUmVWQYAAO1DUAKAMFBcWiPTFhZI/vzVZjl/3mqZvrDArAcAAP4jKAFAiNPK0cxFG+StwhKP9asKS+TmRRuoLAEA0A4EJQAIcSWV9c1CkntY0u0AAMA/BCUACHHltQ2tbq/wsR0AADRHUAKAEJeW4Gh1e6qP7QAAoDmCEgCEuMyUOBnVP9PrNl2v2wEAgH8ISgAQ4tKT4uS+iUOahSVdnjtxiNkOAAD8E+vn/QEAQah3RqI8MmmY7Cqtlo1rVsrSqSMlOyOJkAQAQDtRUQKAMKGhKC8r2dzWOSEJvnCRYgBoGUEJAIAIxEWKASCIg9KqVaskPz9fevfuLVFRUbJkyRKP7U6nU37zm99ITk6OJCYmytlnny2FhYUB218AAMIBFykGgCAPSlVVVTJ06FCZP3++1+3333+/PPzww/LYY4/J+++/L8nJyTJu3Dipra3t8n0FACBccJFiAAjywRzGjx9vJm+0mvTQQw/JbbfdJhdeeKFZ97e//U2ys7NN5enHP/5xF+8tAADhgYsUA0AIj3pXVFQkO3fuNM3tLOnp6TJ8+HB59913WwxKdXV1ZrKUl5ebeUNDg5kCyXr+QO8HQgfHDPzFMYO2SI6NkvgYp7kdH+05V0mxURxDaBG/ZxDKx4w/+xC0QUlDktIKkjtdtrZ5M2fOHJk9e3az9a+++qokJSVJMFi+fHmgdwEhhmMG/uKYgS/3n+K5fPdJTa7bOsT8xq7fJYQYfs8gFI+Z6urq0A9K7TVr1iyZMWOGR0UpNzdXzjnnHElLSwt4gtUDZOzYseJwOAK6LwgNHDPwF8cM2mpnWa3c8dInsraoxISk29dGy0l5mXLXBcdJdnpCoHcPQYzfMwjlY8ZqbRbSQalXr15mvmvXLjPqnUWXjz/++BZ/Lj4+3kx2+qEE+oMJxn1BaOCYgb84ZuBLbqZD/vDjE10XKf73L07nIsXwC79nEIrHjD/PH7TXUcrLyzNh6fXXX/dIgDr63amnnhrQfQMAIBxwkWIACNKKUmVlpWzatMljAIf169dL9+7dpW/fvnL99dfLPffcI/379zfB6fbbbzfXXJowYUIgdxsAAABAmAtoUFq7dq2MGTPGtWz1LZoyZYosWLBAbrrpJnOtpZ/97GdSWloqI0eOlGXLlklCAm2nAQAAAIRpUBo9erS5XlJLoqKi5K677jITAAAAAHSVoO2jBAAAAACBQlACAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2BCUAAAAAsCEoAQAAAIANQQkAAAAAbAhKAAAAAGBDUAIAAAAAG4ISAAAAANgQlAAAAADAhqAEAAAAADYEJQAAAACwISgBAAAAgA1BCQAAAABsCEpAkCqrrpei3VXmdlFJlVkGAABA1yAoAUGouLRGpi0skPz5q81y/rzVMn1hgVkPAACAzkdQAoKMVo5mLtogbxWWeKxfVVgiNy/aQGUJAACgCxCUgCBTUlnfLCS5hyXdDgAAgM5FUAKCTHltQ6vbK3xsBwAAwKEjKAFBJi3B0er2VB/bAQAAcOgISkCQyUyJk1H9M71u0/W6HQAAAJ2LoAQEmfSkOLlv4pBmYUmX504cYrYDAACgc8V28uMDaIfeGYnyyKRhsqu0WjauWSlLp46U7IwkQhIAAEAXISgBQUpDUZIjSjaKSF5Wsjgc9E0CAADoKjS9AwAAAAAbghIAAAAA2BCUAAAAAMCGoAQAAAAANgQlAAAAALAhKAEAAACADUEJAAAAAGwISgAAAABgQ1ACAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2BCUAAAAAsCEoAQAAAIBNrIQ5p9Np5uXl5YHeFWloaJDq6mqzLw6HI9C7gxDAMQN/cczAXxwz8BfHDEL5mLEygZURIjooVVRUmHlubm6gdwUAAABAkGSE9PT0Vu8T5WxLnAphTU1NUlxcLKmpqRIVFRXwBKuBbdu2bZKWlhbQfUFo4JiBvzhm4C+OGfiLYwahfMxo9NGQ1Lt3b4mOjo7sipK+AX369JFgogdIoA8ShBaOGfiLYwb+4piBvzhmEKrHjK9KkoXBHAAAAADAhqAEAAAAADYEpS4UHx8vd9xxh5kDbcExA39xzMBfHDPwF8cMIuWYCfvBHAAAAADAX1SUAAAAAMCGoAQAAAAANgQlAAAAALAhKAEAAACADUGpC6xatUry8/PNFYCjoqJkyZIlgd4lBLk5c+bIySefLKmpqdKzZ0+ZMGGCfPHFF4HeLQSxP/3pTzJkyBDXxfxOPfVU+e9//xvo3UKIuO+++8zfp+uvvz7Qu4Igduedd5rjxH0aOHBgoHcLQWzHjh3yf//3f9KjRw9JTEyUwYMHy9q1ayVUEJS6QFVVlQwdOlTmz58f6F1BiFi5cqVMnTpV3nvvPVm+fLk0NDTIOeecY44lwJs+ffqYk90PP/zQ/BE688wz5cILL5RPP/000LuGILdmzRp5/PHHTdAGfDn22GPlm2++cU2rV68O9C4hSO3bt09GjBghDofDfHH32WefyQMPPCDdunWTUBEb6B2IBOPHjzcT0FbLli3zWF6wYIGpLOlJ8KhRowK2XwheWrV2d++995oqk4ZtPbEBvKmsrJTLLrtMnnjiCbnnnnsCvTsIAbGxsdKrV69A7wZCwNy5cyU3N1eefvpp17q8vDwJJVSUgBBQVlZm5t27dw/0riAENDY2ynPPPWcqkNoED2iJVq7PP/98OfvsswO9KwgRhYWFpivBEUccYUL21q1bA71LCFIvvfSSnHTSSfLDH/7QfNk7bNgw86VMKKGiBAS5pqYm029Ay9fHHXdcoHcHQezjjz82wai2tlZSUlJk8eLFcswxxwR6txCkNEyvW7fONL0D2mL48OGmhcOAAQNMs7vZs2fL6aefLp988onpUwu427Jli2nZMGPGDLnlllvM75rrrrtO4uLiZMqUKRIKCEpACHzjq3+EaAcOX/TkZf369aYC+e9//9v8IdL+boQl2G3btk1++ctfmj6QCQkJgd4dhAj3bgTap02D0+GHHy7PP/+8XHXVVQHdNwTnF70nnXSS/Pa3vzXLWlHS85nHHnssZIISTe+AIDZt2jR5+eWXZcWKFaazPtAa/ZbuqKOOkhNPPNGMnKiDyPzxj38M9G4hCGl/x2+//VZOOOEE0+dEJw3VDz/8sLmtzTcBXzIyMuToo4+WTZs2BXpXEIRycnKafVE3aNCgkGquSUUJCEJOp1OmT59umk69+eabIdf5EcHzbV5dXV2gdwNB6KyzzjJNNd395Cc/MUM9z5w5U2JiYgK2bwitwUA2b94sl19+eaB3BUFoxIgRzS5t8uWXX5oqZKggKHXRLxL3b1uKiopM8xjtmN+3b9+A7huCt7nds88+Ky+++KJp971z506zPj093VyHALCbNWuWaRajv1MqKirM8aMh+3//+1+gdw1BSH+v2Ps8Jicnm2ud0BcSLbnhhhvMCJt6oltcXCx33HGHCdWTJk0K9K4hCP3qV7+S0047zTS9u+SSS+SDDz6QP//5z2YKFQSlLqDXNBkzZoxrWTu1KW2fqZ0iATvt/KhGjx7tsV6H2LziiisCtFcIZtqMavLkyaaDtQZq7T+gIWns2LGB3jUAYWL79u0mFO3Zs0eysrJk5MiR5hIEehuwO/nkk03LGP0i76677jKtYx566CEzWmKoiHJqGx8AAAAAgAuDOQAAAACADUEJAAAAAGwISgAAAABgQ1ACAAAAABuCEgAAAADYEJQAAAAAwIagBAAAAAA2BCUAAAAAsCEoAQAAAIANQQkAEJYaGxvltNNOk4svvthjfVlZmeTm5sqtt94asH0DAAS/KKfT6Qz0TgAA0Bm+/PJLOf744+WJJ56Qyy67zKybPHmyfPTRR7JmzRqJi4sL9C4CAIIUQQkAENYefvhhufPOO+XTTz+VDz74QH74wx+akDR06NBA7xoAIIgRlAAAYU3/zJ155pkSExMjH3/8sUyfPl1uu+22QO8WACDIEZQAAGHv888/l0GDBsngwYNl3bp1EhsbG+hdAgAEOQZzAACEvb/85S+SlJQkRUVFsn379kDvDgAgBFBRAgCEtXfeeUfOOOMMefXVV+Wee+4x61577TWJiooK9K4BAIIYFSUAQNiqrq6WK664Qn7xi1/ImDFj5KmnnjIDOjz22GOB3jUAQJCjogQACFu//OUv5ZVXXjHDgWvTO/X444/LDTfcYAZ26NevX6B3EQAQpAhKAICwtHLlSjnrrLPkzTfflJEjR3psGzdunOzfv58meACAFhGUAAAAAMCGPkoAAAAAYENQAgAAAAAbghIAAAAA2BCUAAAAAMCGoAQAAAAANgQlAAAAALAhKAEAAACADUEJAAAAAGwISgAAAABgQ1ACAAAAABuCEgAAAACIp/8H7EGapZSWGjAAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Полиномиальная модель:\n", + "β₁ = 16.8727\n", + "β₂ = -1.1208\n", + "β₃ = 0.1296\n", + "\n", + "R² полиномиальной модели: 0.0240\n" + ] + } + ], + "source": [ + "df['X2'] = df['X']**2\n", + "X_poly = sm.add_constant(df[['X', 'X2']])\n", + "model_poly = sm.OLS(df['Y'], X_poly).fit()\n", + "beta1_poly, beta2_poly, beta3_poly = model_poly.params\n", + "y_poly = beta1_poly + beta2_poly * x_vals + beta3_poly * x_vals**2\n", + "\n", + "plt.figure(figsize=(10, 6))\n", + "sns.scatterplot(x='X', y='Y', data=df, label='Данные')\n", + "plt.plot(x_vals, y_poly, color='green', label='Полиномиальная регрессия')\n", + "plt.title('Полиномиальная регрессия Y от X')\n", + "plt.xlabel('X')\n", + "plt.ylabel('Y')\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.show()\n", + "\n", + "print(\"\\nПолиномиальная модель:\")\n", + "print(f\"β₁ = {beta1_poly:.4f}\")\n", + "print(f\"β₂ = {beta2_poly:.4f}\")\n", + "print(f\"β₃ = {beta3_poly:.4f}\")\n", + "print(f\"\\nR² полиномиальной модели: {model_poly.rsquared:.4f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "611ce9cc", + "metadata": {}, + "outputs": [], + "source": [ + "# Y = np.array([12.33, 16.61, 12.47, 14.36, 13.21, 13.76, 13.93, 13.96, 15.96, 15.99, \n", + "# 17.32, 14.10, 12.97, 13.60, 16.37, 16.11, 9.24, 15.51, 14.24, 17.23, \n", + "# 15.14, 14.73, 15.52, 10.07, 21.27, 16.86, 13.98, 11.07, 13.70, 13.91, \n", + "# 17.70, 14.08, 15.65, 13.14, 17.43, 18.79, 12.59, 15.99, 12.53, 16.03, \n", + "# 11.63, 18.01, 15.33, 11.65, 10.32, 18.06, 17.83, 14.46, 13.13, 17.11])\n", + "# X = np.array([4, 3, 6, 2, 1, 3, 4, 3, 4, 2, 5, 4, 4, 4, 3, 4, 2, 2, 3, 3, \n", + "# 2, 3, 4, 4, 2, 4, 4, 4, 5, 4, 3, 4, 3, 4, 2, 4, 3, 2, 3, 5, \n", + "# 3, 4, 3, 4, 3, 1, 3, 1, 5, 6])\n", + "\n", + "# # Проверка размеров массивов\n", + "# print(f\"Размер X: {len(X)}\")\n", + "# print(f\"Размер Y: {len(Y)}\")\n", + "\n", + "# X_squared = X**2\n", + "# X_poly = np.column_stack((np.ones(len(X)), X, X_squared))\n", + "# poly_model = sm.OLS(Y, X_poly)\n", + "# poly_results = poly_model.fit()\n", + "\n", + "# plt.figure(figsize=(10, 6))\n", + "# plt.scatter(X, Y)\n", + "# plt.xlabel('X')\n", + "# plt.ylabel('Y')\n", + "# plt.title('Полиномиальная модель Y = β₁ + β₂X + β₃X²')\n", + "# plt.grid(True)\n", + "\n", + "# # Построение полиномиальной регрессии\n", + "# x_poly_line = np.linspace(min(X), max(X), 100)\n", + "# y_poly_line = poly_results.params[0] + poly_results.params[1] * x_poly_line + poly_results.params[2] * x_poly_line**2\n", + "# plt.plot(x_poly_line, y_poly_line, 'g', \n", + "# label=f'Y = {poly_results.params[0]:.4f} + {poly_results.params[1]:.4f}X + {poly_results.params[2]:.4f}X²')\n", + "# plt.legend()\n", + "# plt.show()\n", + "\n", + "# print(\"\\nb) Полиномиальная модель:\")\n", + "# print(f\"β₁ = {poly_results.params[0]:.4f}\")\n", + "# print(f\"β₂ = {poly_results.params[1]:.4f}\")\n", + "# print(f\"β₃ = {poly_results.params[2]:.4f}\")\n", + "# print(poly_results.summary())" + ] + }, + { + "cell_type": "markdown", + "id": "8ed88a1f", + "metadata": {}, + "source": [ + "*Распределение точек относительно линии*: Точки разбросаны, линия не отражает тренд, что говорит о плохом соответствии. \n", + "*Низкий R²* означает, что квадратичная модель плохо описывает связь между $X$ и $Y$. \n", + "##### Результаты указывают на то, что квадратичная модель не подходит для описания данных." + ] + }, + { + "cell_type": "markdown", + "id": "59500230", + "metadata": {}, + "source": [ + "## Пункт c)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "a299faff", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAIjCAYAAAD80aFnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoSVJREFUeJzs3Qd0FGUXBuA3lYQSejd0pPdepFcRFZCOFCnSFJAmSkcB6UWQjkiNoCACUqVJ70gVkE6AUAOkJ/uf+62bfxMSSEKy35b3OWdOZieTmbszs5u58zUng8FgABERERERESUp56TdPBEREREREQkmX0RERERERBbA5IuIiIiIiMgCmHwRERERERFZAJMvIiIiIiIiC2DyRUREREREZAFMvoiIiIiIiCyAyRcREREREZEFMPkiIiIiIiKyACZfRERERIlo7NixiIiIUPPyc9y4cbpDIiIrweSLyEH9+OOPcHJyinW6deuW7hCJiGzSkiVLMGnSJPU9OnnyZPWaiEi48jAQObbRo0cjd+7cLy1Ply6dlniIiOzhe7V9+/YYPHgwkiVLhmXLlukOiYisBJMvIgfXsGFDlC1bVncYRER2o2XLlqhZsyYuX76M/PnzI2PGjLpDIiIrwWqHRBSn6onXrl2LXCZtGIoXL66Wy+/NXbhwAS1atFA3G56enihQoAC+/vpr9buRI0e+sqqjTLt27Yrc1urVq1GmTBm1nQwZMqBdu3a4fft2lP117Ngxxu3ky5cvcp1cuXLhvffew9atW1GyZEl4eHigcOHC+PXXX6Ns69GjRxgwYACKFSuGlClTwsvLSyWnp06dirKexGjaz8mTJ6P8TuJzcXFRv1uzZs1Lccr+o5P2IPI72ae5xYsXo1atWsiUKZN6ei4x//DDD4irP//8E++88w5SpEiBNGnS4IMPPsD58+dfWk9i7ty5M7Jly6b2IyWhPXr0QEhIyGurp5pfA6dPn1bvM0+ePOoYZ8mSBZ988gkePnwYua/4XAM1atRQk7lvv/0Wzs7OWLFiRZTlCblW0qZNq7a/d+/e1x7L2K6zmK7buMZjEts2zT9z8lqOnbmJEyeq5ebHyHRtml97JnJ9yfsw9++//6J58+aqpDt58uSoWLEiNm7cmCjXu3zuzN28eVMdj+jv7bfffkOjRo0ir7+8efNizJgxCA8Pf+k9yN/FdryiryPV/l7FdG0fPXo0yvIHDx7EeLxPnDihvg/ke0GOZe3atXHw4MEYtykxyOe2cuXKSJ8+fazfl7HF5O7uDj8/vyi/O3DgQOR7jR5zfK43OS+v+hybf89PmzYNRYoUUZ/nzJkz49NPP8Xjx49f2qb5NWI+mV8DpnWif1bk3Md0vInsFUu+iCjeli5dir///vul5XLzLTf7bm5u6Natm/rHe+XKFfz+++/qprlp06ZRkqJ+/fqhUKFCal0TeS3kRqBTp04oV66cSk7u3buH6dOnY9++feomSJIJE7lhW7BgQZRYUqVKFeX1pUuX1NPo7t27o0OHDiqxkZvOzZs3o27dupE3ouvWrVPLJQGRfc6dOxfVq1fHuXPn1M2hObkhke1IXCbStkNunIKCgl46Pq6urjh79qyKv1SpUpHL5b3KtqKTREtufN5//331t3Ice/bsqW6KevXqhVfZvn27ulGUREhuagIDAzFz5kxUqVIFx48fj7wpunPnDsqXL48nT56o81CwYEF10yY30gEBAahWrZo63yZyHoUpoRZygym2bdumjqGcN0m85L3OmzdP/ZSbVLnBis81EJ0c66FDh6o2NG3atIly/OJ6rciN6dSpU9W8tMeR9d59912VGJivF5OYrrMjR45gxowZUZbFJx6TJk2aqGMjJBmU4/Yqcr7etBMHiUvOnZznzz//XCUJcv3K9SbnX2J6k+s9uuHDh8e4nhwvSWa++OIL9VMeGsi6/v7+KsGMiVwv8l0j5CHK2rVrkZTkGpb9SeI1aNAg9R0n3w2S+O7evRsVKlSI9/flq0hCK1UV5fNhIsdezkH0Y5iQ600eAvXv31/NX716VR3v6CTRMm1brg9Z7/vvv1fblG3LMYjuq6++ivz8yjV848aNV77PPXv2YNOmTfE4MkR2wEBEDmnx4sUG+Qo4cuRInNa7evWqeh0UFGTIkSOHoWHDhmq5/N6kWrVqhlSpUhmuX78eZRsRERExbjtnzpyGDh06vLQ8JCTEkClTJkPRokUNgYGBkcs3bNig9jl8+PDIZfL3KVKkeOV7kP3I3/3yyy+Ry54+fWrImjWroVSpUpHL5L2Fh4dH+Vt538mSJTOMHj06ctnOnTvV9lq3bm1Inz69ITg4OPJ3+fPnN7Rp00b9fvXq1S/F2bhxY0Pv3r0jl+/du9fg6elp+PDDD196HwEBAS+9l/r16xvy5MljeJ2SJUuqY/jw4cPIZadOnTI4Ozsb2rdvH7lM5mVZTNdBTOetevXqaopJTPGuXLlSHYs9e/bE6xqIvq+NGzcaXF1dDf3793+ja0X2Z27evHlqvcOHD8cYw+uuMznH8vdyTcQ3HhEaGqqWjxo1KtbPnJDXI0aMiHw9aNAgtZ8yZcpEOR+ma9P82jOR+M2Pdd++fdW6cg2aPHv2zJA7d25Drly5Ij8LCb3ezY/1mTNn1HVm+t4wf28xXTeffvqpIXny5Oozae7SpUvq75csWRK5TI6L+e2MbFteT5w40ZCQ70A/P7+Xjrd8Pt3d3Q1XrlyJXHbnzh31fSffewn5vnxVTHKsixUrFrn8xYsXBi8vr8hjbYo5vtebyJYtm+G9996LfC3bih6bXBOybPny5VH+dvPmzTEu37Ztm1q+e/fuWK8B03Vk+qyIChUqRB4b8+NNZM9Y7ZCI4mXWrFmqGtmIESOiLJcqMvIUU6qZ5ciRI8rvzKsExYVUqbl//74q5TEvEZLqKVIyE71aVFxIqZX5k3x5gi0N4uUp7t27dyNLNqRKm5AqT/I+5Um8VJ2U0qLoGjdurN7b+vXrI0sspDRFSthiI8dHqswFBwdHPs2WEo/UqVO/tK5UITJ5+vSpqg4lpXBSuiSvY+Pr66uqh0nVL/OOU6Tqk5TymZ40SwmalPTJ+4ip3V98z5t5vPJ0XuKVamwipuMXV4cPH1ZVWZs1a/ZSSUh8rxV5zxKXTHKMfvrpJ2TNmjXW0rb4im88UrXTdO3FlZRMSinmsGHDXqqqavLs2bPI92maopPrQEo9q1atGrlMtielSlJtTkp73/R6NxkyZAhKly6tSpVfdd2Y4pZSJimRk2rMCT1e8veyLakmZ8xfY2b6bJkmqX5sTr4LpMryhx9+qEqSTeS6kRLYv/76S5XSxef78nU+/vhj9d5N1Qt/+eUX9R0hVR3f9LtSPpsxlbRHr8Yo+5PvC/NjI1Ub5RrZuXPnG1/HUmIpJcfjx4+P898Q2QMmX0QUZ3KTIuPXSPUgqf9vThICUbRo0Tfez/Xr19VPSXqikxsK0+/jQ6q6RU8m3n77bfXT1P5EbsylSpo0kJebCKmiJm3XpDplTMmOVLuRthWLFi1Sr+WnJAiS2MVGboqkCqG0c3nx4gV+/vlnVa0nJlK1p06dOpFttiQWqdYjXpV8ver4SZIhN1Gyb0mY5aYxMc6ZkJvWPn36qGtDbqglXlNPmq+K93WJhhwziVduYqOfw/heK1K9UOKSSap+SrVYubGNLYmJr/jGI9UHRXz2Lzfy8jBBqoW9Ksk3vU/TJMcweqyxXSPm7+VNrnchyYlUmf3uu+9iTOilSp88GJGbfdmWxCr7iem6ic/xkuMk2zK1Z5PrSKofRyefMfPjFP2YyOdEErnYjpV8b8h1FZ/vy9eROCRe82Mt1aVND4cSer1JIinHMKaHPebkOEn80m4t+nX0/PlzlfC9yXUscch3Wdu2bdVDISJHwjZfRBRncvMk//wHDhwYpRMFeyE3SlKaIDeu0uBfbtrk/fbt2zdywNToZF25ib948aJ6WmwqFYiN6QZWSrzkhk7a2UinGubtqoQkBfKUW26gpkyZAm9vb9W2RkorJEGMLR6dpHRq//796vqQNiVyIyZxNmjQIMHxSm9xUmIi71lKA6SNkdyEJpTcBJu6/ZabS7mplfgkQZCOVizNVOoqbeTiQjpMkXY48h5ianNjIm14TG2izEuu3lR8r3ch3a3Xr19fXefRO3WQm3YpzZWkS7pnl842pFRGSkrl76JfN/E5XlKCJyVtcqMvx03aPkrplSR70UunTA9ihDyQkKRS9/elHGspnf/ss89UrQJpbxiXzmFeRdpgyTGN3hlKdLKOJF7Lly+P8ffRe2+M73W8cOFC9dBry5YtcY6dyF4w+SKiOJGOGaQRtzTols4sot9MmKrjnDlz5o33lTNnTvVTbvDkhs2cLDP9Pr438VL1yPzJ+z///KN+mm5EpJMB6R5abgyi3yBKKVhM5IZdbkZNPTzK30sD/NfdVJUoUUI9LZdEIqbSACkpkKqJcnNrXo0zenWf1x2/6KQqk7wXKU2T0im56U2McyZVu3bs2IFRo0ZFabwfU0lDfEjVLkk4JWmS0kLpJEA6yDDd/MX3WpEbeynpMJHOJSTJlo4EpAOFNxXfeExV++Ja7VGq70li+7qqfnJdmr9PUycO0WON7Roxfy9vcr1LtVbppS+2aqfS8518l0gVNOncxUQ6d4iJHC/5vMRU0hOdlGCbjoEkf/KwQzqKkQTE/DMlVS/Nq91Gr6Ip71NKzmI7VpJgycOR+HxfxoV0mCPXa6tWrVTVUElMoydf8b3eTNUYXze8iOxLOu2RDnrMq4XGRs6LHCd5mPQ6ch7ke0KqSibku5zI1rHaIRHFifyzlBtg6S0wJvKPV26epCQheg9Xr2pvERO5MZCnrnPmzIlsGyX++OMP9QRbquPEl9wMmfeIJk+3pb2P3MiantbKzWn0WOXpfmxdNpsnU6Zu1uPSTkp6MJS2E3LDEr3r7+g3yubxSEmNlJjFJWGR9yWlRKbqQEKSLGm7IsmLkJtGKQmQRC9619XR9/06McUrpKvqNyElEqYqW9LOSZ7IS9XGxLpWpK1KWFhYlL99E/GNx8fHJ85tziSJkQRU2sjEtz1eTOQ6kPZ0sl0TqZoovdTJAwkZ2uBNrndT1TJpFxXTEAuxXTdyTmbPnv3SunKepIqoJEsJqSZqKkWLnoS+jqxfr149dezNu8iXXgWl/aYkRtGrXr7u+zIupHqylHzJsZZjnhjXm3yfSRVmKW18FUmu5fxJDYCYzoP594q005MHJNGTv9hIUirXmXmPqUSOhCVfRBQnctMuVVCk6ltspMttuRGRamJS5Ufa+8jNijT6jj4+0KtIdSqpsiNtoeQmoXXr1pHdJ8tNoXn3y/G5iZexrKSBt9wUSZIo2zRPZmQsMKn6JPuVLrile2h5z+aN7GPStWtXVb3pde0ozEl32nKzZN4hhjm52ZNjLVXFpG2PtLOYP3++utGSDjVeRzqmkCfnlSpVUu/b1NW8xGg+no5UtZRzK8dZzpkkAbJ9uUmTqniv637dRG4+JfmeMGECQkNDkT17drXd2EowEkKSZHlfXbp0UVU3JXmI77UiN33m1Q6luqd0QBC9W/WEims8kuxKFVcZ6kBunOOSTMnxlA4QopdoJdSXX36JlStXqutEuhKXa1ESdjlnkuREb18U3+tdOuMwVZWNjXzOZLw1KQGWGOQ4yDmJnsRLKYwcL0lE5GFBXEjJjxxfSbrkQYdcO9Idu1yb8fXNN9+ooRTk+01KbCQxkpJS+QzLNZ+Q78u4kORHqi3KMXqT602WyfezfK7lcyrn18T0GZUkXL67pQ2WbEu+d6TkTr675ftI9iUl2bIN2f5HH32k2qxKoikl33I9xYUcGxmyIi6lZET2iMkXEcWJPLmWf+yvIlXpZDwnuUmSMarkplaqlchT1PiSp+pS1Uee8kvbD6kmJzfIcqMR14QgehUkST7kRkZuyiQxlFIHqY5kIk/p5eZcnmbL7+RGRBLH191UyI1YbNUSYyPvR6bYSLUqqQYp41rJwM+SeMjAx1LCGNtTcHNygy43ntLpgFQDlBsnuaGS42fqBEPIjeihQ4fUOZObRSkRlGVyQy7HPz7kuEn7FGlDIzfPcsMmT+Cjj4/2JiSRlP3IsZC2O6aBg+N6rUiVMmk7JuRvJSmXm30ZgDqxxCUeSb6lKpocc/Mxy15FEpPE7BlOHkJIGz2JUT4b8nmVG29Jbl5VYhif613O06vaF8kN+IYNG1R1UrnWJcmQxFraO5p/NqX6rSmRM1/+KtJGSiZJIk29nZrGqYsvKa2WKn9S7VMSEknoZGwvSeRjGuMrLt+XcSHv+XXHOi7Xm5SCyYMWIe3HZIpOSjylFNbUAYY8FJASekky5btRzrucSzk/Uh1RrFq1Sn3Hy0Os2Eo3o5N9SDtaIkflJP3N6w6CiCgpyQ2D9OgnN3lERI5G2tZJ+7xX3fJJEiffleYl40SU+Njmi4iIiIiIyAJY7ZCIiIjIjkkVUxlT61Wk/V18q08TUfyx2iER2T1WOyQiIiJrwOSLiIiIiIjIAtjmi4iIiIiIyAKYfBEREREREVkAO9xIIBnj486dO0iVKlWcBsckIiIiIiL7JC25nj17psYVjG2QesHkK4Ek8fL29tYdBhERERERWYmbN2/irbfeivX3TL4SSEq8TAfYy8vLYvsNDQ3F1q1bUa9ePbi5uVlsv5R0eE7tD8+p/eE5tT88p/aH59T+hNrQOfX391cFM6YcITZMvhLIVNVQEi9LJ1/JkydX+7T2i5DihufU/vCc2h+eU/vDc2p/eE7tT6gNntPXNUdihxtEREREREQWwOSLiIiIiIjIAph8ERERERERWQDbfBERERHFsSvpsLAwhIeH6w6FYmkf5OrqiqCgIJ4jOxFqRefUxcVFxfKmQ0wx+SIiIiJ6jZCQEPj6+iIgIEB3KPSK5DhLliyqJ2qOwWofDFZ2TqXzj6xZs8Ld3T3B22DyRURERPQKERERuHr1qnryLQOoyo2XNdwI0svn6fnz50iZMuUrB7kl2xFhJedUkkB5AOPn56e+C/Lnz5/geJh8EREREb2C3HTJTaCM4SNPvsk6yTmSc+Xh4cHky05EWNE59fT0VN3dX79+PTKmhOCVSURERBQHum/+iMj2vwP4LUJERERERGQBTL6IiIiIiIgsgMkXERERERGRBTD5IiIiIrJTHTt2xIcffvjS8l27dqkeG588eaIlLiJHxeSLiIiIiIjIAph8EREREcWXwQC8eKFnkn0ngV9++QVFihRBsmTJkCtXLkyePDnK72XZmDFj0Lp1a6RIkQLZs2fHrFmzoqwjpWkyDtq9e/cil8nYSLJN87HRrly5gg8++ACZM2dWYziVK1cO27dvfymmkSNHqr8zn8xL8iSmadOmxfqeatSogb59+760zZIlS0bpznz06NF46623VJzyu82bN0f5Gxnkt0WLFkiTJg3SpUunYr927Vqs+zWVLG7cuBHFixdX3ZJXrFgRZ86ciVzn4cOH6ljKcZQhDIoVK4aVK1dG2Y7ENmHCBOTLl0/FliNHDnz77bfqd7L/6MfGNJkfE3n9ww8/oGHDhqq79Dx58mDNmjXxfn+x7c+89FTmu3TpgowZM8LLywu1atXCqVOn4r2d3377DaVLl1bHRc6HnJ+wsLAo72ndunWvPNfRr40dO3a8dP3I8R03bhxy586tjk2JEiVeOjZ2mXzJB1cOkFyYFSpUwOHDh2Ndd/78+XjnnXeQNm1aNdWpU+el9WUgtOHDh6sRqOVAyjqXLl2Kss6jR4/Qtm1bdWHIhda5c2c1iBsRERHRawUEAClT6plk34ns2LFj6ua7VatW+Pvvv1WCMmzYMPz4449R1ps4caK6QT1x4gS+/PJL9OnTB9u2bYuyTqZMmbB48eLI1zIvN+Pm5J7r3XffVTfEsq0GDRqgcePGuHHjxkv3dJIQ+vr6qkliTGzTp09XieakSZNw+vRp1K9fH++//37kvWNoaKhalipVKuzduxf79u1TCaPELOM9vcrAgQPVto8cOaKOgbxH2Z4ICgpCmTJlVIImSVm3bt3w8ccfR7mvHTJkCMaPH6/Oxblz57BixQqVsJqTpNV0fGSSJDI6+ftmzZqpREjuf+U8nz9/PkHvz7Q/Sdaja968Oe7fv48//vhDXVOSQNWuXVvdd5uf01dtR2Jo3769urbkuEydOhVLliyJTDoTQpKs/v37q/dlThKvn376CXPmzMHZs2fRr18/tGvXDrt370aSMWi2atUqg7u7u2HRokWGs2fPGrp27WpIkyaN4d69ezGu36ZNG8OsWbMMJ06cMJw/f97QsWNHQ+rUqQ23bt2KXGf8+PFq2bp16wynTp0yvP/++4bcuXMbAgMDI9dp0KCBoUSJEoaDBw8a9u7da8iXL5+hdevWcY776dOncuWon5YUEhKi3pf8JPvAc2p/eE7tD8+pY59TuX84d+5clPsIw/PncgupZ5J9x1GHDh0MLi4uhhQpUkSZPDw81H3M48ePI++v6tatG+VvBw4caChcuHDk65w5c6r7J3MtW7Y0NGzYMPK1bHPYsGGGvHnzGiIiItSUP39+tex1t51FihQxzJw5M8qyIUOGGMqWLRvl/XzwwQdRYpo6daqaDw8PV+9HfppUr17d0KdPnyjbHDFihLoHNMmWLZvh22+/jbJOuXLlDD179lTzS5cuNRQoUEC9F5Pg4GCDp6enYcuWLTG+l507d6r3K/e5Jg8fPlR/4+PjE+sxaNSokaF///5q3t/f35AsWTLD/PnzY1z36tWrah9yT2zO/JgIWad79+5R1qlQoYKhR48e8Xp/Fy5cUNs6c+ZMlPdouobkftrLy8sQFBQUZV9yLcydOzfy9cWLF1+5ndq1axvGjh0b5ZwuWbLEkDVr1ijvae3atVH2E/1cmx8HyTMKFixoaNu2beT1I3EmT57csH///ijb6dy5c6w5QYzfBfHMDVyh2ZQpU9C1a1d06tRJvZbMU54ALFq0SD1RiW758uVRXi9YsEBlzPLkRLJkOR9SxDh06FBVZCoko5WnBFI8acr0pThZnkKULVtWrTNz5kz1BEaeemTLls0i752IiIhsVPLkUnyjb9/xULNmTVXtzNyhQ4fUE34TuTcy3TeZVKlSRd1ThYeHw8XFRS2rVKlSlHXkdfRqf1LasWnTJvz555+qmpeUqMiy6CVfUrom93xS+iFVygIDA18q+fL391dVHF9l8ODB6r5Pqqi9/fbbqjRDakmZzJ49W90vmkhpTuHChSO3f+fOHfVeo793U3U5+Xn58mX1PsxJyZVUn3wV8+Ml1fkKFCgQWeIkx3Xs2LH4+eefcfv2bRVXcHCweh9C1pPXUnL0pmI6bydPnozX+5NqkkJqjcVEtiPnNX369FGWy3k1346/v7/6Gdt5le1I6Zt5SZccK4knICAg8vhIlU3TdWnaj3l1UhP5G7k+JMcwL2WT9yy/q1u3bpT15TyUKlUKSUVr8iVvTookpUjVfORoqSZ44MCBOG1DDpoUl8oFLa5evYq7d++qbZikTp1aVWeUbUryJT+lqqEp8RKyvuxbvoyaNGny0n7k4pcp+oUj+zYVH1uCaV+W3CclLZ5T+8Nzan94Th37nMo68nBXqi7JFMnTE1qYysDitKpB3axKOx9zpiTH/D2Z3qOJaV5+mtprRV/HVIUs+t9Ju5958+ap38u8+baEVAGTamem9kzSTESqFMq9lvm2JCmRZiTmMUaPYcCAAejQoYO68ZcqepJESkIlbc9EmzZt8NVXX0WuLw/cpWqb+XuPfm7N39ezZ89U9cClS5e+dHylKmGUayKGYxf996b45b1LlUcpiJD2XpKMSLU30zGQNl6xbSOu+zBf903fnyQrckyzZMkS47GT7ci5kqQ7OrnvNq1/69Ytdc8t1VNj2o4pMZf7cYnzxYsX6tiY2hOa1pfqnOb3+1JlM6brU46zJL2NGjVS7blM65ju5X///XfV7s6cHPvYjrn8vXwnmCd+8fn/oDX5evDggcpko9ddldcXLlyI0zbkaYeUVJkOviRepm1E36bpd/JTTrg5V1dXlcCZ1olOnqKMGjXqpeVbt26NzMAtKXr9arJ9PKf2h+fU/vCcOuY5lXsEueGUm8LXtfGxNnJDKKVKphtN84fXQm6Y5UY4b9682LNnT5T1du7cqZbLza/pxvOvv/6Kso4kMZI8mS+TEoj33nsPX3/9tbpRlZtk2bYwrSd/Jw/ETaU6cmzlAbqUyJjWkf3JQ3pJ3swfepu/H1lH2vHIfZ1MkrysXr1atY+ShFPWlcTO/L5PbuTl/tO0DVPCYF7aIfFJaZ2sU6hQIfj4+Ki+CWIq9Yl+bM2PrxxD00N96VDin3/+Qc6cOdXfSLsi6QRD2peZ3svFixdVoiC/l3tXiV1KB6V2V3Smvgrk/JjHINuRUqLo58m8o4n9+/erhC8+709qmZUvXz7yeoh+DUncch8t+5aOQWLbzr59+1QJpXyWZIq+HemgRNp6ffrpp7G+Z1Phivl5dXNzU9szvzakcw9pc7hhwwa13Pz6MXWwIsc8ppKumM6rbF+ub7mezTsAMT8er6O92uGbkKcbq1atUj3KyAWTlKR07osvvohyQry9vVGvXr1Yi1+Tglw08o9CikjlIiPbx3Nqf6zpnMoTxrJlyyEwMPEb6DsSuQGS6vCffPKJ+scb9XfJcfTokRgbuZN9fE7lZlJ6g5Ob/KS+30hs8t4keYx+r2J6cCxVzeR38jBbagnNmDFDlUBJLSGpqvf9999H/q3cGEtnEHPnzlWlS1JyJb3SScmB+fbl8yIPxqWqo9wAS6mCLBOm9eRGXaomSicQUqIhHaVJoiYlG7KOHG956C0P6iXxMP1d9PcjMclr+Tu5MZfmKXJTLgmF3FibfmcenyyXUgvTMukUQ0papCqiVFuTTkak0xHp3ELWkU7ZpHM4KV2T9eSzfv36daxdu1b9bUyffdPxlcRTfi+JlFR9y5Ahg6ouJzFJjFINThIN6UROOpaQniGlgxHZr0yDBg1S+5R5qQopv5eOISQmU+cRkkyavz85JtETqfXr16vEtmrVqup9SVIr32lxeX+SnErCJKVGUhhhSjLkcyHkO1HuiSWJlH3I+ZJ7dEmwpARSzrMkfpJU+fj4qGqgpvcU07Uov5NtSeLftGnTyGqL8r6lt03z68z8PUY/13IcFi5cqLYh7zv69SOTlMDKeZFrQtZ5+vSpSkwlFjke0cl7lv1Wq1btpe+CmJI1q0u+5AKUi9+8O1Ihr+UJ06tI2yw5sfLBl5NpYvo72YZcLObbNNUDlXWkJxZzkr1KTyyx7VdOiqn415ycRB03V7r2S0mH59T+WMM5ffz4MR49eogKn4yAV9ZcWmOxZW7/9Q1csddkhJrVRPH3vYZDi0ap4yxdFZN9fk6llEQSBLmZk8mWmLrxjh636bXpPUlTDGl7JEnQN998o+6hpHtveeBgTm5W5cZdfic3r1JlTkpvom9bJvOeCc33JyTRkG3LDa/cD0ryJyUfplilaqDccEsNI+kR+1XvRxIUmeSm2JTQmJI909+Yr2+qQmlaJr3qyY2zJBpyfyhJmCQrkiAKSXKkpENi/Oijj1ScklBKqZ1Up4vpmjAtk3tVKY2TnhPlPlQSVdNNu/RAKKV9cvwkAZHeDiVJkQTA9PdyPuT6lIREEhk5L927d49yLcZ0XUZ/z5LIyvnt3bu32oZ0aV+0aNE4vT+p+intBk3HSiZzcsxN1Rgl0ZIST0noJFGU+2pJVGSfkjyNHj1avW+5jqJfE6b3IcdDSqpkXakyKMmS7ENKQM3fU1zetyT/0q7OtCz69SPXupSefffdd6qkTd6vlHhKNdXYzqv8fUzfG3H9f+/0X48h2shTFinClA+Z6SBJUaVcHDF1uCHkREgjvC1btqgxE8zJ25GnLVL/V06skA+UHFh5kmHqcEM+WEePHlV1XIV8uKVLTXlKHJcON2Sb8mRFPiCWLvmSC1s6B9F9U0eJg+fU/ljTOT1+/Lj6nqv79WKky2G8kaD4c3WKQPNMD7D6fgaEGf7/D/nRjYvY9m2nyC6VyT4/p/K0W26SJcG2tZKvxCRJkIyjFH3cLGthascj92W6k2SplSUJizyYkRt6nSRZkFIs82qH8SFV92QMrdjGNZP3Zz5Gl72e09d9F8Q1N9Be7VCq8kmxnjxxkSRMesyRuqSm3g+l6FKybynmFJKZylMAKTKVLwFTGy3J2mWSC0y+FCSTzZ8/vzo4kmFLQmW66CR7lkRLelmUnk/kC1iSPUnM2NMhEREREZGR1FKLPk6buej9LNCraU++WrZsqYolJaGSRMo0qrjpREpvPOaZrtQflsZuUixqbsSIEapIVkjRsyRwUnwrmbgUacs2zTNUqRMsCZcUqcr2pc6x1HMmIiIiIiIjac8lwzPFRjqsIBtKvoQkQTLFVmxrLrYiT3NS+iX1RGWKjfRsKKVnRERERPR6cbkHIyOppqe5ZU8ka4mDjPRXniQiIiIiInIATL6IiIiI4oAlCESOzZAI3wFMvoiIiIhewdQbYlwHUSUi+xTw33fAm/RkbBVtvoiIiIisubc36U7bNEaojMlkGiuKrId0Sy6dskl34NbQLTnZzzk1GAwq8ZLvAPkukO+EhGLyRURERPQaMlisMCVgZH3kBjkwMFANsMzk2D4YrOycSuJl+i5IKCZfRERERK8hN35Zs2ZFpkyZ1PigZH3kvOzZswfVqlXTPsA92d85dXNze6MSLxMmX0RERERxJDdfiXEDRolPzktYWJga11X3jTolDhc7PKesEEtERERERGQBTL6IiIiIiIgsgMkXERERERGRBTD5IiIiIiIisgAmX0RERERERBbA5IuIiIiIiMgCmHwRERERERFZAJMvIiIiIiIiC2DyRUREREREZAFMvoiIiIiIiCyAyRcREREREZEFMPkiIiIiIiKyACZfREREREREFsDki4iIiIiIyAKYfBEREREREVkAky8iIiIiIiILYPJFRERERERkAUy+iIiIiIiILIDJFxERERERkQUw+SIiIiIiIrIAJl9EREREREQWwOSLiIiIiIjIAph8ERERERERWQCTLyIiIiIiIgtg8kVERERERGQBTL6IiIiIiIgsgMkXERERERGRBTD5IiIiIiIisgAmX0RERERERBbA5IuIiIiIiMgCmHwRERERERFZAJMvIiIiIiIiC2DyRUREREREZAFMvoiIiIiIiCyAyRcREREREZEFMPkiIiIiIiKyACZfREREREREjpB8zZo1C7ly5YKHhwcqVKiAw4cPx7ru2bNn0axZM7W+k5MTpk2b9tI6pt9Fn3r16hW5To0aNV76fffu3ZPsPRIREREREWlNvnx8fPDFF19gxIgROH78OEqUKIH69evj/v37Ma4fEBCAPHnyYPz48ciSJUuM6xw5cgS+vr6R07Zt29Ty5s2bR1mva9euUdabMGFCErxDIiIiIiIiK0i+pkyZopKgTp06oXDhwpgzZw6SJ0+ORYsWxbh+uXLlMHHiRLRq1QrJkiWLcZ2MGTOqxMw0bdiwAXnz5kX16tWjrCf7MV/Py8srSd4jERERERGRcNV1GEJCQnDs2DEMGTIkcpmzszPq1KmDAwcOJNo+li1bpkrXpGqhueXLl6vfSeLVuHFjDBs2TCVksQkODlaTib+/v/oZGhqqJksx7cuS+6SkxXNqf6zpnEZERMDT0xNuzoCrU4TucGyW6dhFP4ZyXOX4ynG2hvNNtvk5pcTBc2p/Qm3onMY1Rm3J14MHDxAeHo7MmTNHWS6vL1y4kCj7WLduHZ48eYKOHTtGWd6mTRvkzJkT2bJlw+nTpzF48GBcvHgRv/76a6zbGjduHEaNGvXS8q1bt74yaUsqpuqUZD94Tu2PtZzTlStX/jf3QHMktq9JxkdRF2RKi24rV+L27dtqIttjLZ9TSjw8p/Znmw2cU2keZdXJlyUsXLgQDRs2VEmWuW7dukXOFytWDFmzZkXt2rVx5coVVUUxJlJCJyVo5iVf3t7eqFevnkWrLEpWLRdg3bp14ebmZrH9UtLhObU/1nROT506hWrVqqHmgNlI651fayy2TEq8JPFa65cOYYb/19h/fPMSdk7qiT179qh2y2Q7rOlzSomD59T+hNrQOTXVirPa5CtDhgxwcXHBvXv3oiyX17F1phEf169fx/bt219ZmmUivSyKy5cvx5p8SRuzmNqZyYWg42LQtV9KOjyn9scazqlU5w4MDERoBKIkDZQwcgzNj6McVzm+cpx1n2uy3c8pJS6eU/vjZgPnNK7xaftP7O7ujjJlymDHjh2Ry6TOvLyuVKnSG29/8eLFyJQpExo1avTadU+ePKl+SgkYERERERFRUtBa7VCq8XXo0AFly5ZF+fLl1bhdL168UL0fivbt2yN79uyqvZWpA41z585Fzkv9ekmcUqZMiXz58kVJ4iT5km27ukZ9i1K1cMWKFXj33XeRPn161earX79+qlpO8eLFLfr+iYiIiIjIcWhNvlq2bAk/Pz8MHz4cd+/eRcmSJbF58+bITjhu3LihqnKY3LlzB6VKlYp8PWnSJDVJN/K7du2KXC7VDeVvP/nkkxhL3OT3pkRP2m3JwM1Dhw5N8vdLRERERESOS3uHG71791ZTTMwTKpErVy4YDIbXblM6wYhtPUm2du/encBoiYiIiIiIEoatr4mIiIiIiCyAyRcREREREZEFMPkiIiIiIiKyACZfREREREREFsDki4iIiIiIyAKYfBEREREREVkAky8iIiIiIiJHGOeLiIhIJ5fwMGTyu41s924g293r6mfm+7fgHhqsfucSHg7X8DCkRjCqhALOEeF4ljIN/NJlwW03d5QEkHbrViA4GMiRA8iaFXDms00iInoZky8iInIoWe7dRKkz+1HonxPI7nsNmf1uwzUiPE5/m+K/n+mePEDOW5dRFsAHsmDIkP+vlCEDUKOGcapZEyhUCHBySpL3QkREtoXJFxER2TW30GCVaJU6cwAlzxxA1vu3XlonKJknfDN5406WnLiTOQfuZvZGoEcKhLm4IMLZFQZXZ1TP8Bzb/dMjFC5I/ewx0j+6hxRXzyFi/wZ8UKoUUj16BNy6BTx4AKxZY5xE5sz/T8QaNjSWjhERkUNi8kVERHbHJSwU5U/sRtVDW1Dk4jF4hARF/i7MxRXn85fEqSIVcc07v0q4HqXJ+MrSKVenCBTP9AD/3s+AMMP/qxQ+ylUI2/ZvwLEFC1C6dGkgJAQ4cgTYuRPYtQvYtw+4dw/w8TFOso/atYHOnYEPPwQ8PJL8WBARkfVg8kVERHYjzdMHqL3nN9Te+xvSPX0Qufxhmow4WbQSThSrhDMFyyLIw1SBMJG5uwNVqhinoUON7cAOHTImY9u3A3/9ZfwpU7p0QNu2xkSsRImkiYeIiKwKky8iIrJtBgPevvI36u9agwrHdka233rslR5/vvM+DpWqgRtv5dPT7ipZMqBaNeM0YgRw9SqweLFxkiqKM2capzJlgO7dgfbtjQkcERHZJSZfRERkk5wiIlDp6HY03rocuW9eilx+IW9xbKnZDIdL1UC4qxusSu7cwOjRxkRs2zZgwQJg/Xrg2DGga1dg7Fjj79q1A1xcdEdLRESJjMkXERHZnMIXj6Ptmu+R98YF9TrEzR1/la+PrTWa4lqOArB6klg1aGCc/PyAJUuASZOMJWMdOwLjxwOjRgEffcRu64mI7AiTLyIishnZ71xFm19no8zf+9TrAI/k2FCvLbbUaIYXKbxgkzJmBAYMAHr0AGbNAr77DrhwAWjZ0tgWbMwY4L332F09EZEdYPJFRERWL/XTh2j++wLU+ut3OBsiEO7sgu3vfIBf3vsE/l7pYBdSpAAGDQI+/RSYNg2YPBk4dQp4/32gUiXghx/YMQcRkY1j8kVERFbLOTwM721bgaablsAjOFAtO1yyGlY26QHfLDlhl1KnNrb76t0bmDgRmDEDOHAAKFvWmJwNG8Yu6omIbBQrkhMRkVXK5nsNoyd8ijZr56jE61LuIhg5YDam9Bhvv4mXufTpjW2/Ll8GmjUDwsKMHXJI6deePbqjIyKiBGDJFxERWRWniHC8u8MHLdfNg3tYCJ4nT4UlLfpib8UGjtnuKVs2YM0aYO1aoFcv4J9/gOrVjV3TS3ImJWVERGQTWPJFRERWI/P9WxgxqRc+XvO9SrxOFK2EgcOXYW+lho6ZeJlr0gQ4d87YJb2YMwcoUsTYVT0REdkEJl9ERGQVY3bV37kG341pj4JXTqteDOd+PATf9Z6Ex2kz6g7PeqRJA8ybB/z5J5AvH3D7NvDBB0DPnkBwsO7oiIjoNZh8ERGRVqmePcaQGf3QadUUeIQE4UyBMhg0fCl2Vm3M0q7Y1KwJnD4NDBxofC09IVatCly7pjsyIiJ6BSZfRESkTe7rFzDu209Q/PwRBLl7YFGr/vi273Q8SJ9Vd2jWz9MTmDAB2LQJSJcOOHoUKF0a2LBBd2RERBQLJl9ERKRFtQObMGpCd2R4fA++mbzx9ZCF2FqzGQzO/NcULw0bAidOAOXLA48fA40bA199ZewdkYiIrAr/wxERkUW5hIeh48op6PnjN6pTjWPFquCrrxbidrbcukOzXTlyAHv3Ap99Znw9bhxQty5w967uyIiIyAyTLyIispjU/o8wdMpnaLBrjXq95r1PMKnndwj0TKk7NNvn7m4ckNnHB0iZEti1CyhVCjh4UHdkRET0HyZfRERkEXmvnsPYbzuh0OVTCPBIgYk9v8Oaxl1YzTCxtWhhbP8l3dBLyVetWsBvv+mOioiImHwREZEllDuxGyMm9UT6J364nSUnvh6yAMdKvKM7LPtVoICxxKtRIyAwEGjaFJg1S3dUREQOj8kXERElqVp7f0O/uV+r9l1Hi1fF0C8XwDdLTt1h2T+perhunXFQ5ogIoHdvYPBg4zwREWnB5IuIiJKGwYAmGxej27Lv4GyIwI6qjTGl+1gEeqbQHZnjcHUF5s4FvvnG+Fq6pm/blgMyExFpwuSLiIgSnVNEBDqumoqW6+er17++2xHz232JCBdX3aE5Hhmo+uuvgSVLjMnYqlVA/frAkye6IyMicjhMvoiIKFG5hobgs4UjVI+GEU5OWNyyH37+oJsxCSB92rc3DsicKhWwezdQpQpw86buqIiIHAqTLyIiSjQeQS8waNZAVD66A2EurpjZeSS21GquOywykbG/ZDywbNmAc+eA6tWB69d1R0VE5DCYfBERUaJI+fwphk35DMXPH0FQMk9813sSDpSrqzssiq5ECeDAASBfPuDqVWMCdu2a7qiIiBwCky8iInpjKV744+tpfZD3+gX4p0yD0V98j78Ll9cdFsUmRw7jIMz58xtLviQB+/df3VEREdk9Jl9ERPRGkgc8w1fT+yL3zX/wNFUajOo/C//mKqQ7LHqd7NmNCZiMCXbjBlCjBnDliu6oiIjsGpMvIiJKMM/AFxgy44vIEq8x/WbidrbcusOiuJK2Xzt3AgULGjvfkBKwS5d0R0VEZLeYfBERUYI71/hy5hfIf/UsnqXwwjd9p+NW9ry6w6L4yprVWAJWuDBw+7axBOyff3RHRURkl5h8ERFRvCULDsTgmQNQ4MrfeJ48Fb7tOx03vPPrDosSKnNmYwlYkSLAnTvGBOziRd1RERHZHSZfREQUL+4hQRj0/UAUunwKLzxTYmyfabiWo4DusOhNZcpkTMCKFQN8fYE6dYxtwYiIKNEw+SIiojhzCw3GgNmDUeSf4wjwSI5xfaaycw17kjEj8OefQKFCwK1bQP36wIMHuqMiIrIbTL6IiChOnCLC8dmCkWocr8BkyTH+86m4nLuI7rAosWXIAGzZAnh7AxcuAI0aAc+f646KiMguMPkiIqLXMxjQcdVUlD+5G6GubpjYawL+yVtMd1SUVCTx2roVSJ8eOHwYaNoUCA7WHRURkc3TnnzNmjULuXLlgoeHBypUqIDD8iUfi7Nnz6JZs2ZqfScnJ0ybNu2ldUaOHKl+Zz4VlC50zQQFBaFXr15Inz49UqZMqbZ57969JHl/RET24MM/fkL93b8iwskJ338yAucKlNYdEiU1+d+5aROQIgWwbRvQoQMQHq47KiIim6Y1+fLx8cEXX3yBESNG4Pjx4yhRogTq16+P+/fvx7h+QEAA8uTJg/HjxyNLliyxbrdIkSLw9fWNnP76668ov+/Xrx9+//13rF69Grt378adO3fQVJ7qERHRS6rv24BWv81V80ta9MWhMrV0h0SWUr48sHYt4OYm/7SBzz9XpaBERGSDydeUKVPQtWtXdOrUCYULF8acOXOQPHlyLFq0KMb1y5Urh4kTJ6JVq1ZIlixZrNt1dXVVyZlpyiD11//z9OlTLFy4UO27Vq1aKFOmDBYvXoz9+/fj4MGDSfI+iYhsVcm/96Pbsu/U/G/122FLrea6QyJLq1sXWLYMcHICZs8GRo/WHRERkc1y1bXjkJAQHDt2DEOGDIlc5uzsjDp16uDAgQNvtO1Lly4hW7ZsqipjpUqVMG7cOOTIkUP9TvYZGhqq9mMi1RLl97LfihUrxrjN4OBgNZn4+/urn7ItmSzFtC9L7pOSFs+p/bGmcxoREQFPT0+4OQOuThHx+ts8V8+h77yhcIkIx95KDbC66afx3oa9ML3v6O9fjqscXznO1nC+k0yTJnCeMQMun30m9fsRnj49Ij79FLbMmj6nlDh4Tu1PqA2d07jGqC35evDgAcLDw5FZBnY0I68vSO9KCSTtxn788UcUKFBAVTkcNWoU3nnnHZw5cwapUqXC3bt34e7ujjRp0ry0X/ldbCSBk21Ft3XrVlVaZ2nbpP492RWeU/tjLed05cqV/83FvcvwFHfu4J1ZXyJZSBDulSqFx/27oLnrQzi6JhkfRV2QKS26rVyJ27dvq8mueXujQKtWKLhqFZz79MFhPz/cL237bf+s5XNKiYfn1P5ss4FzKs2jrDr5SioNGzaMnC9evLhKxnLmzImff/4ZnTt3TvB2pYRO2qeZl3x5e3ujXr168PLygiWzarkA69atCzepg082j+fU/ljTOT116hSqVauGmgNmI613/jj9jZf/I4wcPwbJ/P3xb84C+LbTdwh+ZPmHTNZESrwk8Vrrlw5hhv/X2H988xJ2TuqJPXv2qHbLdq9hQ0R4eMD5xx9RcepUhO3eDRQtCltkTZ9TShw8p/Yn1IbOqalWnNUmX9IOy8XF5aVeBuX1qzrTiC8p4Xr77bdx+fJl9Vq2LVUenzx5EqX063X7lTZmMbUzkwtBx8Wga7+UdHhO7Y81nFOpzh0YGIjQCERJGl41iHLfWUOQ6YEv7mbMju96T8aLZCkB9rGgyDE0P45yXOX4ynHWfa4tZu5c4OpVOO3eDTfprOrQISBTJtgqa/icUuLiObU/bjZwTuMan7YON6Tqn3R2sWPHjshlUmdeXks7rcTy/PlzXLlyBVmzZlWvZZ9ycMz3e/HiRdy4cSNR90tEZHMMBnRZNgFvXz2L58lT4bvPJuOpVzrdUZG1cXcHfvkFyJcPuHZNtQdDUJDuqIiIbILWaodSja9Dhw4oW7Ysypcvr8btevHiher9ULRv3x7Zs2dX7a2ElFidO3cucl7q1588eVKN1ZVP/gkAGDBgABo3bqyqGkoX8tKNvZSwtW7dWv0+derUqvqh7DtdunSqyuBnn32mEq/YOtsgInIE721dgeoH/0C4swumdfsGvpmNHRURvUQGX96wAZD/m/v3A126AEuXGntEJCIi60y+WrZsCT8/PwwfPlx1dlGyZEls3rw5shMOKY2SqhwmkkyVKlUq8vWkSZPUVL16dezatUstu3Xrlkq0Hj58iIwZM6Jq1aqqC3mZN5k6darargyuLD0Yythis6X7XCIiB1X69D60WTs7ciyvM4XK6Q6JrF2BAsCaNUCDBsDy5cZBmYcO1R0VEZFV097hRu/evdUUE1NCZZIrVy4YXjO446pVq167T+mCftasWWoiInJ0b92+gs8WjICzwYBt1Zpgaw0OOk9xVLu2ceyvbt2AYcOAt98GWrTQHRURkdXSOsgyERHpler5EwycPRiewQE4+3Zp/NiqH6uOUfx07SrtCIzzHToAhw/rjoiIyGox+SIiclAuYaHoN/drZH5wB/cyZMPUT79FuIv2ChFkiyZMAN57z9jxxgcfAL6+uiMiIrJKTL6IiByRwYBOq6ag8D8nEOCRHBN6TcTzlKl1R0W2ysUFWLECKFIEuHsXaN5cesbSHRURkdVh8kVE5IDq7v4Vdfb+hggnJ8zoMhq3s+XWHRLZulSpgLVrAS8vYN8+6X5Yd0RERFaHyRcRkYPJf+VvdPh5uppf0aQnTharrDskshf58wPLlhnnZ878/zwRESlMvoiIHEiqZ4/Rd95QuIaH4UCZWthQr43ukMjeNG5s7PlQSC+IJ0/qjoiIyGow+SIichBOEeH4fMEIpH/ih9uZc2Bu+yHs2ZCSxogRQMOGQGAg0LQp8OiR7oiIiKwCky8iIgfRYv18FLtwFEHJPDGl+zgEeaTQHRLZcwccUuUwTx7g6lWgbVsgPFx3VERE2jH5IiJyABX/OYkmf/yk5ud+/CU72KCkly4d8OuvgKcnsHkzMGqU7oiIiLRj8kVEZOfyABi0fp6a/6NWcxwoV1d3SOQoSpQA5hmvPYwZA/z+u+6IiIi0YvJFRGTHnIKC8AuAlMGB+CdPUSxr1lt3SORo2rUDPv/8//P//qs7IiIibZh8ERHZK4MBOcaPR0kAT5KnwrRu3yDc1U13VOSIJk0CKlcG/P2BVq04ADMROSwmX0RE9mrhQqT//XdINwdjm3THo7SZdEdEjsrNDVi1ytgO7MgR4MsvdUdERKQFky8iInt05gzw2WdqdiiAk7kK646IHJ23N/Djj8b5qVOB9et1R0REZHFMvoiI7E1AANCyJRAUhKeVK+M73fEQmQ/A3K+fcb5jR+DGDd0RERFZFJMvIiJ7Ize3584BWbLg+qhRMOiOh8jc+PFA2bLA48dA69ZAaKjuiIiILIbJFxGRPVm92ti1t5OTGuQ2TNrYEFkTd3fAxwfw8gL27wdGjNAdERGRxTD5IiKyF1evAl27GueHDAFq19YdEVHM8uQBFiwwzo8bB2zZojsiIiKLYPJFRGQPpOqWVOF6+hSoVAkYOVJ3RESv1rw50KOHcf7jj4E7d3RHRESU5Jh8ERHZg+HDgUOHgDRpgBUrjF17E1m7KVOAEiUAPz+gbVsgXAZGICKyX0y+iIhs3datxk4MhFTlypVLd0REcePhAfz8M5AiBbBrFzBhgu6IiIiSFJMvIiJbdu8e0L69cb57d6BZM90REcXP228D33///xLco0d1R0RElGSYfBER2aqICKBDB2MCVrSosQoXkS2S6/ijj4CwMGP1wxcvdEdERJQkmHwREdmqWbOMvcRJ1S3putvTU3dERAkjQyPMnQtkzw788w/Qv7/uiIiIkgSTLyIiWySDKA8aZJyfOBEoXFh3RERvRsakW7LEOC+J2Pr1uiMiIkp0TL6IiGxNSAjQrh0QFATUrw/06qU7IqLEIWPTmUq9OncG7t7VHRERUaJi8kVEZGtkDK8TJ4wlBYsWGatsEdmLb781dj//4AHQqRNgMOiOiIgo0TD5IiKyJX/9BXz3nXF+3jwgWzbdERElrmTJgOXLjW0ZN282tm0kIrITTL6IiGyFvz/w8cf/7+WQ3cqTvSpSxNiWUQwYAJw9qzsiIqJE4Zo4myEioiT3+efAtWvGQZRnzNAdDVHSkraMmzYBf/yBgCZNcPGnn2Bwd0+0zUfIQwwAp06dgrOz4z6LzpAhA3LkyKE7DCKHweSLiMgW/PKLsSc4uUn86SfAy0t3RERJy8kJt0aPRrI//kDGS5ewuVIlfJWIm/f09MTKlStRrVo1BAYGwlF5eibHhQvnmYARWQiTLyIia3fnDtCtm3F+8GDgnXd0R0RkEfednTEawDoAg5yccLf9Vzj/Vr5E2bbbf4VdNQfMRqixEMzh+Ptew6FFo/DgwQMmX0QWwuSLiMiaSU9vn3wCPHoElC5t7OmQyIH8BmBbscqo+/d+fPnHTxg8bAlC3D3eeLuuTpJxPUBa7/wIMzhutUMisix+2xARWbP584EtW4w9vy1bBiRimxciWzG7Xls8TJMRWe/fROu1P+gOh4gowZh8ERFZK+lcwzTgrIx9VKiQ7oiItHjhkRxzOxhbfDX8czUKXzymOyQiogRh8kVEZI2kJzapbvj8OVC1KtCnj+6IiLQ6XbgCtlVrouZ7LPkWnoEvdIdERBRvTL6IiKzRDz8AO3cCyZMDixcDLi66IyLSblmzXriXIRsyPryLj1dzuAUisj1MvoiIrM3ly8CgQcb5774D8iVO725Eti7YIzl+6PA1IpycUGvf7yj19z7dIRERxQuTLyIia6tu2KkTEBAA1KwJ9OypOyIiq3Lh7VLYVLulmu/203ikfP5Ud0hERHHG5IuIyJpMnw789ReQMiWwaJFxUGUiisLng09xK2supPV/iE6rpugOh4gozvhfnYjIWly8CHxl7NENkyYBuXLpjojIKoW6J8PsjkMR7uyCKke2ocKxP3WHREQUJ0y+iIisQXg40LEjEBQE1K0LdOumOyIiq/ZvrsL4rcHHar7TyslI9fyJ7pCIiF6LyRcRkTWYPBk4eBDw8gIWLgScnHRHRGT1fn23I25my400zx6jg8803eEQEb0Wky8iIt3OnweGDTPOT50KeHvrjojIJoS5uf/X+6Ezqh7eijKn9uoOiYjIupOvWbNmIVeuXPDw8ECFChVw+PDhWNc9e/YsmjVrptZ3cnLCtGkvP+UaN24cypUrh1SpUiFTpkz48MMPcVHaUZipUaOG+nvzqXv37kny/oiIXlvdsHNnICQEaNjQ2NMhEcWr+uGGuq3VfOflE5Hihb/ukIiIrDP58vHxwRdffIERI0bg+PHjKFGiBOrXr4/79+/HuH5AQADy5MmD8ePHI0uWLDGus3v3bvTq1QsHDx7Etm3bEBoainr16uHFixdR1uvatSt8fX0jpwkTJiTJeyQieqWZM4EDB4BUqYC5c1ndkCgBVjfugjuZcyDd0wccfJmIrJrW5GvKlCkqCerUqRMKFy6MOXPmIHny5Fgk3SvHQEq0Jk6ciFatWiFZsmQxrrN582Z07NgRRYoUUcncjz/+iBs3buDYsWNR1pP9SAJnmryknQURkSX9+y/w9dfG+YkTWd2Q6A16P5zT/is1+HKNA5tQ4sxB3SEREcXIFZqEhISohGjIkCGRy5ydnVGnTh0ckKfAieTpU+Pgi+nSpYuyfPny5Vi2bJlKvBo3boxhw4aphCw2wcHBajLx9zdWa5CSNZksxbQvS+6TkhbPqYOeU4MBLp07wzkgABHVqyNcejpMgmsgIiICnp6ecHMGXJ0iEn37jsJ07KIfQzmucnzlOPMzDK3X77/5i2JrrY/QYMdqdFs2Hl+OXIpAzxTxPqeOxN6uX/4/tT+hNnRO4xqjk8FgMECDO3fuIHv27Ni/fz8qVaoUuXzQoEGq6uChQ4de+ffS7qtv375qio18mbz//vt48uQJ/pJBS/8zb9485MyZE9myZcPp06cxePBglC9fHr/++mus2xo5ciRGjRr10vIVK1a8MmkjIopJzi1bUPKHHxDm7o6d06cjIGtW3SER2TyXoCDU7NMHKe7dw7V69XCqZ0/dIRGRgwgICECbNm1Uwc+ratRpK/myBGn7debMmSiJl+hmNn5OsWLFkDVrVtSuXRtXrlxB3rx5Y9yWlNBJ+zTzki9vb2/VnsySVRYlq5a2bHXr1oWbm5vF9ktJh+fUAc/prVtw/dg4PpHTt9+ihnS4kUROnTqFatWqoeaA2UjrnT/J9mPvpHSkScZHWOuXDmGG/9fYf3zzEnZO6ok9e/aoqu6k//o91e5rfD35c+TauhUri7yLs4XKxuucOhJ7u375/9T+hNrQOTXVinsdbclXhgwZ4OLignv37kVZLq9j60wjPnr37o0NGzaoL5S33nrrletKL4vi8uXLsSZf0sYspnZmciHouBh07ZeSDs+pg5xTqWzQuzfw7BlQsSJc+vVT34VJRapzBwYGIjQCDnuDmZjkGJofRzmucnzlOPPzax3X799vl8XW6k1Qb/dadP7pOwwcvhTBHsnjfE4dib1ev/x/an/cbOCcxjU+bd827u7uKFOmDHbs2BGlmqC8Nq+GGF9Si1ISr7Vr1+LPP/9E7ty5X/s3J0+eVD+lBIyIKEktXw5s2iRfgoB0LpSEiReRo1rRtCf80mVGpoe+aPXbXN3hEBFF0vqoR6rxzZ8/H0uWLMH58+fRo0cP1SW89H4o2rdvH6VDDumkQxIlmWT+9u3bal5KrMyrGkpHGtIWS8b6unv3rprkyY6QqoVjxoxRnX1cu3YN69evV/uRag3FixfXcBSIyGFISX+fPsb5ESOAQoV0R0Rkl4I8UmB+u8Fqvv7ONcj37xndIRER6U++WrZsiUmTJmH48OEoWbKkSqSkq/jMmTOr30sX8TIGl3knHaVKlVKTLJe/lfkuXbpErvPDDz+ohm4ykLKUZJkmGVPMVOK2fft21VarYMGC6N+/vxq4+ffff9dwBIjIoXz2GfDoEVCyJDBwoO5oiOza6SIVsadiAzgbDPh06Ti4hFl/b2lEZP+0d7ghVQRlismuXbte6uHwdZ0zvu730kmG9KZIRGRR69YBq1cbqxlKdUMrr7tOZA9+at4HJc4ehPedq/hg81L8+t4nukMiIgfnmC1MiYgsScYb7NXLOD9oEFCqlO6IiBzC85Sp8WPLfmq+6aYfkf3OVd0hEZGDY/JFRJTUvvxS6k0D+fMDw4frjobIoRwoWwfHi1WGa3iYqn7oFOG4gyoTkX5MvoiIktLevcCcOcb5+fMBDw/dERE5FicnLGwzEIHJkuPtf8+g3u5fdUdERA4sUZIv6Tlw0aJFOHz4cGJsjojIPgQFyajuxnnpGKh6dd0RETmkh+kyY2WTHmq+1do5SP/oru6QiMhBvXHytXjxYpQvXx5ffvklKleujDmmJ7xERA7Oefx44MIFQAaOnzBBdzhEDm1b9Sa4mLcYPIMD0Hn5ROOA50REtpZ8TZ8+XXX5fv/+fSxfvhxTp05NnMiIiGxYquvX4TxxovHFzJlA2rS6QyJyaAZnZ8z9eAhCXd1Q+swBVDqyXXdIROSA3jj5krG43n33XTXfqFEjNXAxEZFDCw9HyVmz4BQaCnzwAdCsme6IiEjGC82aC2vf7ajmP141He7+/rpDIiIH88bJV2hoqBq4WLi5uSEsLCwx4iIislnOc+Yg3T//wJAqFTBrlmrwT0TW4bf67XAjWx54PX+CojLmHhGRtQ+y3LRp08j5oKAgdO/eHSlSpEAEu28lIkd34wachw1TsxFjx8Ile3bdERGRmXBXN8xrPwSjv+sG7127UKTkEZwqVEF3WETkIBJU8uXl5YXUqVOrqV27dsiWLZuaT5s2Ldq3b5/4URIR2QJpwN+jB5yeP8fDQoUQ0bWr7oiIKAaXcxfB9hrGB8mfLJ8Et5Bg3SERkYNIUMnXjz/+mPiREBHZup9/BjZtgsHdHad69sQ7zhxKkcharf6wG945vQuZ/W6j2cbFWNWku+6QiMgBJOjOoFatWnjy5EniR0NEZKsePwb69FGzEYMH45m3t+6IiOgVAj1T4PR/pdPvbV0O79tXdIdERA4gQcnXrl27EBISkvjREBHZqi+/BO7dAwoWRMSgQbqjIaI4uFuxIo6WfAeuEeHounQ8nNh2nYiSWILrxDix9y4iIqN9+4B584zzc+cCyZLpjoiI4uin1v0Q4JEcb189izp71uoOh4jsXILafIkmTZpEdjEf3Z9//vkmMRER2Q6pBdCtm3H+k0+AatVkDA7dURFRHD1Kmwk+H3ZHp1VT0HrtDzhaohoep82oOywislMJTr4qVaqElClTJm40RES2ZuJE4Nw5IGNG4zwR2Zyt1Zug6qEtyH/1LDr6TMXU7mN1h0REdso1oVUOBw4ciEyZMiV+REREtuLSJWDMGOP81KlAunS6IyKiBDA4u2B+u8EY+20nVDixC2VO7sGxktV0h0VEdihBbb4MMpYNEZEjk+/B7t2B4GCgXj2gTRvdERHRG7jxVj5sqGf8HH+ycjI8A1/oDomI7FCCkq8RI0awyiERObalS6WBK+DhAcyeLVUCdEdERG/ol0af4F6GbEj/xA8tfpurOxwiskMJSr7at2+P27dvv7T80qVLuHbtWmLERURkvR48AL74wjg/YgSQN6/uiIgoEYS6J8OCtsahIurv+gV5rp3THRIR2ZkEJV8dO3bE/v37X1p+6NAh9TsiIrs2cCDw8CFQtCjQv7/uaIgoEf1duDz2lq8HZ4MBXZdNgHN4mO6QiMjRk68TJ06gSpUqLy2vWLEiTp48mRhxERFZp507gR9/NFYzlLG93Nx0R0REiWxZ88/xPHkq5L75D+rv/EV3OETk6MmX9Hb47Nmzl5Y/ffoU4eHhiREXEZH1kc41pJMNIT8rVdIdERElgade6bCiaU8133L9PKR/dE93SETkyMlXtWrVMG7cuCiJlszLsqpVqyZmfERE1mP8eOCff4AsWYBx43RHQ0RJaGeVxriQtzg8ggPRwWeq7nCIyJHH+fruu+9UAlagQAG88847atnevXvh7++PP6X3LyIieyNJ19j/Bl6dNg1InVp3RESUhAzOzljQdiDGf9MR5U/u4dhfRKSv5Ktw4cI4ffo0WrRogfv376sqiNID4oULF1BUGqATEdnbmF49egAhIUD9+kCLFrojIiILuJU97//H/lo1BR5BHPuLiDSUfIls2bJhrOkpMBGRPVu2jGN6ETmoXxt1QqWjO5D5wR00X78AS1v00R0SETlayZd48uQJJk+ejC5duqhp6tSpqsMNIiK78ujR/7uTHzYMyJNHd0REZEEh7h5Y1HqAmm/452rkunFRd0hE5GjJ19GjR5E3b16VcD169EhNU6ZMUcuOHz+e+FESEekyeDDg5yf1rYEBxhswInIsp4pWxP6yteFsiEDXZd/BKYI9OxORBZOvfv364f3338e1a9fw66+/qunq1at477330Ldv3wSGQkRkZf76C1iwwDg/dy7g7q47IiLS5KcWfRDgkQJ5r19AvV2/6g6HiByt5Gvw4MFwdf1/kzGZHzRokPodEZHNk841Pv3UON+5M8BhNIgc2pPUGbCyaQ813/K3uUj7xE93SETkKMmXl5cXbty48dLymzdvIlWqVIkRFxGRXpMnA+fOARkyyPgauqMhIiuw/Z0PcSl3ESQPCkD7n6frDoeIHCX5atmyJTp37gwfHx+VcMm0atUq1fFG69atEz9KIiJL+vdfYPTo/ydh6dPrjoiIrGTsr/ltByHc2QWVjv2JkmcO6A6JiByhq/lJkybByclJje0VFhamlrm5uaFHjx4YP358YsdIRHZOStIfPHgAq2AwIO/nnyN1UBCelS2LS0WKAPHsSCgiIkL9PHXqFJydE9ypbKI4f/681v07Ch5nxzmuN7zz449azfHe9lXotHIyBo5YpnpEJCJKsuTL3d0d06dPx7hx43DlyhW1THo6TJ48eUI2R0QOnngVLFgIgYEBsAYfAVgNIBhA2aNH8U/ZsvHehqenJ1auXIlq1aohMDAQ1iA0OER3CHYp8OlDAE5o166d7lDsmrVdv6sbd1ElXzL2V5NNP8Lnw+66QyIiex9kWUiyVaxYscSLhogcjpR4SeJV4ZMR8MqaS2ss0o5jztyvgedP8HPV95GzehPkTMB23P4r7Ko5YDZCjYVg2vj+fQBn1s+LrKVAiSs04JkUl6Jkm8HImLug7nDsjrVev8EeybG4VT8M+GEIGm9dgb/K18ftbLl1h0VE9pp8NW3a9JW/l67niYjiQxKvdDkKaI2hw6opSP/8CXwzvYWtrfohnVuyBG3H1UkyrgdI650fYQa91Q79fa9p3b+jSJkph/br1x5Z8/V7tGR1HC1RFWVP/YUuyydg1IDZgJOT7rCIyMol6K4gderUkdPGjRtVmwbzZUREtibPtfOo/9/YPYtaD0BoAhMvInIci1t9gSB3DxS6fArV92/UHQ4R2WvJ1+LFiyPn16xZgwkTJiBPnjyJGRcRkcU4RYSj8/KJcDZEYF+5uvi7cHndIRGRDXiYLgvWNO6Cdr98j7a/zMLxElXxLGUa3WERkRXTWx+GiMgK1Nv1K/LeuIAXninxU/PPdYdDRDbkj9otcP2tfPB68RRtfpmlOxwisnJMvojIoaV94oeWv81V86uadMfT1BzTi4jiLtzFFQvaDESEkxNq7t+Igv+c0B0SEdlbtcMZM2ZEzksPRD/++CMyZMgQuezzz/nkmIhsQ/ufp6teDi/lLoLt73yoOxwiskGX8hbDjnc+QN0969BlxUQMHroE4a5uusMiIntJvqZOnRo5nyVLFixdujTytQy+zOSLiGxByTMH1Fg94c4uWNB2IAyaB0QmItu16sPuKHdiN97yvYb3tq3Ebw3b6w6JiOwl+bp69WriR0JEZEHuIUHotHKymv+jVnNc935bd0hEZMNepPDC0uaf47NFo9Bs4yIcKFsb9zNm1x0WEVmZBD3mHT16NAICAhIlgFmzZiFXrlzw8PBAhQoVcPjw4VjXPXv2LJo1a6bWlxK2adOmJWibQUFB6NWrF9KnT4+UKVOqbd67dy9R3g8R2YYmm35E5gd38DBtJqxu3EV3OERkB/aVr4e/C5aFe2gIPpGHOwaD7pCIyB6Sr1GjRuH58+dvvHMfHx988cUXGDFiBI4fP44SJUqgfv36uH//fozrS8InXdqPHz9eVXdM6Db79euH33//HatXr8bu3btx586d1w4cTUT2I/udq2i8dYWa/7FlPwR7JNcdEhHZAycnLGozAKGubih59iAqHN+pOyIisofky5BIT3KmTJmCrl27olOnTihcuDDmzJmD5MmTY9GiRTGuX65cOUycOBGtWrVCsmTJErTNp0+fYuHChWq9WrVqoUyZMmrcsv379+PgwYOJ8r6IyIoZDOiyfAJcw8NwtHhVHClZTXdERGRHfDPnwG8NPlbzHXymwTPwhe6QiMjW23yJSZMmqSp7MRk+fPhr/z4kJATHjh3DkCFDIpc5OzujTp06OHDgQIJiiss25fehoaFqmUnBggWRI0cOtU7FihVj3HZwcLCaTPz9/dVP2ZZMlmLalyX3SUnL0c9pREQEPD094eYMuDpFJPn+3jmwCYUun0KQuweWtu4LV2d5mJS4VYNM78MS7+d13F2d1fF1d3GyinhsVWznlMc3aSXl8U3Kz+nGhm1R5fBWZL1/C63Wz8XSVn1hjeR7V46vfA/bw/8gR/9/ao9CbeicxjXGBCdf+/btg7u7+0vLpS1WXJKvBw8eIDw8HJkzZ46yXF5fuHAhQTHFZZt3795VcadJk+aldeR3sRk3bpyqbhnd1q1bVcmapW3bts3i+6Sk5cjndOXKlf/NPUjS/bj7+6PWLzPV/JXWLVGrkGuS7rNJxkfQ7t0SwLuWOb6O4KVzyuObtCxwfJPqc3q1V1dkHTFCDeLu8W5FPMmXD1YnU1p0W7kSt2/fVpO9cOT/p/Zqmw2c07j2h5Hg5Gvt2rXIlCkTHIWUpklbMvOSL29vb9SrVw9eXl4WzarlAqxbty7c3DiGiD1w9HN66tQpVKtWDTUHzEZa7/xJuq8uS+Yj2bNnuJE9LyZU6ITw+wn+CnwleZIuN3Rr/dIhzKC3+/obR3fg6NLxqNRzMrIWKK41FlsW2znl8U1aSXl8k/xzmrU2DOX/QpXD2+A9cz4WDJkHg7MLrMnjm5ewc1JP7NmzR7WRt3WO/v/UHoXa0Dk11Yp7naS584gDGZTZxcXlpV4G5XVsnWkkxjblp1RPfPLkSZTSr9ftV9qYxdTOTC4EHReDrv1S0nHUcypVgwMDAxEagSRNVApeOoka+zaq+QVtByHYxT2xaxu+RN6P7uQrJCxCHd+QcIP2WOxB9HPK45u0LHF8k/Jz+lPzPij59wHkuX4RtXauw5ZazWFN5HtXjq98D9vT/x9H/X9qz9xs4JzGNb4EfdtUr149xiqH8SF/L51d7NixI3KZ1DmW15UqVUqybcrv5eCYr3Px4kXcuHEjwfslIuvmEhaKzssnqvnt73yAf/IW0x0SETmAp17psLJJDzXf8re5SPvET3dIRKRZgpKvnTt3RpYaSc+HCe39UKrxzZ8/H0uWLMH58+fRo0cPvHjxQvVUKNq3bx+l8wwpsTp58qSaZF7qJ8v85cuX47zN1KlTo3Pnzmo9eR/SAYf8ThKv2DrbICLb9t62lfD2vYqnqdJE3ggREVnCDnngk7sIkgcFoP3P03WHQ0SaJbic/aeffkKxYsVULzkyFS9eHEuXLo3XNlq2bKl6TZQOOkqWLKkSqc2bN0d2mCGlUb6+vpHry3hcpUqVUpMsl7+V+S5dusR5m2Lq1Kl477331ODK0tZEqhv++uuvCT0URGTFMvndRrONxqEmln70OV6ksFwbTSIig7Ozquoc7uyCSsf+RMkzCevRmYjsQ4LafMkYWcOGDUPv3r1RpUoVteyvv/5C9+7dVY+DMohxXMk2ZIrJrl27orzOlStXnErZXrVN4eHhgVmzZqmJiOyYwYBOq6bAPTQEZwqUwV8V6uuOiIgc0A3v/PijVnO8t30VPlkxCQNGLkeIu4fusIjIVpKvmTNn4ocfflDVAk3ef/99FClSBCNHjoxX8kVElFQqHN+JUmcOINTVDQvbDJCxMHSHREQOanXjLqh4bCcyPfRF042LsYpVoIkcUoKqHUqVv8qVK7+0XJaZVxMkItLFM/A5OvhMU/O/1f8Yvlly6g6JiBxYsEdyLG5lfDj93tYVeOv2Fd0hEZGtJF/58uXDzz///NJyHx8f5M+ftOP0EBHFRct185Du6QP4ZnoLvzX8WHc4REQ4VrIajpR4B64R4eiyfCKcIiJ0h0REtlDtcNSoUapjCxmUz9Tma9++far79piSMiIiS8pz7Rzq7f5FzS9sMxChbi+P0UdEpMOPrb5AsQtHUfDKadTYvwE7q76vOyQisvaSL+kl8NChQ2pQ43Xr1qlJ5g8fPowmTZokfpRERHHkHB6GrssmwNlgwN4K9XGmUDndIRERRXqYLjN+bmzspbntL7Pg5f9Id0hEZO0lX6bBipctW5a40RARvaEGO9cg981/8Dx5Kiz96DPd4RARvWRzreZ459Bm5L55Ce1++R6zOw3XHRIRWXPydfr06Vf+Xsb8IiKytPSP7qHF+vlqfnmzXvD3Sqc7JCKil0S4uGJB28EY811XVDu4GbsrvYuzBcvqDouIrDX5ksGLnZycYhxzS5aHh4cnRmxERPHScdUUeAQH4kLe4thV+T3d4RARxepK7sLYVr0p6u/6BZ1XTMKgYT8hzM1dd1hEZK3VDqXNV8aMGRM3GiKiBCp7cjfKndqLMGcXLGg3CAbnBDVpJSKymFUffopyJ3Yj270b+GDzUvzSuLPukIgoiSX47iRHjhzImTNnjBMRkSV5BL1Ap1VT1fyGem1xK1se3SEREb1WoGdK/NSij5r/cPNPyHr3uu6QiMhak68tW7bgjz/+UN3NX758OcYqiEREltB8/QKkf3wf9zJkw6+NOuoOh4gozg6WqYWTRSrCLSwUnVdMBHg/RWTXEpx8dejQAY0aNUKNGjVQoEABpE2bFn369EFoaGjiRkhE9Aq5blxEwz9Xq/mFbQYgxN1Dd0hERHHn5KS+u4LdkqHoxeOodvAP3RERkbUlXxEREWoKDg6Gn58fTp48icmTJ8PHxwfDh7O7VCKyDKeIcHRd9h2cDRHYX7Y2ThepqDskIqJ488uQDWv+a+/VbvVMpHr+RHdIRJRE3qhFupubG9KnT49ixYqhc+fOmDdvHsf+IiKLjumV9/oFvDBrN0FEZIs21WmF62/lg9eLp2i35nvd4RCRNSRf/v7+r5yqVav22jHAiIgSbUyv34xjeq1o2hNPUmfQHRIRUYKFu7hifrvBiHByQvUDm1DkwlHdIRGR7uQrTZo0qm1XbJOUgmXIwBsgIkpiBgM6rZoMz+AANabXn1Xf1x0REdEbu5y7iBr7S3RZPhFuocG6QyIi3eN8rVmzBunSpUvsOIiI4kzGxSl76i+EubhyTC8issuxv7Lev4kP//gJq9/vqjskItKZfFWpUgWZMmVKzBiIiOLMM/A5OvlMUfPrOaYXEdnh2F8/tuqHL+Z+rQZe3l+2Dm5ny607LCJKJHxcTEQ2pdW6uUj35AF8M72Fte9yTC8isj+HS9XA0eJV4Roehq7LJ8ApIkJ3SESUSJh8EZHNyPfvGdTd/auaX9hmEELdk+kOiYgo8Tk5YXHrLxCUzBMFL59Cjf0bdEdERDqSLycnJzUREVmaizwBVmN6GbC7YkOcKVRWd0hEREnmYbos+Pm/9l5tf5mF1P6PdIdERJZu82UwGNCxY0ckS/bqp82//mp8Mk1ElFgabVuJnLevwD9Faixr/pnucIiIktzmmh+h6qEtyHPjItr/PA0zu4zWHRIRWbLkq0OHDqqzjdSpU79yIiJKTJn8bqPZhkVqXhKvZynT6A6JiCjJRUSO/eWMKke2o+Tf+3WHRESWLPlavHjxm+6PiCh+DAZ0XjERyUKDcaZAGeyp2FB3REREFnM1Z0FsqtMS721bqb4LB4xYjmCP5LrDIqIEYocbRGTVpMpNiXOHEeLqjoVtB6qG6EREjmR14y64nz4rMj66h5br5+sOh4jeAJMvIrJaqZ49Rvufp6v5Xxt1gm/mHLpDIiKyuOBknlggD58ANPhzNfJcO6c7JCJKICZfRGS12q+eAa8XT3E9e178Xr+t7nCIiLQ5XaQi9pavB2dDBLot/U71AEtEtofJFxFZpeJnD+KdQ1sQ4eSEeR8PQbhLvJqoEhHZnZ9a9MGzFF7IdeuS6gGWiGwPky8isjrJggPRZflENb+5ZnNcyV1Yd0hERNo9S5UWS5t/ruY/2rAQme/f0h0SEcUTky8isjrN189Hpoe+8EuXGT4fdNMdDhGR1ZAeX08XKgf30BB0WT5B9QhLRLaDyRcRWZU8187j3R0/q/mFbQexS2UiInNOTqrn1xA3dxS7cBTVDv6hOyIiigcmX0RkNaQBebel41WD8n3l6uJk0Uq6QyIisjr3Mr6FNe91VvMfS8dE/o90h0REccTki4ishjQgl4bk0qB8SYs+usMhIrJaG+u2xrW38iPVC390+G9IDiKyfky+iMgqZHt0TzUgF9Kg3N8rne6QiIislvQAO7f9EEQ4OaPKkW0ofeov3SERURww+SIiq9DnjyWqAbk0JJcG5URE9GpXcxbEhrqt1XznFRPhGfhcd0hE9BpMvohIO2m5UOraeQS7JcOCtoNUg3IiInq9NY07wzfTW0j/xA9tfp2tOxwieg0mX0Skldv9+5j83/zPH3TF/YzZNUdERGQ7Qtw9ML/dl2q+7p51KHzxuO6QiOgVmHwRkT4GA7zHj0dqABey5cGm2i11R0REZHPOFSiNbdU+VPNdl42He0iQ7pCIKBZMvohIHx8fpNm9GyEAJr/3CQzOLrojIiKySSua9sTDNBmR9f4tfPS7sfMiIrI+TL6ISA8/P+Czz9TsNwCus7ohEVGCBXqmxMI2A9X8e9tWqgHricj6MPkiIj369AEePEBgvnwYrzsWIiI7cLxEVTVAvQxU/+lPY+ESFqo7JCKKhskXEVne778DK1cCzs64Pnw4eHtARJQ4fmzZF/4pUiPn7St4f8sy3eEQUTRMvojIsp4+BXr0MM7374+AIkV0R0REZDeepUqLJS37qvmmm35E9jtXdYdERGaYfBGRZQ0cCNy+DeTPD4wapTsaIiK7s698PRwvWgluYaGq+qFTRLjukIjImpKvWbNmIVeuXPDw8ECFChVw+PDhV66/evVqFCxYUK1frFgxbNq0KcrvnZycYpwmTpwYuY7sL/rvx49nyxOiJPXnn8D8+cb5BQsAT0/dERER2R8nJyxoNxgBHinw9tWzeHeHj+6IiMhaki8fHx988cUXGDFiBI4fP44SJUqgfv36uH//fozr79+/H61bt0bnzp1x4sQJfPjhh2o6c+ZM5Dq+vr5RpkWLFqnkqlmzZlG2NXr06CjrffZfz2tElARevAC6djXO9+wJVKumOyIiIrv1KG0mLG1uvK9p+ds8ZL17XXdIRGQNydeUKVPQtWtXdOrUCYULF8acOXOQPHlylTDFZPr06WjQoAEGDhyIQoUKYcyYMShdujS+//77yHWyZMkSZfrtt99Qs2ZN5MmTJ8q2UqVKFWW9FClSJPn7JXJYX30F/Psv4O0NsJSZiCjJ7azSGKcLlYN7aAi6s/ohkVVw1bnzkJAQHDt2DEOGDIlc5uzsjDp16uDAgQMx/o0sl5Iyc1JStm7duhjXv3fvHjZu3IglS5a89DupZijJW44cOdCmTRv069cPrq4xH5Lg4GA1mfj7+6ufoaGharIU074suU9KWo5wTp327oXrjBlqPmzOHBg8POQNq9cRERHw9PSEmzPg6hQBe2B6H9bwftxdndXxdXdxsop47O2c8vgmraQ8vtb0OU0yTsDC9oMxflR7FLjyN97duRpb6rSI/LV878rxle9he/gf5Aj/Tx1NqA2d07jG6GQwGAzQ5M6dO8iePbuqSlipUqXI5YMGDcLu3btx6NChl/7G3d1dJVJS9dBk9uzZGDVqlEq0opswYYJKsmRf0kbMvMRNSszSpUun9i8JoJS+yfKYjBw5Uu0juhUrVqiSOiKKmUtQEGr26YMU9+7hWt26ONWrl+6QiIgcSs4tW1Dyhx8Q5u6OXdOn40XWrLpDIrI7AQEBqjDn6dOn8PLyss6SL0uQ6ott27aNkngJ89Kz4sWLq6Tu008/xbhx45AsWbKXtiPJmfnfSMmXt7c36tWr98oDnBRZ9bZt21C3bl24ublZbL+UdOz9nDr36weXe/dg8PZG9pUrkT3a5+XUqVOoVq0aag6YjbTe+WEP5El6k4yPsNYvHcIMemt33zi6A0eXjkelnpORtUBxrbHY4znl8U1aSXl8relzmuRKtsGQgodR5MIxvDVlDr7tPxMGZ2c8vnkJOyf1xJ49e1Sbe1tn7/9PHVGoDZ1TU62419GafGXIkAEuLi4vlVjJa2mDFRNZHtf19+7di4sXL6pOPV5HelkMCwvDtWvXUKBAgZd+LwlZTEmZXAg6LgZd+6WkY5fndPdu6c5UzTotWAC39OlfWkWqGgcGBiI0AnZ3AyTvR/d7CgmLUMc3JNygPRZ7PKc8vknLEsfXGj6nljDn468wcXQ7FLx0CrV2rsWWWs3V964cX/ketqf/P3b5/9TBudnAOY1rfFq/baS0qUyZMtixY0fkMql3LK/NqyGak+Xm6wvJiGNaf+HChWr7cXmac/LkSfXlkylTpgS9FyKKoXfDTz4xzksvh/Xq6Y6IiMhh+WXIiuVNe6r51mt/QGa/W7pDInJI2h/1SFW++fPnq3Zc58+fR48ePfDixQvV/kq0b98+Soccffr0webNmzF58mRcuHBBtcU6evQoevfu/VLRn4wH1qVLlxg77Zg2bZqq7vTvv/9i+fLlqrONdu3aIW3atBZ410QOQD63pt4NJ03SHQ0RkcPbXq0Jzr5dGh4hQej203g4Gey4sxEiK6W9zVfLli3h5+eH4cOH4+7duyhZsqRKrjJnzqx+f+PGDVUiZVK5cmXVycXQoUPx1VdfIX/+/Kqnw6JFi0bZ7qpVqyB9iZh3zGEi1Qfl95K4SQ+GuXPnVslX9F4UiegNqhvOnPn/wZQt2C6SiIhiJu285rX/Et+Nbo8i/xzHe8d2YqvuoIgcjPbkS0ipVfSSK5Ndu3a9tKx58+ZqepVu3bqpKSbSy+HBgwcTGC0RvRKrGxIRWa17Gd/CyiY90MlnKrr++TOm6Q6IyMFor3ZIRHaG1Q2JiKza1hrNjNUPQ0OgRkEN5+DLRJbC5IuIEo+UVLO6IRGR1Vc/nNPhawS4e6AqgEzLl+sOichhMPkiosQh41t07GicZ3VDIiKr7/1wTp1Waj7b7NnA2bO6QyJyCEy+iChx9OsHXL8O5M4NTJ6sOxoiInqNzSWrYZPcDIaGSvfSMqKt7pCI7B6TLyJ6c7//DixaBDg5AT/+CKRKpTsiIiJ6HScnyIA8YVJF/PhxYOxY3RER2T0mX0T0Zvz8ANN4ev37A9Wq6Y6IiIjiyBfAzcGDjS+++QY4dkx3SER2jckXESWcwQB07w7cvw8UKQKMGaM7IiIiiqfH9esDH30EhIUZqx8GBekOichuMfkiooSTHrJ+/RVwdQV++gnw8NAdERERxZdUGf/hByBTJuDcOWD4cN0REdktJl9ElDC3bskI6cb5ESNk9HLdERERUUJlyADMn2+clzEa9+3THRGRXWLyRUTxFxEBdOoEPH0KlC8PfPml7oiIiOhNvf8+0KGDsUq5VD989kx3RER2h8kXEcWfVE/Zvt1YzVCqG0q1QyIisn3TpwM5cgD//gv07as7GiK7w+SLiOLn0iVg4EDj/IQJQIECuiMiIqLEkjq18aGatAOTIUTWrtUdEZFdYfJFRHEnA3C2bQsEBgK1agG9eumOiIiIElv16sCgQcb5rl0BX+mQnogSA5MvIoq7UaOAI0eANGmMgyk78yuEiMgujR4NlCwJPHwIfPKJsR0YEb0x3jkRUdz89Rcwbpxxfu5cwNtbd0RERJRU3N2Nw4lI297Nm4HZs3VHRGQXmHwR0etJr4bt2hl7OZSesFq00B0REREltcKFjW17xYABwPnzuiMisnlMvojo9aRt1/XrQO7cwIwZuqMhIiJLfv/Xrw8EBRnb/IaE6I6IyKYx+SKiV1u50lj1RNp3LVsGeHnpjoiIiCxFvvul18P06YETJ4ARI3RHRGTTmHwRUeyktKtHD+P8sGFA5cq6IyIiIkvLlg2YN884/913wN69uiMisllMvogoZuHhwMcfG9t7VawIDB2qOyIiItKlaVOgUydjr4fSBvjxY90REdkkJl9EFDNpZC1PN1OmNFY3dHXVHREREek0fTqQNy9w4wbw6afsfp4oAZh8EdHLjh4Fhg83zs+cafxnS0REji1VKmM7YHkYt3o1sHCh7oiIbA6TLyKKyt8faNUKCAsDPvrI2LU8ERGRKFcOGDvWOP/558C5c7ojIrIpTL6I6P+kCol0sHHlCpAjh3EwZScn3VEREZE16d8fqFcPCAw0PqyTbuiJKE6YfBHR/y1ZAqxYAbi4GH+mS6c7IiIissbu5+X/RaZMwN9/AwMH6o6IyGYw+SIiowsXjINpitGjgSpVdEdERETWKksWYwImvv8eWL9ed0RENoHJFxEZq4y0bAkEBAC1awODB+uOiIiIrF2DBsYqiEK6ob99W3dERFaPyRcRAQMGAKdPAxkzAkuXGqsdEhERvY50vlGmDPDoEdC2rXGMSCKKFZMvIke3di0wa5ZxXhKvrFl1R0RERLbC3d3Y/byMCbl79/97QiSiGDH5InJk168Dn3xinB80CKhfX3dERERka/LnB2bPNs6PHGlMwogoRky+iBxVaCjQujXw5AlQoQLwzTe6IyIiIlv18cfGcSEjIoz/W+7d0x0RkVVi8kXkqEaMAA4cALy8jFVG3Nx0R0RERLZMqrAXLgz4+gLt2rH9F1EMmHwROaKNG4Fx44zzCxYAuXPrjoiIiGxdihTAmjVA8uTA9u2sUUEUAyZfRI7m2jVj9RDRuzfQvLnuiIiIyF4UKgTMnWucHzXKmIQRUSQmX0SOJDgYaNECePwYKF8emDRJd0RERGRvpMph166AwQC0aQPcuaM7IiKrweSLyJHIYJhHjgDp0gE//wwkS6Y7IiIiskfTpwMlSgB+fsYOOMLCdEdEZBWYfBE5CulUwzSe17JlQM6cuiMiIiJ75ekJrF4NpEoF7NkDDB+uOyIiq8Dki8gRnD9vrAIivv4aaNhQd0REROQI439Jp05COnnatEl3RETaMfkisnfPnwPNmgEvXgC1ahkbQBMREVmCtDPu1cs4L509SadPRA6MyReRPZPGzt27G0u+smYFVqwAXFx0R0VERI5k8mSgbFng0SPjw8DAQN0REWnjqm/XRLbjxo0bePDgQZJsOyIiQv08deoUnJ0T93lIhjVrkGP5chhcXPDPmDF4cfs2IJMVOS+JIRER2S/p3OmXX4AyZYDjx4EePYDFiwEnJ92REVkcky+iOCReBQsWQmBgQJJs39PTEytXrkS1atUQmIhPAysC2P3f/KDwcEzq0gXWLDQ4RHcIRESUVHLkAFatAurVA5YsASpUMCZhRA6GyRfRa0iJlyReFT4ZAa+suRJ9+27/FXbVHDAbocZCsDeW7tkTzFo0Cu7Pn2BvgTI41awX6lrpE0bfvw/gzPp5CGM3xERE9q12bWD8eGDQIKBPH2NX9JUr646KyKKYfBHFkSRe6XIUSPTtujpJxvUAab3zI8zw5tUOXcJCMXxKb6R//gQ3s+bGwp7jkc4jBayVvy8bXxMROYwBA4zjTUo39B99ZKyGmCWL7qiILIYdbhDZmY4+U1Hgyt944ZkSk3uMR5AVJ15ERORgpBbGokVA4cKAry/QvDkQGqo7KiLHSr5mzZqFXLlywcPDAxUqVMDhw4dfuf7q1atRsGBBtX6xYsWwKdq4ER07doSTk1OUqUGDBlHWefToEdq2bQsvLy+kSZMGnTt3xnPpkpvIhtXa+xvq7lmHCCcnzOw8Encze+sOiYiIKKqUKYG1awEvL+Cvv4ylYUQOQnvy5ePjgy+++AIjRozA8ePHUaJECdSvXx/379+Pcf39+/ejdevWKlk6ceIEPvzwQzWdOXMmynqSbPn6+kZO0qGBOUm8zp49i23btmHDhg3Ys2cPunXrlqTvlSgp5fv3DDqtmqLmf36/K04WYz16IiKyUm+/DSxdapyfMQNYtkx3RESO0eZrypQp6Nq1Kzp16qRez5kzBxs3bsSiRYvw5ZdfvrT+9OnTVWI1cOBA9XrMmDEqgfr+++/V35okS5YMWWKpQyxdW2/evBlHjhxBWRl3AsDMmTPx7rvvYtKkSciWLdtLfxMcHKwmE39/f/UzNDRUTZZi2pcl9+nopCt46ZFQOsYwts9KXKZtvsm20zx5gP5zhsAtLBSHS1XHhnc/TpJYk4K7q7M6vu4uTjYTsyXOaWKxx+NrTeeUxzdpJeXxtabPqS7yf02Or/yf03Jf0bAhnL/6Ci5jx8LQrRvCJCErVSrBm+M9kv0JtaFzGtcYnQwGGYVVj5CQECRPnhxr1qxRpVcmHTp0wJMnT/Dbb7+99Dc5cuRQJWV9+/aNXCalZuvWrVPjJJmqHcprd3d3pE2bFrVq1cI333yD9OnTq99LYte/f388fvw4chvS05pUY5QqjU2aNHlpvyNHjsSoUaNeWr5ixQr1Hoh0cQoNRZXhw5H+/Hn4e3tj74QJCPP01B0WERHR64WHo+K33yLz8eMITJ8euydORHC6dLqjIoq3gIAAtGnTBk+fPlXNmqyy5Eu68A4PD0fmzJmjLJfXFy5ciPFv7t69G+P6stxESsaaNm2K3Llz48qVK/jqq6/QsGFDHDhwAC4uLmrdTJkyRdmGq6sr0qVLF2U75oYMGaKSPvOSL29vb9SrV++VBzgpsmop6atbty7c3Nwstl9HJkm9jMElXcFLj4SJTZ66Nsn4CGv90iWot8OOyyepxEs62BjVbQLuPfMGnsFm3Di6A0eXjkelnpORtUBx2IM3PaeJyR6PrzWdUx7fpJWUx9eaPqe6PL55CTsn9VRNL6TZhzbVqsFQtSo8L15EvTlzEL59O+DhEe/N8B7J/oTa0Dk11Yqz+mqHSaFVq1aR89IhR/HixZE3b17s2rULtWWMiQSQaowyRScXgo6LQdd+HZGzs7Ma/FjG4ErKf9Cy7fhuv97OX1Bnt7GDje87j8DtTDkBbWXZCRMSFqGOb0i4we5ugBJyThObPR9fazinPL5JyxLH1xo+p7rI/zU5vvJ/Tus9RYYMwO+/q4GXnQ8fhnOvXsaBmBM4PiXvkeyPmw2c07jGp/XbJkOGDKok6t69e1GWy+vY2mvJ8visL/LkyaP2dfny5chtRO/QQ6odSg+Ir9oOkTUpfu4QOvw8Tc2v+rA7ThSrojskIiKihMmf3zj2l4uLsSOOiRN1R0SUJLQmX9Imq0yZMtixY0fkMmn0Ka8rVaoU49/IcvP1hRRHxra+uHXrFh4+fIisWbNGbkPalB07dixynT///FPtW7q6J7J22Xyvoc+8YXCJCMfuSu9iff12ukMiIiJ6M1I7SXo+FNLpmpSGEdkZ7eXs0o5q/vz5WLJkieqFsEePHnjx4kVk74ft27dX7a1M+vTpo3oqnDx5smoXJh1hHD16FL1791a/l7G6pCfEgwcP4tq1aypR++CDD5AvXz7Vhb0oVKiQahcmvSzKmGL79u1Tfy/VFWPq6ZDImqR8/hSDZg1EisDnuJCvBOa3HZTgqhlERERWpWdPoHt3QPqDa9MGiDaUEJGt097mq2XLlvDz88Pw4cNVZxclS5ZUyZWpU40bN26ousgmlStXVj0MDh06VHWkkT9/ftWzYdGiRdXvpRrj6dOnVTInpVuSTEmnGNIlvXmbreXLl6uES9qAyfabNWuGGaanLURWyiUsFF/M/QpZ/G7jfvqsmNx9LMLc3HWHRURElHjkfkw6Xtu1C2jcGDh8GMiYUXdURPaRfAlJgkwlV9FJJxnRNW/eXE0xkfEqtmzZ8tp9Ss+GksQR2QyDAZ1XTELhf04gwCM5JvSeiGep0uqOioiIKHFJxwVr1gDlywP//gt89JG0MZH2KrojI7L9aodEFDfvbl+FWvt+R4STM2Z0HYNb2fLoDomIiChpyNis0uYrVSpgzx6gWzdjVUQiG8fki8gGlD69D+1++V7NL/3oM5wsGnsHM0RERHahcGHAx8fYA6J0PT9mjO6IiN4Yky8iK5frxkV8tmAEnA0GbH/nA/xRu4XukIiIiCyjYUNg1izj/IgRwE8/6Y6I6I0w+SKyYhke+mLwzAHwDA7AmQJlsLh1f/ZsSEREjuXTT4HBg43znTvL+EC6IyJKMCZfRFYqxQt/fDmzP9L6P8T17Hkxucc4hLtYRR85REREljV2LNCqFRAWBjRtCpw9qzsiogRh8kVkhdxCgzFg9mC85XsND9NkxHefTUagZ0rdYREREekhww4tXgxUrQo8fQq8+y7g66s7KqJ4Y/JFZGWcIiLQc/EYFLp8CgEeKTD+8yl4lDaT7rCIiIj08vAA1q0D3n5bBoIF3nsPeP5cd1RE8cLki8jKtP3le1Q69ifCXFxVVcOb2fPqDomIiMh6uqDftMk46PLx4/+vikhkI5h8EVmRhtt98N72VWr+hw5f42zBsrpDIiIisi558wLr1xtLwjZuBHr25BhgZDOYfBFZiXLHduLjNTPU/Iom3bGvQn3dIREREVmnihWBFSuMbcHmzweGDtUdEVGcMPkisgLp//4bPRaOUWN5ba3eBOvrf6w7JCIiIuvWpAkwZ45xfuxYOE+frjsiotdi8kWkWe5rF1Bh7Fi4h4XgaImq+LFlP47lRUREFBdduxq7oQfgMnAgvHfu1B0R0Ssx+SLSKJvvNQya3h9ugYE493YpTO86BhEcy4uIiCjuvvwS6NdPzZacORNO0g6MyEox+SLSJMNDX3w9rQ9SvXiKx/nyYUrv7xDqlkx3WERERLZFaotMmoSItm3hHBEBl9atgb/+0h0VUYz4iJ1Ig9T+j/D1tL5I/8QPt7PmwunhwxEUlBxgZ01ERGRh58+fhz0w9O6N7BcvIsvRowhr2BCXFixAYP78WmPKkCEDcuTIoTUGsi5MvogsLHnAMwyZ3g9Z79+EX/os+K7vFNT2cgaCdEdGRESOJPDpQyk2Qrt27WAPPD098fOPPyJt69ao8vw50rRqhUYArmqNKTkuXDjPBIwiMfkisiD3kCAM+n4gct26hCde6fBN3xl4lDYTgAe6QyMiIgcTGvBMyotQss1gZMxdELbOzRkIT5YM0/vPRNYl45Dn/i3sT50B/T/+En6p01s8Hn/fazi0aBQePHjA5IsiMfkishCXsFD0m/s1Cl45jefJU2Hs51NxL9NbcEWE7tCIiMiBpcyUA+lyFICtc3WS/6cP4J6/BCYMmI0Rk3oi6/1bmOwzFaMGzMbjNBl1h0jEDjeILJV49Z03FKXOHECwWzJM6D0JN7z11kMnIiKyV09SZ8A3/WbiXoZsyOJ3G0Onfq7aWxPpxuSLKIm5hIehz/zhKHdqL0Jc3TGp53f4J28x3WERERHZtYfpMqsE7EHazMh+9zq+nvo5Uj1/ojsscnBMvoiSOPH6bMEIlD+5G6GubpjcYzz+Llxed1hEREQOwS9DVoz5YiYepcmAHHf+xVfT+iDFC3/dYZEDY/JFlEScw8PQe+EoVDy+05h4dR+HU0Ur6g6LiIjIoUj76m/6zVAdXeW+eQlfTe8Lz8DnusMiB8XkiyiJEq9ei8eg0rEdCHNxxdRPx+Jkscq6wyIiInJId7Lkwjd9p8M/RWrkvX4BQ2Z8AY+gF7rDIgfE5IsokTlFhKPHkm9R5cg2hDm7YGq3b3C8eBXdYRERETm0W9nz4tt+01WPw2//ewZfzugPz0AmYGRZTL6IEjnx6v7TOLxzaItKvKZ3+wbHSlbTHRYREREBuO79Nsb2mYYXninV0C9fsw0YWRiTL6JErGrYc/EYVD+wCeHOLpjRdTSOlKquOywiIiIy82+uQqoTDqmCmO/aOQyd+hl7QSSLYfJFlAhcQ0PUOF7vHN6qSrxmdBmFw6Vr6g6LiIiIYnAtRwGM6f89nqRKqzrhGD65F8cBI4tg8kX0htxDgjBw9iCUP7lHjeM1pcd4HCpTS3dYRERE9Ao3s+fF6AGzVDf03neuYviknkj72E93WGTnmHwRvQFpqDtkej+UOHcYQe4emNB7EjvXICIisqFeEEcNmA2/dJmR/d4NjJzUAxke+uoOi+wYky+iBJIGul9P+xyFLp9CgEcK1YD3TKGyusMiIiKieLiX8S2VgN3LkA2ZH9zBiEk9kfn+Ld1hkZ1i8kWUAFIvXOqH57t2XjXYHd3/e/yTr7jusIiIiCgBHqTPipEDfsDtzDmQ8dE9jJzYAzluXtIdFtkhJl9E8ZT+0T31VCzn7St4lDqDqi8uDXeJiIjIdj1OmxGjB8zG9bfyIa3/Q4yc1BOFLx7XHRbZGSZfRPHgffsKRn/XDdnu3VD1w6Wawq1seXSHRURERIngqVc6jBwwG+feLoXkQS8wZEY/lD++U3dYZEeYfBHFUfHrFzBqQnekf+KHm1lzY+TAObiX6S3dYREREVEiCvRMiXGfT8GhUjXgFhaqhpKps3ut7rDITjD5IoqDFgDGrpysnoKdz1cCIwf+gIfpMusOi4iIiJJAqFsyTOs2Btvf+QDOBgO6rJiIZr8vBAwG3aGRjWPyRfQamZYvh4+M5xUehkOla2Bs32l4kcJLd1hERESUhAzOLljQdhDWNPpEvW6+YSE6r5gEp4hw3aGRDWPyRRSbiAigf3+8NWWKermubG1M6zpGPQ0jIiIiB+DkhDXvd8HC1v0R4eSEunvWou+8YXAPCdIdGdkoJl9EMQkOBtq2Bf5LvAYBmF2vrXoKRkRERI5lW41mmC4PYF3dUOHELjXcTJqnD3SHRTaIyRdRdH5+QN26wKpVgKsrro0ejYmy3MlJd2RERESkyaEytfBt3+lqfE8Z5/ObcV05FhjFG5MvInNnzgDlywN79wJeXsCmTXjUqJHuqIiIiMgKXMhfEsO+nK8GY87w+B5GTeyB0qf36Q6LbAiTLyKTjRuBypWBa9eAPHmAAweMJWBERERE/5FhZoYPnoczBcrAMzgAA2YPRsPtPuwJkeKEyReRfFlOngw0bgw8ewbUqAEcPgwULqw7MiIiIrJC0uvxuD5TsaPq+3A2RKDD6umqJ0SX8DDdoZGVY/JFji0kBOjcGRgwwJiEde0KbNkCpE+vOzIiIiKyYuEurpjfbjCWftQ7sifEwTP7I+Xzp7pDIyvG5Iscu2ONOnWAxYsBZ2dg+nRg7lzA3V13ZERERGQLnJywsW4bTO4+DkHuHih+/gjGjv0EuW5c1B0ZWSmrSL5mzZqFXLlywcPDAxUqVMBhqfL1CqtXr0bBggXV+sWKFcOmTZsifxcaGorBgwer5SlSpEC2bNnQvn173LlzJ8o2ZH9OTk5RpvHjxyfZeyQrI9dYmTL/71hD2nt9/jl7NCQiIqJ4O1aymmoHdi9DNmR66IvREz5F7b/36w6LrJD25MvHxwdffPEFRowYgePHj6NEiRKoX78+7t+/H+P6+/fvR+vWrdG5c2ecOHECH374oZrOSC91AAICAtR2hg0bpn7++uuvuHjxIt5///2XtjV69Gj4+vpGTp999lmSv1/STKoW/vADULUqcPMmkD8/cPAg0KCB7siIiIjIht14Kx+++moRThStBPfQEAxePx/T5RehobpDIyuiPfmaMmUKunbtik6dOqFw4cKYM2cOkidPjkWLFsW4/vTp09GgQQMMHDgQhQoVwpgxY1C6dGl8//336vepU6fGtm3b0KJFCxQoUAAVK1ZUvzt27Bhu3LgRZVupUqVClixZIicpKSM7FhAAdOgA9Oxp/CJs2hQ4ehQoVEh3ZERERGQnHXFM6DUBvzTqpF5/DuDt7t2Bu3d1h0ZWwlXnzkNCQlRSNGTIkMhlzs7OqFOnDg5IN98xkOVSUmZOSsrWrVsX636ePn2qqhWmSZMmynKpZijJW44cOdCmTRv069cPrq4xH5Lg4GA1mfj7+0dWc5TJUkz7suQ+7cKlS3Bt2RJOZ87A4OKCiLFjEdG3r7Ga4WuOZUREBDw9PeHmDLg6RSR6aKZtJsW2bYG7q7M6vu4uTnZzDKzpnNrj8bWmc8rjm7SS8vha0+dUF3u7fq3mnLo4Ye0HnXEmpRf6+kxH6pMnYShdGuE+PjBUrKg3NhsTakP3vXGN0clg0DcogbTDyp49u6pKWKlSpcjlgwYNwu7du3Ho0KGX/sbd3R1LlixRVQ9NZs+ejVGjRuHevXsvrR8UFIQqVaqoNmLLly+PUuImJWbp0qVT+5cEUErfZHlMRo4cqfYR3YoVK1RJHVmvrAcPotSMGXALCEBQmjQ4OmAAHhYtqjssIiIisnMpbt9G+fHj4XXzJiJcXHDu449xRZrCSEdfZFek6ZMU5kihj5f0J2CNJV+WyECl+qHklz9IOx8z5qVnxYsXV0ndp59+inHjxiFZsmQvbUuSM/O/kZIvb29v1KtX75UHOCnek1SrrFu3Ltzc3Cy2X5sUEgLnYcPgMnWqehlRtSpcli9HhaxZ47WZU6dOoVq1aqg5YDbSeudP9DDlCV2TjI+w1i8dwgyO92V84+gOHF06HpV6TkbWAsVhD6zpnNrj8bWmc8rjm7SS8vha0+dUF3u7fq3tnD6+eQk7Jw3AX5s3o+TMmXBeswZFf/wRhX19Eb5wIZApk+4QrV6oDd33mmrFvY7W5CtDhgxwcXF5qcRKXksbrJjI8risb0q8rl+/jj///PO1CZL0shgWFoZr166ptmLRSUIWU1ImF4KOi0HXfm3GP/8AUjp6/Ljxdf/+cB43Ds4JOGZSFTYwMBChEUjSL3PZtjX8s7C0kLAIdXxDwg129/6t4Zza8/G1hnPK45u0LHF8reFzqou9Xr/Wck7lvkGOL1KmhPPPPwPz5wN9+sB5yxY4ly0LLFsG1K6tO0yb4GYD971xjU/rlSmlTWXKlMGOHTuitK+R1+bVEM3JcvP1hWTE5uubEq9Lly5h+/btSB+HAXNPnjypbrIz8SmEbZNatPI0qVQpY+KVLh0g7QEnTZJPhe7oiIiIyBFJG/Nu3YAjR4AiRYwdcNStC3z9NXtDdDDaqx1KVb4OHTqgbNmyKF++PKZNm4YXL16o9ldCxuiSdmFSHVD06dMH1atXx+TJk9GoUSOsWrUKR48exbx58yITr48++kh1M79hwwaEh4fj7n89zEj7Lkn4pNMOaU9Ws2ZN1eOhvJbONtq1a4e0adNqPBr0Rh4/Nn6xrVljfF2rFvDTT0D27LojIyIiIgKkzbmMNdqvHyD3rmPHAjt3AitXAjlz6o6OHCH5atmyJfz8/DB8+HCVJJUsWRKbN29G5syZ1e+le3gpkTKpXLmy6uRi6NCh+Oqrr5A/f37V02HR/zpQuH37NtavX6/mZVvmdu7ciRo1aqjqg5K0SSca0oNh7ty5VfIVvRdFsiF79gDt2hnH7pIeK7/9FhgwgA1aiYiIyLpIR21z5wJ16gBdu0pX3kCJEoAMm9S2rbGUjOyW9uRL9O7dW00x2bVr10vLmjdvrqaY5MqVS3Ww8SrSy+FBGViXbF9IiIyWDUjJaEQEkC+fdEEJlCunOzIiIiKi2Mm9rNyvSBt1uS/9+GPg11+BOXPYGYcdY7EA2a5jx4AyZYylXJJ4SVXVEyeYeBEREZFtyJUL2LsXGDPG2DZ97Vpjm7BfftEdGSURJl9ke2Swa2mgWqECcOYMkDEjsHo1sGiR6lGIiIiIyGZIc4mhQ41twYoXBx48AD76yFgF8dEj3dFRImPyRbbl6FFjaZc0UA0PB1q0AM6eNX5JEREREdkq6atAErCvvjK2WZdmFNKnwcaNuiOjRMTki2xDUJCMdA1UrGhMtqQutPRq6ONjLPkiIiIisnUypqw0p9i/H5BxZ319gffeM3Yqdv++7ugoETD5Iuu3e7f0kgKMH28s7WrVypiANWumOzIiIiKixCdNK6Qdu/TELb0fLl8OFCxoHMtU2rmTzWLyRdZLnvC0bw/UqAGcP28s7ZIGqDIWRoYMuqMjIiIiSjqensDkycChQ0CpUsbxTLt0+f99EdkkJl9kfaR0S7pZleL2pUuNT3y6dwcuXACaNtUdHREREZHlSC/O0hZMEjEZI0x6R5RxwYYPNzbLIJvC5Iusy/HjMpI20KMH8OSJ8UmPDD74ww9A2rS6oyMiIiLS0yOiVEE8d87YBiw01Ng9vfSOuHmz7ugoHph8kXWQrlQ/++z/T3e8vIAZM4AjR4z1nomIiIgcXc6cwPr1xmYY2bIBly4BDRsCjRoBFy/qjo7igMkX6RUSAkybBuTLB3z/vbERqYz0LlUMJRlzcdEdIREREZH1kOYY0gxD2n31728cnHnTJmO39P36GduGkdVi8kV6GAzAunXGUdxNXxTFigHbtxvHtciaVXeERERERNZLaglNmmTsAbpxYyAszPhAO39+Y3MNeU1Wh8kX6WnXVbMm0KQJcPkykDkzMH++sUvV2rV1R0dERERkOyTZkqqIW7YAhQsDDx8CPXsa281LezB54E1Wg8kXWc61a0CHDkDZssaxuzw8gK+/NtZXlq5TWcWQiIiIKGHq1QNOnQJmzgTSpQPOnDG2B5Ou6WXQZrIKTL4o6d2+DfTqBbz9NvDTT8YnMG3bGhuGfvMNkCqV7giJiIiI7KNXxN69jQ+2pXfEZMmAPXuAKlWMVRNPn9YdocNj8kVJO0iyfPDz5gVmzzZ2iyrVCmWwwGXLgBw5dEdIREREZH+k5EvGBTOvXbRhA1CypPEB+JUruiN0WEy+KGm6jf/qKyB3bmDqVCA4GKhaFdi509ihRvnyuiMkIiIisn/e3sZ29dIpR4sWxtpH0rFZwYJA165MwjRg8kWJ5969/ydd48YBAQHGcbuksacUeUudYyIiIiKyrAIFAB8f4NgxoEEDY0+ICxYYm4RISZgkZ2QRrpbZDSW1Gzdu4MGDB1r27X7rFjIvXYr069fDWcbtAhCQPz98e/TA02rVjONRSE+GNuq8jKNBREREZA/3Ed9+ixTNmyPLokVIvW+fsSRsxQo8qVkTvp07I7BQIViLCBn/FdKPyCk4O8dcZpQhQwbksKGmLEy+7CTxKliwEAIDAyy63+IABgNoCcDUT+FBAOMA/H7pEgzS3suOhAYbE0siIiKi1wl8+lBGREa7du1grUoB+ApAUwBpdu5U0x8AxgPYozs4AJ6enli5ciWqVauGwMDAWNZJjgsXzttMAsbkyw5IiZckXhU+GQGvrLmSdmcGA0peO49mh7agwpX/95hzJE9R+FRuhNM5CqiSrjqwH75/H8CZ9fMQxsEKiYiIKI5CA57JjRNKthmMjLkLwlrNA7DZ7zZa7d+ImmcPoaEhAg0BXMqcA2vL18PuwuUR6uqmJTa3/wq7ag6YjVBjIVgU/r7XcGjRKHUvzOSLLE4Sr3SS/CSBZEEBqHZoM+rt/AXevlfVsggnZxwsUxPr67fDtf/2mw72Rz7YRERERAmRMlOOJLs/SyzPcxTAgjK1sN7vNhpvXYFqBzYh/70bGPT7AnTb/Su2Vm+K7dU+hL+XZe/0XJ0k43qAtN75EWawj64qmHzRK2X2u6USrhr7NyJF4HO1LCiZJ3ZXbIhNdVrhXqa3dIdIRERERIngfsbsWNh2IHw+6IZaf/2G+jt/Qfonfmjx+wJ8+MdP2Fe+LjbXao7r3m/rDtVmMfmilzhFhKPE2UOou3stSp3ZD2fpllSq32V6C1trNMOuyo0Q6JlSd5hERERElASep0yN9Q3aY2PdNih/fCcabfdBvmvnUFOqJu7fiMu5CmPHO+9jf9k6CPZIrjtcm8LkiyJl8ruNGvs2oPqBTeoph8nJIhWxueZHOFWkIgyx9DRDRERERPYl3MUVB8rVVVO+f8/g3R0+KH9it0rEZGr/8wz8VaEedrzzQWQTFHo1Jl8Ozi00WH2Iav71O4pePBa53D9FavxVsQG2VW8C38y20YCRiIiIiJLG5TxFMSNPUXj5P0K1A3+g9l+/Iev9W6i7Z52a/s1RAH9WfR8HytbGixReusO1Wky+HJBTRAQKXDmNKoe3odLR7UipeuORDjSc8HehcthZpTGOlngHYW7uukMlIiIiIisinW5sqN8WG+q1QeF/TqD23t9Q/sQu5LlxEXlWTERHn6k4Xqwy/qpQHyeKVUaoWzLdIVsVJl+OwmBAzluXVMJV+ch2ZHh8L/JXfumzYFelRthd+V08SJ9Va5hEREREZAOcnHCuQGk1pXr+BO8c+APVDm5GrluXUP7kHjU9T54Kh0rXxN4K9XExXwk2X2HyZf+y3ruBSkd3oMrhrch+93rk8gCPFDhUugb2la+HswXK8MNARERERAnyLGUabKrbWk3et6+g6qEtqHp4K9I/vo/af61X04O0mXG4dA11//lPnmIOe+/J5MveGAzIc/0Cyp7cg3In90SOySVCXN1xvHgV7CtXFyeLVWIxMBERERElqpvZ82Jl055Y9WF3FLp0Au8c2oIKx3aqWlfv7vBR02Ov9DhSqhoOl6qJc2+XRISL46QkjvNO7VlYGGoA6LllOape+TtKlcIwZxecLVhGlXAdKVmNXcQTERERUZKTkq1zBcqoaVGr/ihx7iAqHN+F0qf3Ia3/Q9TbvVZN0snb0ZLVcLx4ZZwpWBZBHilgz5h82bp//kHxevWwU+aPbleLgtw9cKpoRRwuWV01dAxInkp3lERERETkoELdk+FoyepqcgkLRbELR1H++C5VU8vrxVPU2ve7mkJd3XA+f0mcKFpZ3cM+yJId9obJl63Lk0f9eCC5V/GqOF31fdVjoVzkRERERETWJNzVDSeLVlLTgrYDUejSSZWElTpzAFn8bqP4+SNq6rB6OnwzvYWA8iVxKVc1nMlfyi5KxZh82TpXV1xcvBglmjZFrcadkY4D3BERERGRDYhwccXZgmXVtMRgUB3Flfp7v0rEJCmTccSw4RYGYINqSnMld2FVNVGmS7mLwBYx+bIDwTlzIlx3EERERERECeXkBN8sOdUkvSZ6Br5AiQuH8eGVXfA8cRaZH9xBgSt/q6nZxsWqmc3fb+VDNtgWJl9ERERERGRVAj1T4Gjp6sjdoAhW38+AtH53UfTCUTUVuXAMaZ49Rrl/z6AibAuTLyIiIiIismp+GbJhZ9X31SRDK3nf+Rd5DmzC8m0rUR62wzFHNyMiIiIiItvk5KTGE1tbvh72wbYw+SIiIiIiIrIAJl9EREREREQWwOSLiIiIiIjIAph8ERERERERWQCTLyIiIiIiIgtg8kVERERERGQBTL6IiIiIiIgcJfmaNWsWcuXKBQ8PD1SoUAGHDx9+5fqrV69GwYIF1frFihXDpk2bovzeYDBg+PDhyJo1Kzw9PVGnTh1cunQpyjqPHj1C27Zt4eXlhTRp0qBz5854/vx5krw/IiIiIiIi7cmXj48PvvjiC4wYMQLHjx9HiRIlUL9+fdy/fz/G9ffv34/WrVurZOnEiRP48MMP1XTmzJnIdSZMmIAZM2Zgzpw5OHToEFKkSKG2GRQUFLmOJF5nz57Ftm3bsGHDBuzZswfdunWzyHsmIiIiIiLHoz35mjJlCrp27YpOnTqhcOHCKmFKnjw5Fi1aFOP606dPR4MGDTBw4EAUKlQIY8aMQenSpfH9999HlnpNmzYNQ4cOxQcffIDixYvjp59+wp07d7Bu3Tq1zvnz57F582YsWLBAlbRVrVoVM2fOxKpVq9R6REREREREic0VGoWEhODYsWMYMmRI5DJnZ2dVTfDAgQMx/o0sl5Iyc1KqZUqsrl69irt376ptmKROnVolWfK3rVq1Uj+lqmHZsmUj15H1Zd9SUtakSZOX9hscHKwmk6dPn0ZWXwwNDYWlyL4CAgLw8OFDuLm5qWX+/v6qCubz2/8AoYEWi8VRBD+4rY5v4N1/8cjdKdG37+YMBKRMg8f/nkZoBBxOUh9fHazpnNrj8bWmc8rjm7SS8vha0+dUF3u7fq3tnNrb8bXGc/r8/k11jOVeWO6NdXr27FlkQdArGTS6ffu2RGfYv39/lOUDBw40lC9fPsa/cXNzM6xYsSLKslmzZhkyZcqk5vft26e2eefOnSjrNG/e3NCiRQs1/+233xrefvvtl7adMWNGw+zZs2Pc74gRI9R2OXHixIkTJ06cOHHixAkxTDdv3nxl/qO15MuWSOmceYlbRESEKvVKnz49nJws9zRDMntvb2/cvHlTdRZCto/n1P7wnNofnlP7w3Nqf3hO7Y+/DZ1TKfGS0q9s2bK9cj2tyVeGDBng4uKCe/fuRVkur7NkyRLj38jyV61v+inLpLdD83VKliwZuU70Dj3CwsJUMhXbfpMlS6Ymc1J1URe5AK39IqT44Tm1Pzyn9ofn1P7wnNofnlP742Uj51SaOll1hxvu7u4oU6YMduzYEaVESV5XqlQpxr+R5ebrC+mx0LR+7ty5VQJlvo5kzdKWy7SO/Hzy5Ilqb2by559/qn1L2zAiIiIiIqLEpr3aoVTl69Chg+r8onz58qqnwhcvXqjeD0X79u2RPXt2jBs3Tr3u06cPqlevjsmTJ6NRo0aqh8KjR49i3rx56vdSBbBv37745ptvkD9/fpWMDRs2TBUBSpf0QnpJlB4TpZdF6V1ROrHo3bu36ozjdUWFRERERERENpl8tWzZEn5+fmpQZOmlUKoGSjfwmTNnVr+/ceOG6oXQpHLlylixYoXqSv6rr75SCZb0dFi0aNHIdQYNGqQSOBm3S0q4pCt52ab0hmKyfPlylXDVrl1bbb9Zs2ZqbDBrJ1UfZUy06FUgyXbxnNofnlP7w3Nqf3hO7Q/Pqf1JZofn1El63dAdBBERERERkb3TPsgyERERERGRI2DyRUREREREZAFMvoiIiIiIiCyAyRcREREREZEFMPmycRs3blRjk3l6eiJt2rSR3emTbQsODlY9f8rQCSdPntQdDiXQtWvX0LlzZzXkhXxG8+bNq3ptCgkJ0R0axdOsWbOQK1cu1WuufOcePnxYd0iUQDJ0Tbly5ZAqVSpkypRJ/d+8ePGi7rAoEY0fPz5y6CGyXbdv30a7du2QPn169T+0WLFiangpW8fky4b98ssv+Pjjj9WYaKdOncK+ffvQpk0b3WFRIpDhEjjmnO27cOGCGrx97ty5OHv2LKZOnarGFpRhMsh2+Pj4qDEpJXE+fvw4SpQogfr16+P+/fu6Q6ME2L17N3r16oWDBw9i27ZtaqzPevXqqSFqyPYdOXJEfecWL15cdyj0Bh4/fowqVarAzc0Nf/zxB86dO6fG+JWCBlvHruZtVFhYmHoKO2rUKPVkneyHfMnIjZ4k10WKFMGJEydUKRjZh4kTJ+KHH37Av//+qzsUiiMp6ZKSku+//169loTa29sbn332Gb788kvd4dEbkrFGpQRMkrJq1arpDofewPPnz1G6dGnMnj0b33zzjfrfOW3aNN1hUQJ8+eWXqlBh7969sDcs+bJR8vRVimNlgOhSpUoha9asaNiwIc6cOaM7NHoD9+7dQ9euXbF06VIkT55cdziUBJ4+fYp06dLpDoPiSKqIHjt2DHXq1IlcJt+78vrAgQNaY6PE+0wKfi5tn5RoNmrUKMrnlWzT+vXrUbZsWTRv3lw9HJF73fnz58MeMPmyUaan5iNHjsTQoUOxYcMGVRRbo0YNPHr0SHd4lABSCN2xY0d0795dfeGQ/bl8+TJmzpyJTz/9VHcoFEcPHjxAeHg4MmfOHGW5vL579662uChxSCmmtAuS6k1FixbVHQ69gVWrVqkH09Kmj+zjPveHH35A/vz5sWXLFvTo0QOff/45lixZAlvH5MsKi1mlkeirJlM7EvH111+jWbNmKFOmDBYvXqx+v3r1at1vgxJwTuWm/NmzZxgyZIjukCmRzqk5Kalu0KCBeoonpZtEZB0lJVJjRG7cyXbdvHkTffr0wfLly1WnOGT7IiIiVBXSsWPHqlKvbt26qf+d0m7a1rnqDoCi6t+/vyr9eJU8efLA19dXzRcuXDhyebJkydTvbty4keRxUuKf0z///FNVY5LzaE5Kwdq2bWsXT3sc7Zya3LlzBzVr1kTlypUxb948C0RIiSVDhgxwcXFRVYLNyessWbJoi4veXO/evVWtkT179uCtt97SHQ69AakaLB3gyM26iZRYy7mVtprSg7B8jsl2ZM2aNco9rihUqJBqD2/rmHxZmYwZM6rpdaSkS27SpXvcqlWrqmXSY5N0bZ0zZ04LREqJfU5nzJihGgib37BLj2rS05o0+CfrEddzairxksTLVDot7YXIdri7u6tzt2PHjsihPP7X3r2FRLVHcRxfkhSVJBZCllmZkj5ICWVoUEqF9BBEiAaCdyvqIaLAhy5YJEFoaGiKYG92hcxe1C6gRQUaEvUg2sVSox7UnsIUysNaMKKmp6zO7uzd9wODzN4ze8YuML/5r7X++o2s3tcP73BnibcOS6mrq5Pm5mbbCgLutmXLFnn+/PmEYzoJOioqSgoKCgheLrRx48ZvtoDo6uryxGdcwpdLLViwwHqDdPSxTt3Sf4w6RU1pWRPcJywsbML9gIAA+6l7Q/GtrDtp8NI+TP3/WVxcbFPVfFg1cQ+dPpqZmWmr0HFxcTY9TceS64c7uLPU8NKlS1JfX297ffl69wIDA20vIbiP/j1O7tmbP3++7Q9FL587HTp0yKpFtOwwNTXV9lbUyhEvVI8QvlxMw5a/v7/t9TU0NGSrI1q65oU9EAAv0D2EdMiG3iYHaHb5cI+0tDQLzidOnLAP6jq+urGx8ZshHHAHbeJX+sXIeLoy/b1yYgDOWL9+va1Oax/8qVOnbIVav/jSNgy3Y58vAAAAAHAAzQcAAAAA4ADCFwAAAAA4gPAFAAAAAA4gfAEAAACAAwhfAAAAAOAAwhcAAAAAOIDwBQAAAAAOIHwBAAAAgAMIXwAAAADgAMIXAMBzent7JScnR5YsWSKzZ8+W5cuXy8GDB2VgYOBPvzUAwF+M8AUA8JTXr1/LunXr5MWLF3L58mV5+fKlVFVVyb179yQ+Pl4GBwf/9FsEAPylCF8AAE85cOCArXbdvn1bNm/eLGFhYbJ9+3a5e/euvHv3To4ePWqPGx4eloKCAlm2bJnMmTNHIiIipKamRt68eSN+fn7T3vT8ly9fJDc3V1auXClz586V1atXS1lZ2dh7KCwsnPb5iYmJ9pisrCzZuXPn2HMaGhokICDAfirf+3j69OnYY44fP27HSktLHfwTBQD8Lv6/7UoAAPxhuqrV1NQkRUVFForGW7x4saSnp8vVq1flwoULkpGRIY8fP5bz58/LmjVrpLu7W/r7+y2MvX//fqx8MS4uTlpbW+24Cg4Olq9fv0poaKhcv35dFi1aJI8ePZI9e/ZISEiIpKamypEjR2Tfvn32+OLiYjt/48YNu6/BcLIHDx7Y8zT8aVCcSl9fn4Wuyb8XAMA9CF8AAM/QUsPR0VGJjo6e8rwe//jxo7S1tcm1a9fkzp07snXrVjsXHh4+Iaipz58/jwUu3zE1a9YsOXny5Nh9XQHTIKfX1BClK1h6U/pTA9f454/X3t4uO3bskJKSEklLS5v2d9MVOz2vK3gAAHcifAEAPEcD2L/Rkj4NUFqW+LMqKirk4sWL0tPTI0NDQzIyMiJr166d0TV0tS05OdlCnq8ccbqAVldXJ52dnYQvAHAxer4AAJ6hfVvaE9XR0THleT0eFBT0y6V7V65csdJC7fvS3jLty8rOzrYANhPPnj2TvLw8K4fU6YxazjiVw4cP2+tpWSMAwL0IXwAAz9D+q23btllPl65Gjffhwwepra210r2YmBgLOi0tLT/1Og8fPpSEhATZv3+/xMbGWuh79erVjK+zadMmOXPmjJw7d07evn07YWiHz61bt6Srq8vCFwDA3QhfAABPKS8vt0mGWs53//59G5rR2NhooWzp0qU2jGPFihWSmZlpq003b9608r/m5mbr2foRkZGR8uTJExvuocFIpxBqH9lM6SqcCgwMlOrqajl27Jj1rY139uxZOX36tMybN2/G1wcA/L8QvgAAnuILRjpAQ4dfrFq1yiYRJiUl2VCMhQsX2uMqKyslJSXFVq+ioqIkPz9fPn369EOvsXfvXtm1a5etom3YsME2b9br/Aqdcrh79+5vyg91VU2DIgDA/fxGv9eVDAAAAAD4Zax8AQAAAIADCF8AAAAA4ADCFwAAAAA4gPAFAAAAAA4gfAEAAACAAwhfAAAAAOAAwhcAAAAAOIDwBQAAAAAOIHwBAAAAgAMIXwAAAADgAMIXAAAAAMh/7x/Z0EBqUdeVVgAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Остатки для каждого наблюдения:\n", + " Наблюдение Остаток (residual)\n", + " 1 -2.1329\n", + " 2 1.9334\n", + " 3 -2.3429\n", + " 4 -0.7895\n", + " 5 -2.6715\n", + " 6 -0.9166\n", + " 7 -0.5329\n", + " 8 -0.7166\n", + " 9 1.4971\n", + " 10 0.8405\n", + " 11 2.8117\n", + " 12 -0.3629\n", + " 13 -1.4929\n", + " 14 -0.8629\n", + " 15 1.6934\n", + " 16 1.6471\n", + " 17 -5.9095\n", + " 18 0.3605\n", + " 19 -0.4366\n", + " 20 2.5534\n", + " 21 -0.0095\n", + " 22 0.0534\n", + " 23 1.0571\n", + " 24 -4.3929\n", + " 25 6.1205\n", + " 26 2.3971\n", + " 27 -0.4829\n", + " 28 -3.3929\n", + " 29 -0.8083\n", + " 30 -0.5529\n", + " 31 3.0234\n", + " 32 -0.3829\n", + " 33 0.9734\n", + " 34 -1.3229\n", + " 35 2.2805\n", + " 36 4.3271\n", + " 37 -2.0866\n", + " 38 0.8405\n", + " 39 -2.1466\n", + " 40 1.5217\n", + " 41 -3.0466\n", + " 42 3.5471\n", + " 43 0.6534\n", + " 44 -2.8129\n", + " 45 -4.3566\n", + " 46 2.1785\n", + " 47 3.1534\n", + " 48 -1.4215\n", + " 49 -1.3783\n", + " 50 2.2971\n" + ] + } + ], + "source": [ + "from scipy.stats import chi2, norm\n", + "from scipy.stats import chi2_contingency\n", + "from scipy import stats\n", + "\n", + "\n", + "residuals = model_poly.resid\n", + "plt.figure(figsize=(10, 6))\n", + "sns.histplot(residuals, kde=False, bins=8, stat='density')\n", + "\n", + "# Добавление теоретической кривой нормального распределения\n", + "x = np.linspace(min(residuals), max(residuals), 100)\n", + "plt.plot(x, stats.norm.pdf(x, np.mean(residuals), np.std(residuals)), \n", + " 'r-', label='Нормальное распределение')\n", + "plt.legend()\n", + "plt.title('Гистограмма остатков полиномиальной модели')\n", + "plt.xlabel('Остатки')\n", + "plt.ylabel('Плотность')\n", + "plt.grid(True)\n", + "plt.show()\n", + "\n", + "# Создаем DataFrame с остатками\n", + "residuals_df = pd.DataFrame({\n", + " 'Наблюдение': range(1, len(residuals)+1),\n", + " 'Остаток (residual)': residuals\n", + "})\n", + "\n", + "# Форматируем вывод остатков\n", + "residuals_df['Остаток (residual)'] = residuals_df['Остаток (residual)'].round(4)\n", + "\n", + "# Выводим таблицу с остатками\n", + "print(\"Остатки для каждого наблюдения:\")\n", + "print(residuals_df.to_string(index=False))\n", + "\n", + "# # Тест хи-квадрат на нормальность (пример)\n", + "# observed, bins = np.histogram(residuals, bins=8, density=True)\n", + "# expected = norm.pdf(bins[:-1], np.mean(residuals), np.std(residuals))\n", + "# chi2_stat, p_value = chi2_contingency([observed, expected])[0:2]\n", + "# print(f'Хи-квадрат тест: p-value = {p_value:.4f}')\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "72be1710", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYBNJREFUeJzt3QdUVEcbBuAXkCJKERvYa2LsvffYC8YUY69R42/vRhNLEnvvMYnd2GPsGo2xRo2999gVxAYoSN//fHOzBBBwUZZld9/nnD1w716W4UKyrzPfzNjodDodiIiIiMycrakbQERERJQcGGqIiIjIIjDUEBERkUVgqCEiIiKLwFBDREREFoGhhoiIiCwCQw0RERFZBIYaIiIisggMNURERGQRGGqIiIjIIjDUEKWAixcvom3btsiePTscHR2RLVs2dXzp0qVU8Xqm8uTJE9jY2GD06NGmbgoRWQCGGiIj27BhA0qXLo09e/agU6dOmDdvHrp06YI///xTnd+0aZNJX4+IyFLYcENLIuP5559/ULx4ceTKlQsHDhxA5syZY/VSVKtWDffv38e5c+eQN2/eFH89U5M2y88watQo9tYQ0TtjTw2REU2ePBnBwcH48ccfYwUQkSlTJixYsAAvX75U16Xk6+3bt08N+8T3OHTokLpGQoYcX7lyBS1atICrqysyZsyIvn37IiQkJNbrLV68GLVr10aWLFnUcFjhwoUxf/78176vtF16l9KlS6euOXnypDofHh6uzjs7O6NEiRI4ceJErK+rWbOmesR0/Pjx6DbHFHc4KyIiAo0aNYKHh4dBw3Pr1q1DmTJlkDZtWnVPZVjvwYMHr12nvy/ye5Br33//fYwYMSLWvUvsIb8DcfDgQXz22WcqqMq9y5kzJ/r3749Xr15Ff6+OHTu+8fVu376trs2TJ4+6PqZu3brByckp+nvqSS9fkSJFoocwe/bsCX9//9fufczvI/ekcePGuHDhwhvvJVFKS5Pi35HIimzZskW9yUgPSnyqV6+unpfr5A0mpV+vT58+KFeuXKxz8uYck7xxy2uOHz8eR48exaxZs/D8+XMsW7Ys+hoJMPLm6O3tjTRp0qjv/7///Q9RUVHqjVJP3qyXLl2KXr16IUeOHOoaISFNQtH333+PmTNnomHDhrh58yZcXFwSbPvQoUNhiC+++EK9me/evVsFqcQsWbJEhSu5J/LzPnr0SLXnr7/+wunTp+Hu7q6uk54w+R3Y29urwCD3R3rR5OceO3YsPv74YxQoUCDWz/3BBx+oa/XkWB+iJOz16NFDhcZjx45h9uzZqsdNnhPdu3dHnTp1or+2Xbt2aN68ufo+enFDrp70gi1cuBBr1qyJFQwleI0ZM0a9rnzvq1evqt+jhEX5eeVn0ytUqJAKbNKxLz/ntGnTVFC8e/euQb8DohQjw09ElPz8/f1laFfXrFmzRK/z9vZW1wUGBqbY6+3du1dds27dugSvGTVqlLpGXi+m//3vf+r82bNno88FBwe/9vX169fX5cuXL/rY19dX5+DgoPvqq6+iz23dulW9VqNGjXRRUVHq3OXLl3U2Nja66dOnR19Xo0YN9dDbvn27+roGDRqojzHJsbRdyPeys7PTbdy4UfcmYWFhuixZsuiKFi2qe/Xq1WttHDlyZPS56tWr61xcXHR37tyJ9Rr6nyGu3Llz6zp06BDvc/Hdu/Hjx6t7EPf14/sZE/teCxYsUNfOnj071jV+fn7qd1GvXj1dZGRk9Pk5c+ao6xctWpTgvRfDhw9X18nrEKUmHH4iMpIXL16oj4n1NsR8Xn99Sr2eoWL2tIjevXurj9u3b48+J8MvegEBAapWpkaNGqq3RY71wyxhYWGxehcqVKigPkrPiH4YSXoFpEdFCqHjI+/pX331FT755JPor4/PnDlzVG+L9Cw1a9bsjT+nDHn5+fmp3iMZqtGToRZp07Zt29Tx48ePVT1T586d1ZBRTHGHwgwR894FBQWpe1e5cmX1c0rv0NuSgnH5WQYPHqx6xmL6448/1O+iX79+sLX9722ga9euaphR/7PqyfCgtEt+9iNHjuC3335TtV0yFEWUmnD4ichIkhJW9LUK4tmzZ+oNJ+abnpub21u/3rsqWLBgrOP8+fOrN0J9DYeQ4QoZ5pA3PBlKiUlCjbT/3r176limob+JXKO/Pq5ffvlFTWlfu3YtVq5cGe81O3bsiK7LkftpiDt37sQ7/CYk1OhrjSSoiaJFiyI5yBDOyJEjsXnzZjWsF5M+ECbVmTNn1P2JjIyM9+dP6Gd1cHBAvnz5op/XO3z4cKzhLfmb2Lhx41uFOCJjYk8NkZHIG7kUX0r9RWLkeakvkTcUIT0ZXl5e0Q8pzH2X10tucd/IpMbiww8/VP+Sl1oL+Ve+1K9IHYmQuhoRt7j4TWIWyupJ2Pvmm2/UFPb33nsvwa+VuhS5RnoipE5H6kVSIwkddevWVfdMaoQkKMi9k9qemPcuqc6ePavqZ6ZMmYJFixa9ViCcVNIrI+2ShwRJqf2R1/f19X2n1yVKbuypITKipk2bqhlJ8q/8qlWrvva8DMlIj8eAAQOiz02dOjXWv9glyLzL672r69evx5oefuPGDfVmK8WxQopjQ0NDVU9DzOGYvXv3xnodCWji4cOH0Z8nRGYbxfy59aT4WYaI3jT9W4KCFL1KkJKgIAW6+hlfCcmdO7f6KAFIipZjknP656UnQyTH7J/z58/j2rVrqni6ffv20eclPLyLYsWKqSJj6eWTj/LzS9jVD6vF/Fn1P48+NN66dStWUbLIkCFDrHMSaOT3I7PeZCiQKLVgTw2REQ0aNEhNU5bZK0+fPo31nAwLfPnll6qGIWbNg0wnljcQ/SPmjJ23eb13NXfu3FjHMjNHyAwlYWdnpz7GXPJKhk3kDS/uzCwh9Rh6f//9t/ooM2705E1epl7rr485rCYzi6QHyNPTM9E2S02KtEumjv/www+qBuann35K9GvKli2rpqTL9RLSYg5lXb58WdXWCBmGkbZJD0jc2T9JXfYrvnsnn8uMq3chizDKzy7DhD///LMKut9++2308/J3JT15Um8U83vLLCn53el/1jf1osW8T0SpAXtqiIxIpvXK1OdWrVqpfz3LkIj0esibjLyBSI/M6tWrDV4oL7lfzxDyL3eZqt2gQQNVM7NixQq0bt1arScj6tWrp94gpRdJwpaskyMBQgKCj49P9OtIj0DLli1V8a5cI3UzMpVbSP2LPCeFv/KGLkNtMs04plOnTqk6oSFDhiSp/fXr11drzcjXSRsT6iWSKcwTJ05UU7qlyFnusX5Kt/RK6YfThIQB6SmT8CC9IPrfgQwjST2LoaRWR2qUJKxK75QE0l9//fW12pp3IbU/MrQ1YcIEdY9lKEmCmfSwyJRu+b3K71d6baQnTIq25X7FJPdBfu9Chhmlt1Cm7jdp0iTZ2kmULEw9/YrIGpw/f17XunVrnaenp87W1lZNh3VyctJdvHjRJK+XlCndly5d0n366adqCnOGDBl0vXr1ijXlWWzevFlXvHhx1YY8efLoJk6cqKYFy9ffunUr+roXL17o2rZtq3N2dtYVKlRI9/vvv6trZIpwx44ddWnTplVTqg8fPhzr9WVKsVwXc5p3zDa+abrzkydPdJkzZ9Y1b978jfdmzZo1ulKlSukcHR11Hh4eujZt2uju37//2nUXLlxQr+fu7q5+7vfff1/3zTffJHlKt9zfOnXq6NKnT6/LlCmTrmvXrmq6vPwcixcvfqcp3XohISHqfpcrV04XERERawq3nLe3t9dlzZpV16NHD93z58/jvff6h/y8VapUUdPqiVIbbpNAZALS2yKrvsq/iGMuYpdaXi/m4mwyjddYU3e5TQIRJScOPxGZgBSFytDMsGHD1EylcePGparXIyIyRww1RCYidQ6GLvVvitcjIjI3nP1EREREFoE1NURERGQR2FNDREREFoGhhoiIiCyCVRUKy9LuskS7bAzIjdiIiIjMg1TKyKrisj1HzJ3lrTrUSKDJmTOnqZtBREREb+HevXtq2YqEWFWokR4a/U2R5citVXh4OHbt2qWWt5el4Sn58R4bH++x8fEeGx/vcQL8/ICuXYF/d5gP/PRT5Fy/Pvp9PCFWFWr0Q04SaKw91MimiHIP+B+RcfAeGx/vsfHxHhsf73E8/vwTaN1aNh0DnJ2BefOA5s2B9evfWDrCQmEiIiIyvchIYNQo2UZeCzRFiwLHjwMdOhj8ElbVU0NERESp0MOHQJs20cNN+OILYOZMracmCRhqiIiIyHR27QLatgUePwbSpwcWLNCGn94Ch5+IiIgo5UVEAMOHA/Xra4GmRAng5Mm3DjSCPTVERESUsu7fB1q1Ag4d0o579ACmTQOcnN7pZRlqiIiIKOVs3w60bw88fSrTkYGffgJatEiWl+bwExERERlfeDgwZAjQuLEWaMqUAU6dSrZAI9hTQ0RERMZ15w7QsiVw9Kh23KcPMGkS4OiYrN+GoYaIiIiMZ9MmoGNHwN8fcHcHFi3SFtMzAoYaIiKiVCIySodjt57B70UIsrg4oXxeD9jZmukGzGFh2nCTrDcjypcH1qwB8uQx2rdkqCEiIkoFdl7wwZgtl+ATEBJ9zsvNCaOaFkaDol4wKzdvAp9/Dpw4oR0PHAiMGwc4OBj127JQmIiIyMR+v/gIPVacihVohG9AiDovgcdsrF8PlCqlBRoPD2DzZmDKFKMHGsFQQ0REZEJROuD77Vegi+c5/TnpwZGhqVQtJATo2RP47DMgMBCoXBk4cwZo2jTFmsBQQ0REZEL/BNrANzA0weclykgPjtTapFrXr2shRnbUFsOGafs45cyZos1gTQ0REZEJBYYbdp0UD6dKq1cDXbsCL18CmTIBy5cDDRqYpCnsqSEiIjIhV3vDrpPZUKnKq1dA9+7adgcSaKpX14abTBRoBEMNERGRCeV31cHT1REJTdy2+XcWlEzvTjWuXAEqVAB+/BGwsQG++QbYswfInt2kzWKoISIiMiFZhubrRoXU53GDjf5YpnWnmvVqli3Ttjg4fx7ImhXYtQv49lsgjekrWhhqiIiITKx+kayY37Y0PN1iDzHJsZxPFevUBAUBnToBHToAwcFA7dracFOdOkgtTB+riIiISAWXuoU9U+eKwhcvahtPXroE2NoCo0cDw4cDdnZITRhqiIiIUgkJMJXyZ0SqodMBixcDvXpphcFeXsDKlUDNmkiNGGqIiIjodTKj6csvgV9+0Y7r1dOma2fJgtSKNTVEREQU29mzWjGwBBoZYho/HtixI1UHGsGeGiIiIvpvuEmmafftC4SGAjlyAKtWAVWrwhww1BARERHUfk3dugFr1mjHjRsDS5cCGVNRjc8bcPiJiIjI2p06BZQurQUaWW9GdtWW3bXNKNAI9tQQERFZ83DT3LnAwIFAWBiQO7e2l1PFijBHDDVERETWyN8f6NIF2LBBO/7oI2DRIiBDBpgrDj8RERFZm2PHgFKltEBjbw/MnKl9bsaBRjDUEBERWdNw0/Tp2mym27eBfPmAw4eBPn20jSnNHIefiIiIrMGzZ0DHjsCWLdrxp58CP/8MuLnBUrCnhoiIyNIdPgyULKkFGkdHYN48YO1aiwo0gqGGiIjIUkVFAZMmAdWrA/fuAQULAkePAj16WMRwU1wcfiIiIrJEjx8DHTpo2xuIVq2ABQsAFxdYKoYaIiIiS3PwINCyJfDwIeDkBMyerU3ftsDemZg4/ERERGRJw01jxwI1a2qBplAhbfr2F19YfKAR7KkhIiKyBI8eAe3aAbt3a8ft22urBadPD2vBUENERGTu/vwTaNMG8PUFnJ21MCPTt60Mh5+IiIjMVWQkMHo0UKeOFmiKFAGOH7fKQCPYU0NERGSOfHyA1q2Bffu04y5dgFmztJ4aK8VQQ0REZG527QLattWmbadLp03VbtMG1o7DT0REROYiIgIYMQJo0EALNCVKAKdOMdD8iz01RERE5uD+fW24SdagEV9+CUybBqRNa+qWpRoMNURERKnd9u3aFO2nT7UVgWUjyhYtTN2qVIfDT0RERKlVeDgwZAjQuLEWaEqX1oabGGjixZ4aIiKi1OjuXW2rgyNHtOPevYHJk7VdtileDDVERESpzebN2lozz58Dbm7AokXAxx+bulWpHoefiIiIUouwMKB/f6BZMy3QlC8PnD7NQGNpoWb8+PEoV64cXFxckCVLFnz00Ue4evWqqZtFRESUPG7dAqpWBWbM0I4HDNBmOuXNa+qWmQ2zCTX79+9Hz549cfToUezevRvh4eGoV68egoKCTN00IiKid2KzYQNQqpS2xUGGDNrw09SpgIODqZtmVsympmbnzp2xjpcsWaJ6bE6ePInq1aubrF1ERERvLSQExX78EWlkyraoXBlYtQrIlcvULTNLZhNq4goICFAfPTw8ErwmNDRUPfQCAwPVR+nlkYe10v/s1nwPjI332Ph4j42P99jIbtyAXatWyHf2rDqMHDQIUWPGAPb22lRuimbo36CNTqfTwcxERUXB29sb/v7+OHToUILXjR49GmPkDySOlStXwtmKN/wiIiLTyn7wIErMmwf7V68Q6uqKU337wq9MGVM3K9UKDg5G69atVYeGq6urZYWaHj16YMeOHSrQ5MiRI0k9NTlz5sSTJ08SvSnWkHilLqlu3bqwl38RULLjPTY+3mPj4z02glevYDtwIOxkRWDpnalSBX907oxqLVvyHidC3r8zZcr0xlBjdsNPvXr1wtatW3HgwIFEA41wdHRUj7jkD4d/PLwPKYH32Ph4j42P9ziZyIxdWQn43DnAxkZtTBk1fDhCdu3iPX4DQ++N2YQa6VDq3bs3fvvtN+zbtw95OcWNiIjMxYoV2gaUMmM3Sxbgl1+AOnVYO5PMzCbUyHRuqYXZtGmTWqvG19dXnXdzc0Na7lBKRESpkYQY2d5g8WLtuHZtLeB4eZm6ZRbJbNapmT9/vhpLq1mzJry8vKIfa9asMXXTiIiIXnfxorYisAQaW1tAJq7s2sVAY0Rm01NjhvXMRERkjeT9askSGWJQhcEqxKxcCdSsaeqWWTyzCTVERESmEBmlw7Fbz+D3IgRZXJxQPq8H7Gxt4r/45UuZoqsNMYl69YDly7U6GjI6hhoiIqIE7LzggzFbLsEnICT6nJebE0Y1LYwGReMMI8msJpndJLOc7OyA774Dhg7Vhp4oRfBOExERJRBoeqw4FSvQCN+AEHVeno8ebvrxR61+RgJN9uzAvn3AV18x0KQw3m0iIqJ4hpykhya+ak79OXk+0j8AaN0a6N5dVnwFGjUCzpzRdtumFMfhJyIiojikhiZuD03cYONx7SLCSnZF2ju3gDRpgPHjgQED2DtjQgw1REREcUhRcIJ0OrQ7vQ1f//kzHCMjtB21V68GKlVKySZSPBhqiIiI4pBZTvFxDXmJCTtmodG1w+r4WZ2G8FizAvDwSOEWUnzYR0ZERBSHTNuWWU4xJ24X97mGrUv6qkATZpsG0xv/D247tzLQpCIMNURERHHIOjQybVvY6HTofHwT1q8YglwBj3DXLSs+azsJH0z4GnZ2fBtNTTj8REREFA9Zh+bnpnlh3/ULVL98RJ3b/l5lTP98CAa2KP/6OjVkcgw1RERE8TlyBB+2bgncvYsoewecHzQKGTp3w858GRNeUZhMiqGGiIgopqgoYOpUYPhwICICKFAAtmvXokSpUqZuGb0BQw0REZHekydAhw7A9u3accuWwIIFgKurqVtGBmCoISIiEgcPAq1aAQ8eAE5OwKxZwBdfADYcajIXLNsmIiLrJsNN48YBtWppgeb994G//wa6dmWgMTPsqSEiIuvl5we0bQvs3q0dt2sHzJsHpE9v6pbRW2CoISIi67R3r7YZpa8vkDYtMHcu0LEje2fMGIefiIjIukRGAmPGAHXqaIGmSBHgxAmgUycGGjPHnhoiIrIePj5AmzZaL43o3BmYPRtwdjZ1yygZMNQQEZF1kLoZqZ+ROpp06YAfftCOyWJw+ImIiCybLKD39ddA/fpaoCleHDh5koHGArGnhoiILNf9+1oxsKxBI7p3B6ZP1wqDyeKwp4aIiCzTjh3QlSypAk14uvS4NvMnRM6bz0BjwRhqiIjIsoSHA0OHAo0awebpU5zPmh912kxDvYdeqDrxT+y84GPqFpKRMNQQEZHluHsXqFEDmDRJHS4p3QSftJ2COxmyqWPfgBD0WHGKwcZCMdQQEZFl2LwZkOGmI0fwwikdvvzoK4yu+yXC0thHX6L79+OYLZcQGaU/IkvBUENEROYtLAwYMABo1gx4/hwvi5dCww4zsfP9KvFeLlHGJyAEx249S/GmknEx1BARkfm6dQuoVk2b0ST698efP/+K++6eb/xSvxchxm8fpSiGGiIiMk8bNgClSgHHjgEZMgCbNgHTpiGzh6tBX57FxcnoTaSUxVBDRETmJTQU6N0b+OQTICAAqFQJOHMG8PZWT5fP6wEvNycktIuTnJfn5TqyLAw1RERkPm7cACpXBubM0Y6HDAH27wdy5Yq+xM7WBqOaFlafxw02+mN5Xq4jy8JQQ0RE5mHNGqB0aeDUKSBjRmDbNmDiRMD+v9lNeg2KemF+29LwdIs9xCTHcl6eJ8vDbRKIiCh1e/VKFQBjwQLtWAqDV64EcuRI9MskuNQt7KlmOUlRsNTQyJATe2gsF0MNERGlXlevAi1aAOfOQWdjgwc9+uNUpz7IHJoW5aN0bwwo8nyl/BlTrLlkWgw1RESUOq1YAXz5JRAUhFCPTBjcbDA2uxQB1l9QT0uxr9TGcCiJ9FhTQ0REqUtwMNClC9CunQo0T8tXQbVW07A5S5FYl3HLA4qLPTVERGQyslVBrJqXV76wa/k5cPEiYGODqJEj4W1fGX4vwuNdGdjm3y0PpHaGtTLEUENERCYhPSwSSGTLAuh0+Oz8Hyj1xw+wCw8FPD1VMfDfuYrjwU9HE3yNmFsesHaGGGqIiMgkgUaGjiSUOIe9wne75uGTi3vVcwfzlEL4kqWoXaMY/M48MOj1uOUBCYYaIiJK8SEn6aGRQFPI7xbmbJqIAs/uI9LGFlOrtcUPFT9F1sN+OFRNZ/BWBtzygARDDRERpSgZKvLxf4VWZ3/HqD0/wikiDD7pM6KP92Acz1lUXaMfUtJveSBFwRKC4rL5d0E9bnlAgrOfiIgoRT3zeYxZWyZj/O9zVKDZm68MGnWaFR1oYg4pccsDSgr21BARkfFnNelX8j19GrXbfoK0d24hwsYWk2p0wE/lm0NnY5vgkJJ+y4PoouJ/SQ8N16mhmBhqiIjIeLOa/uXl6oifg4+jyOTRSBsWBh/3LOjZZDBOZf/AoCElbnlAhmCoISIio8xq0nMJDcI3y8ajyNW/tBPe3rg0ZDxOb7mlAozOwCElbnlAb8KaGiIiSvZZTXrFfa5h2+I+aHT1L4TZpsGMxj0QueE3fFilMHfRpmTHnhoiIkq+WU36ISedDp1ObsZXexfDISoC99yyomezoTjn9R4q3H6uelw4pETJjaGGiIiShX4BPLdXLzB5x0zUu66tBLzjvcoY2rAPAp3Sx7pOcEiJkhNDDRERJQvpaSn14Apmb56IHIGPEWqXBt/X/gLLSzVW+zjFvI7IGBhqiIjo3UVFocKvC7Fu5XCkiYrEbXcvNdx00bNA9CVcKI+MjaGGiIjeaR2abOFBKDt6AGy3b1OzT7YUqobhDXrjhaNz9PVcKI9SAkMNERG99To0Ze9fxOxNk2Dz8ikiHRxhN3sW7Cs1Qfqtl/GCC+VRCmOoISKiJK9DA10U/nd0PQYcXIE0uij845EDvZoNRd/KTbVZTUW8OKuJUhxDDRERJWkdGo8gf0zfOhXVb59W5zcUqYWv6/0PrxzSqudlmjZnNZEpMNQQEVG8AebvW89w8okNMt56hkoFsqiel9znj2HmlinI+vIZXqVxxMi6X2JdsTrRs5v0u2sz0JApmFWoOXDgACZPnoyTJ0/Cx8cHv/32Gz766CNTN4uIyIL3brLDsusnkN3FHmMvbcYvq+fDTheFaxlzqdlN1zPnfu3rY65DQ5SSzCrUBAUFoUSJEujcuTM+/vhjUzeHiMgq9m7K/PI5Jq2ejCp3zqnjtcXqYFSdL/HKIf71ZrgODZmKWYWahg0bqgcREb3d9OuYRbtxz5fJneG1vZuq3D6DGVumIHOwP4LsnfBN/f/htyK1Y12jx3VoyNTMKtQQEdG7DCVpvNyc4F3CC5vP+sQ675HOHs+CwtXndlGR6HdoJXoeWQtb6HA5cx41u+mfjDnV80nZXZsopVh0qAkNDVUPvcDAQPUxPDxcPayV/me35ntgbLzHxsd7/Ga/X3yE3qvPvtarIkFmwYFbr12vDzRZXzzBrC1TUOHeBXX8S8kG+LZ2V4TaO6rjjpVyYefFR/AN/O//r55ujhjRsBA+fD8TfydJwL9jwxh6f2x0Ol18vYipno2NzRsLhUePHo0xY8a8dn7lypVwdv5vpUsiIksQpQP+CbRBYDiQPg3wyz+2CAiTZ+LrOdHFe77GzZOYtnUqMr4KxAuHtBhevxe2FK4R65pehSOR31UX/b1c7aGO2UFDxhIcHIzWrVsjICAArq6u1hlq4uupyZkzJ548eZLoTbGGxLt7927UrVsX9vb2pm6OReI9Nj7e49d7Zb7ffiVW70lSpImMwMCDK9Dj7/Xq+ELW/OjlPQS3PbLHqZlxxN4B1TnElEz4d2wYef/OlCnTG0ONRQ8/OTo6qkdc8ofDPx7eh5TAe2x8vMda3Ux8w0yGyhboh1mbJ6Psg8vqeGnpxhhXqwtC0zjEUzNTBE6O/52n5MG/48QZem+SHGpOnTqlXrxYsWLqeNOmTVi8eDEKFy6shnscHIz3x/7y5UvcuHEj+vjWrVs4c+YMPDw8kCtXLqN9XyKi1L7K79sGmg9v/I0p22YgQ8gLBDqmw5CGfbDz/SrwSOeA0CA1dqVw7yYyB0kONd27d8ewYcNUqLl58yZatmyJ5s2bY926dWrMa8aMGcZpKYATJ06gVq1a0ccDBgxQHzt06IAlS5YY7fsSEaVWMiU75gwmQ9lHhmPI/qXoenyjOj7jVRC9vYfivrunmh21f3AtHLv5GLsO/o161SqoFYU55EQWF2quXbuGkiVLqs8lyFSvXl0V3v71118q4Bgz1NSsWRNmWgJERGQUb7N6bw5/X8zZPAklfa6p44Vlm2FCzY6IsNO6+KVHxiGNLSrk9cDTyzr1kYGGLDLUSKiIiopSn//xxx9o0qSJ+lxfgEtERCknqav31r92GFN2zIRLSBACndJjYKN+2F2wonpOemg4xERWFWrKli2L77//HnXq1MH+/fsxf/786PqWrFmzGqONREQUQ8yVgDOlc4SnqxMeBYYkuMpvVldHTGv2ATy//wb5flusPVGxItKtXIXOUS5oEmelYSKrCTUyvNSmTRts3LgRI0aMQIECBdT59evXo3LlysZoIxERJbJCsLuzffSqM/Gt8juppDMqt/eWmR7aiSFDgO+/h529PSqlbPOJUleoKV68OM6fP//aedk9287OLrnaRUREBmw2KQKCtdVW3Zzt4f/v5/oZS/Ptb6Bky1bAixdAxozAsmVAo0Yp3HKilPFW69T4+/urnpl//vkHgwcPVlOqL126pIafsmf/b6EmIiIy/tRtfS+NUxpb/PJFBTx5GQpPex3Kzf4etgsWaBdVrQqsWgXkyJHSTSdKvaHm3Llz+PDDD+Hu7o7bt2+ja9euKtRs2LABd+/exTL5VwAREaXo1G0JNrKasK2NDZqlfQm0aCH/w5bl14GvvgJky5g0Fr3eKhFsk/oFsjZMp06dcP36dTg5/Vd136hRIxw4cCC520dEREmYuu2wZiVQpowWaDJnBnbuBMaOZaAhq5Dkv/Ljx49jgb47MwYZdvL19U2udhERURKmbjuFh2D0Hz+izLld2omaNWX3XsCL07PJeiQ51MheSrKxVHyL8mWWfxUQEVGKTt0u8OQu5m6agPef3IXOxgY2I0cC33wDcPIGWZkkhxpvb298++23WLt2bfRu2VJLM3ToUHzyySfGaCMRkVUFGOmVeR4Uhu+2vXnq9qfn/8C3u+fDOTwUIZmywGnNKqB2bZP9HERmFWqmTp2KTz/9FFmyZMGrV69Qo0YNNexUqVIljJVxWyIieue1Z+ITc+p2mH8gvts9H59c+FOde1KxGjJtXAdwEVSyYkkONW5ubti9ezcOHTqkZkLJztmlS5dWKwwTEVHyrD0TH30vTZEnd/DTtslwvnkdOltb6MaMQabhwwHbJM/9ILIob10OX7VqVfUgIqK3G2ryDXiF77ZdNijQKDodPj/7O0bv+RFOEWFAtmywWbUKNtWrG7fBRJYUambNmmXwC/bp0+dd2kNEZHW1MoZIFxqMcb/PRbPL+9Xxoyq1kPW3Ndq0bSIyPNRMnz7dkMtU0TBDDRFR0mpl3qTIo38wZ9ME5H3ugwgbW0yu0R41f5yErAw0REkPNbIDNxERGadWJkE6Hdqe3o5v/vwZjpHheOCSGX28h+BhkVIYkj9T8jWWyEJwiUkiohTcp8lQLqFBmLBjFhpf/Usd7y5QHoMb9UdAWhfMb1oYdrb6PbiJKEmhRrZG+O6775AuXTr1eWKmTZtmyEsSEVntPk1vUsznOuZsnojc/r4Is02DiTU7YmHZZvByT4sJTQujQVGuEkz01qHm9OnTCA8Pj/6ciIjefZ+m1+h06HRyM77auxgOUREIzpYT/8xeiOL5CmOVixPK5/VgDw3Ru4aavXv3xvs5ERElfZ+m+LiGvMSMXbNQ+/Jhdaxr/jGcFy1EMXd3FDNCG4ksUZJXaurcuTNevHjx2vmgoCD1HBGRtZMeFS83J7VQniFKPbyK7Yv7aIHGwQGYPRs2v64H3N2N3FIiKw81S5cuVdsjxCXnli1bllztIiIyWzJENKppYfV5YsHGRheFL45twLpfhiBHoB+QPz9w+DDQq5eskZFi7SWyutlPsjO3TqdTD+mpcXL6r3s1MjIS27dvV/tBERERVDHv/LalX1unRnpwvmn8ATKHBSHngB7wPLhHe6JFC+CnnwBXV9M1mshaQo27u7taXE8e77333mvPy/kxY8Ykd/uIiMw62NQt7BlrRWFV7Hv4L6BVK+D+fcDREZg5E+jWjb0zRCkVaqRAWHppateujV9//RUeHh7Rzzk4OCB37tzIli3bu7aHiMjihqIq5c+oHURFARMnAN98I13cgPwDce1aoEQJUzeTyLpCTY0aNaJXF86ZMydsuRssEVGi+zzFmoLt5we0bw/8/rt23LYtMH8+kD69SdtMZNUrCkuPjL+/P44dOwY/Pz9Eyb88Ymgv/9ESEVmZ+PZ5kvoZKRhu8PSaNtzk4wOkTQvMmQN06sThJiJTh5otW7agTZs2ePnyJVxdXVUtjZ58zlBDRNYmoX2e/J4H4VKPwah/eBVs5B+AH3wArFsHFCliopYSWbYkh5qBAweq9WjGjRsHZ2dn47SKiMhMhpp8A17hu22XXws0mV8+x/StU1D1zll1HNWxI2ylhyZdOpO0l8gaJDnUPHjwAH369GGgISKrFd9QU0yVb5/BzK1TkDnIH8H2jhhRrydafD0clRhoiFJXqKlfvz5OnDiBfPnyGadFRERmONQk7KIi0eevVeh9eA1socPlzHnQq9lQ/JMxJ2q+7X5QRGS8UNO4cWMMHjwYly5dQrFixWBvbx/reW9v76S+JBFRqp/FJI7+8xTDfj0fb6DJ+uIJZm2Zggr3LqjjlSXqY8yH3RBq7/jW+0ERkZFDTdeuXdXHb7/99rXnpFBYVhcmIrKkoSV3Z+0fb/7B4fF+TY2bJzFt61RkfBWIlw5pMbx+L2wurC2DIVMpPN3+C0ZElIpCTdwp3ERElj60lFCYSRMZgQGHVuB/R9er44tZ8qFns6G47ZFdHevnhsq07uj1aogo9YQaIiJLHXKSHpr4hpbi4xX4GLM3T0LZB5fV8dLSjTGuVheEpnGIvsZTv05NUS8jtZqI3jnUBAUFYf/+/bh79y7CwsJiPSczo4iIzI3U0CQ0mymu2jeOYeq26cgQ8gKBDs4Y2rAPdhSqqp7zSGePb5oUgadrnBWFiSj1hZrTp0+jUaNGCA4OVuFG9oB68uSJmuItu3Qz1BCROZKi4DexjwzHkP1L0fX4RnV81rOgmt10z90zeqhpXPNi7JkhMpEkb+DUv39/NG3aFM+fP0fatGlx9OhR3LlzB2XKlMGUKVOM00oiIiMPPT15EZroNTkCHmHtL8OiA83Css3wWZtJKtDoh5rmty3NQENkTj01Z86cwYIFC9SGlnZ2dggNDVVr1kyaNAkdOnTAxx9/bJyWEhGZYCE9Ue/aEUzePgNuoUEIcEyHQY37Y3fBiuo597T2mNumNCrmy8ihJiJzCzWyLo1+h24ZbpK6mg8++ABubm64d++eMdpIRJTiC+kJh4hwfLVvETqd3KKOT2V7H729h+KBW5bo4aYJnxRDlQKZUqzNRJSMoaZUqVI4fvw4ChYsiBo1amDkyJGqpmb58uUoWrRoUl+OiChVznbK9dwHczZPRHHfG+p4aeVP8V3ltoiw0/63yZlNRBYQamQjyxcvXqjPx44dq3bl7tGjhwo5ixYtMkYbiYhSdLZToyuHMGHHLLiGBSPELQPsly9D28aN8V6cVYY53ERk5qGmbNmy0Z/L8NPOnTuTu01ERCaZ7eQYEYav//wZ7U5vV8fHsxfGs4VLUL9+OXVcKX/GFG8nERmOi+8RkVWKuxdT3mcPMHfTBBT2u6WO51b8DNOqtcWKAty8l8hiQ03evHnVHk8JuXnz5ru2iYjI6GT4yMvNCb4BIWh6aR/G/T4X6cNe4YmzGwY0HoCD+cpwzyYiSw81/fr1i3UcHh6uFuSTYSjZvZuIyFx24G5bLDMyjhiMlud2qeeO5CqGvk0G4bGLNszEPZuILDzU9O3bN97zc+fOxYkTJ5KjTURERl+TJv+Te2q4qdCTO4iyscHsSi0xs0pLRNnaqR4czmwisuKamoYNG+Krr77C4sWLk+sliYiMsibNJ+f34Lvd8+AcHorH6dzRp+lgVOzyKaZnSseZTURmLNlCzfr169U+UEREqXVNGqewEHy3ez4+vbBHnT+YuyT6Nx2Ip+ky4Pbxezg0tDbDDJG1Lb4Xs1BYp9PB19cXjx8/xrx585K7fURE70xqaFxuXMHyjRNQ4Nl9RNrYYnrV1phX8TM13CRkSEqu47RtIisKNR999FGsY9kyIXPmzKhZsyYKFSqUnG0jInp3Oh2cli7C5mVfwykiDL7pPdC36WD8navYW+3UTUQWFGpGjRplnJYQESU3Wf38yy9RauVKdbgvbxkMaDIAz5zdDFq7hogsPNQ8ePAAv/76K65duwYHBwe8//77aNGiBTJkyGCcFhIRvY0zZ4AWLYDr16Gzs8O8Op0wtYQ3omy0DXljkgF1rklDZGWhRmpmBgwYgLCwMLi6uqpzgYGB6tzPP/+MVq1aqRqbM2fOqNobIqIUp9MBP/wA9O8PhIZClyMHLk5dgKdpcyPqr9sqwMTcxFJfIcg1aYjM3+v/ZEnAtm3b0KdPH/Tq1Uv11vj7+6uHfN69e3d06NABhw4dQps2bbBlyxbjtpqIKD4BAcDnnwP/+58KNH416qBBx5lockqHRX/dVpfEXRBdemjmty3NNWmIrKmnZvLkyRg2bBi+//77WOe9vLwwbdo0ODs7o27duvD09MT48eON0VYiooSdOAHd55/D5uZNRKVJg0NdBqGDWxXowmOnmKh/u2m6VMmDOoU9uSYNkTX21Jw6dQrt2rVL8Hl5LjQ0FPv370fu3LlhLLJycZ48eeDk5IQKFSrg2LFjRvteRGQmw02zZiGqUmUVaO67ZsHHrSaivXtV6BLYp07Obr/gy0BDZK2hJjIyEvb29gk+L8+lTZsWuXLlgrGsWbNG1e/IDCwJWSVKlED9+vXh5+dntO9JRKmX/cuXsJNi4L59YRsRjp3vVUKjTrNwJtv7iX6dLsa6NERkhaGmSJEi2LRpU4LPb9y4UV1jTDLM1bVrV3Tq1AmFCxfGDz/8oIa9Fi1aZNTvS0Spj82xY6jZvz9sN21CmJ09RtXpji8/Go5Ap/QGvwbXpSGy0pqanj17okePHnB0dES3bt2QJo32pREREViwYAG+/vpro64oLDOuTp48qfaXirnwX506dXDkyJF4v0aGw+ShJzO19DuLy8Na6X92a74HxsZ7bEQ6HWxnzIDdiBFwjojAq5y58Vnt/rjgWSDJL5XROQ1/R4ng37Hx8R4bxtD7Y3CokdlN58+fV7OfJFjkz59fTd++efMmXr58qWZGdezYEcby5MkTNQSWNWvWWOfl+MqVK/F+jRQsjxkz5rXzu3btUj081m737t2mboLF4z1OXvaBgSg9axY8T5xQxw+qVMGSz3viwgNtiQnD6eDuADy+dBTbLxulqRaFf8fGx3ucuODgYBjCRifJJAmOHj2KVatW4fr16+q4YMGCan2aihUrwpgePnyI7Nmz4/Dhw6hUqVL0+SFDhqji5L///tugnpqcOXOqgKRfZ8daE6/8BySz1RKrk6K3x3uc/GwOH4Zdu3awuXcPOkdHhE+ahB25csHtvXLouOyM4a/z78fZLUugfpHY/0ii2Ph3bHy8x4aR9+9MmTIhICAg0ffvJK8oLOHF2AEmPvLD2NnZ4dGjR7HOy7FMI4+PDJXJIy75w+EfD+9DSuA9TgZRUcCkScDXX8uMBfmXFGzWroWN1PBt346K+TPDy80JvgEhsRbVS4isSyML7XFdGsPx79j4eI8TZ+i9SXKoMRXZkqFMmTLYs2dP9KaaUVFR6liGxIjIAj1+DLRvD+zcqR23bq2tFuziIv/EVadkSraElB4rTsW7WrAc969TEHkypVN7O3EaN5HlMptQI2Q6t9T2lC1bFuXLl8eMGTMQFBSkZkMRkYXZv18LMQ8fAk5OwJw5QOfOry8JDKheF1kVeMyWS2qqth57ZYisi1mFms8//xyPHz/GyJEj4evri5IlS2Lnzp2vFQ8TkRmTIaZx44DRo7Whpw8+ANauBYoWfe1SWR3471vP8DQ4QvXC7B9cCyfvPFdTtdkrQ2R9zCrUCBlq4nATkYXy9QXatgX27NGOZUal9NCkS6cOI6N0asE8CS03/V5gySk7BBzVZkIJr397ZpqVzG6qn4CIzC3UyNo0+/btwz///IPWrVvDxcVFzU6SiuT06Q1f+IqIKJoEmTZtpPofcHZG1Nx5+LtaE/hd90cWlxA8DwrDd9tiDy/FJcXCUlvDDSqJrFOSQ82dO3fQoEED3L17V02XlmloEmomTpyojmWVXyKiJA03ffstdN99J2tMILDA+9g4bDrmPXSA709H3/DFsYeWdP+ekdqauoU9OfREZGUM3iZBr2/fvqpQ9/nz52qvJ73mzZurmUhERAaTIuAPP1ShRgLNyhL1Uc57HEZej4Jv4NttYcB9nYisV5J7ag4ePKgWwJMp1jHJztkPHjxIzrYRkYWIWQsjBbxlcmfAjeW/Iv/AHnB8/hQvHdJieP2e2Fy4ZrJ9T+7rRGR9khxqZG0Y2a4grvv376thKCKimHZe8Ik11douKhKDDi5Hj6Pr1fGlLHnRs9kw3PJI3uJeCU9EZF2SPPxUr149tT6Mno2Njdr7adSoUWjUqFFyt4+IzDzQSOGuPtB4BT7G6pVfRQeaZaUao3m7qckaaGz+nQUl07mJyLokuadm6tSpqF+/PgoXLoyQkBA1+0n2gZJtDGRPKCIi/ZCT9NDoV/it9c9xTNs6DRlCXiDQwRnDGvbB9kJVk/V76suCZVo3i4SJrE+SQ02OHDlw9uxZrF69GufOnVO9NF26dEGbNm1iFQ4TkXWTGhrpoUkTGYEh+5ei2/Hf1PlzngXQy3so7mZIjinX+vlOGq4gTGTd3mqdmjRp0qCtLJBFRJRAUfCOCz7IEfAIszdNQimfq+q5RWW8MaFmJ4SlSZ6N+9zsgQ5V8yN/VheuIExEhoWazZs3G/yC3t7e79IeIrKQouB6145g2/YZcAsNQoBjOgxu1A+73qv01q8tdTLfNP4AGdI5qplNGZ3T4PGlo2hSOz93NyYiw0ONflfsN5Gi4fhmRhGRZU7N1hfjyrndl3yx6K/bcIgIx8h9i9H5pPaPodNe76N3syG475a0Pdo8XR3RqnyuBHfXDg8Px/bLyfwDEpHlhxqZxk1E1i3u1Gzh7qz1kPgHh6uPOf19MXfTBBT3vaGOfyzXHJNrtEe4XeI9KTb/Vsf0r1MwwRBDRGRxG1oSUcr3ytx+EowZf1yLnsmkpw8zouGVQ5i4YxZcw4Lx3MkFAxv3x58Fysf72pJVZIdtPRb4EpHJQo1shzB9+nRcvqz1/X7wwQfo168f6tSpkyyNIiLTh5hVx+4atFWBY0QYRvy5EO1Pb1PHx7MXRh/vwfBxzfzate0r5UbDol5qReGTd57HGsZirwwRpXiomTdvntr/6dNPP1UfxdGjR9XCexJ0evbs+c6NIiLTDy0ZIs+zB5i7aSKK+N1Ux3MrfobpVdsgwi7+/7VIoKmUP6P6XP+RiMhkoWbcuHEqvPTq1Sv6XJ8+fVClShX1HEMNkXmu+ht3aOlNvC/tx7jf5yB92Cs8TeuK/k0G4kC+MvFea/PvEBNX+SWiVLVNgr+/Pxo0aBDv9gkBAQHJ1S4iMsGqv4ZwDA/F+B2zMGvLZBVojuYsioadZicaaARX+SWiVBdqZB2a337TVgaNadOmTWjSpElytYuIUnDVX0Plf3IPm5YNQKtzuxAFG8ys3BJtWo6Fn0vCQ0nSQzO/bWkWARNR6ht+kj2fxo4di3379qFSpUrRNTV//fUXBg4ciFmzZsUaliKi1EsKdQ318YU9+H7XPDiHh+JxOnf0azIIf+UpmeD1XarkQZ3CniwCJqLUG2oWLlyIDBky4NKlS+qh5+7urp6LuRAfQw1R6iYzj94kbVgIvt39Az678Ic6PpS7BPo3GYTH6TO8tk6NfuVfTs8mIrMINbdu3TJOS4goxUkvioQQ34CQeOtq3nt8W81uKvj0HiJtbDGjSivYfz0CX2d1fW1FYU7PJiJT4+J7RFZMwof0qsjsJ/2qvopOhxbndmPMHwuQNiIUvuk98G3LEfDu2yreHhhOzyYisww1Op0O69evx969e+Hn5/faFgobNmxIzvYRkZFJSJFCXv06NelCg1XtTPNL+9TzjyrXwL3pCzC77HvsgSEiywo1snLwggULUKtWLWTNmlXVzhCR+QebuoU9cWH7AeTv1Qfp79yEzs4ONt9/j6xDhiCrbZInShIRpf5Qs3z5ctUbIysIE5GF0Olg9+MClOjXDwgNBXLkgM3q1UCVKqZuGRGR8UKNm5sb8uXLl9QvI6JUus+TF8JQdtww2K5bqz0p600tWQJkZJ0MEVl4qBk9ejTGjBmDRYsWIW3atMZpFREZJcDI7KTnQWH4bptWP1PU9wbmbJoIW38fRKVJA9sJE4ABA2RNBlM3m4jI+KGmRYsWWLVqFbJkyYI8efLA3l5bp0Lv1KlTSW8FEaXsRpU6HTqc2orhexfCMTIC912zoLf3EHSv3xoNGGiIyFpCTYcOHXDy5Em0bduWhcJEqbxHpufK1zeqdA15iUk7ZqLBtSPq+PeCFTG4UT+8cEqvApAUDHOWExFZRajZtm0bfv/9d1StWtU4LSKiZOmRkVwSN9CUeHgVczZPQs6ARwizTYNxtTpjSZmm0cNN8vUSjLjuDBFZRajJmTMnXF1djdMaIkpyr8ztJ8GY8ce11wJMVMwTOh26HN+IYfuXwD4qEnfcPdHLeyjOexV8p/2giIjMOtRMnToVQ4YMwQ8//KBqaogoldTJJMDt1QtM2T4ddW8cU8db36+Krxr2xgvHdG+9HxQRkUWEGqmlCQ4ORv78+eHs7PxaofCzZ8+Ss31EFCfQyJYG8e3TFJ/S9y9j9uZJyP7iMULt7PHdh12xomTDeGc3yRlPt//2cyIisvhQM2PGDOO0hIjeOOQkPTSGBBobXRS6/70Bgw4sQxpdFG5myIZezYbhUtb415jSRxzZB4pFwkRkVbOfiCjlSQ2NIUNOHsEBmLptGmrdPKmONxaugRH1eiLI0TnBr5EeGgk08W1WSURkFbt0h4SEICwsLNY5FhETGYchBbzl713ArM2T4PnyGULSOGBUne5YV6IeoqL7YgAvNyd80/gDZEjnGD39W4ac2ENDRFYXaoKCgjB06FCsXbsWT58+fe35yMjI5GobERlYwGsbFYn/HV2H/odWwk4XhRseOdDro2G4mjkP5rYuxQBDRFYhyaFGZj7t3bsX8+fPR7t27TB37lw8ePBA7dw9QZZYJyKjkDAivSy+ASGx6moyBT3H9C1TUe3OGXW8vuiH+KZuD7hndsd8DikRkRVJcqjZsmULli1bhpo1a6JTp06oVq0aChQogNy5c+OXX35BmzZtjNNSIisnvStS9yKzn6SfRYJNpTtnMWvLZGQO8kewvSMO9RsD+9ZtsYg9MkRkhZIcamTKtn6Xbqmf0U/hlhWGe/TokfwtJKJo0usyv21pfLfpPFpsX4Leh1fDFjr8kzUPHi5YgnrNapi6iUREJmOb1C+QQHPr1i31eaFChVRtjb4Hx93dPflbSESxNPDQ4dAf49H38CoVaB61aIs8Ny6gGgMNEVm5JIcaGXI6e/as+nzYsGGqpsbJyQn9+/fH4MGDjdFGItLbtQsoWRI2+/YB6dMDv/yCrGuWwy59/KsDExFZkyQPP0l40atTpw4uX76MU6dOqbqa4sWLJ3f7iEhERAAjRwLjx2vHJUoA0kv63numbhkRkWWsUyNk/yfuAUVkRPfvA61aAYcOacdSuzZtGuDEPZqIiN5q+OnIkSPYunVrrHMyCypv3rzIkiULunXrhtDQUENfjogMsW2bGm5SgcbFBVizBpg3j4GGiOhdQs23336LixcvRh+fP38eXbp0UUNQUlsjhcLj9V3jRPRuwsMBqVFr0gSQRS7LlAFOnwZatDB1y4iIzD/UnDlzBh9++GH08erVq1GhQgX89NNPGDBgAGbNmhU9E4qI3sGdO0D16sCUKerQp31XbJm3Fkfgrja1JCKid6ypef78ObJmzRp9vH//fjRs2DD6uFy5crh3756hL0dEMUhYkQ0rbTdvQpnRA5AmMADhLm74xrs/VnuVBTZcVtfJisLceJKI6B17aiTQ6NenkU0sZcZTxYoVo59/8eIF7O3tDX05IqsMLkf+eYpNZx6oj/pel50XfFBz7O+4/HlnVBjQRQWa89nfR60207A6R9lYryFbJMiKwvI1RET0lj01jRo1UrUzEydOxMaNG+Hs7Ky2SNA7d+4c8ufPb+jLEVkVCSFjtlyCT8B/O21Lr4t3CS/s2HwEczZNRAnf6+r8j+WaY3KN9gi3e/0fCRKDZOMDea26hT25DQIR0duEmu+++w4ff/wxatSogfTp02Pp0qVwcHCIfn7RokWoV6+eoS9HZFWBRnpX4lbDSMC5++NybN0xC65hwXju5IJBjfthT4EKib6e7t+vleGqSvkzGrXtREQWGWoyZcqEAwcOICAgQIUaOzu7WM+vW7dOnSei/8gQk/SqxA00jhFhGPHnQrQ/vU0dn8j+AXp7D4GPa2aDX9vvxX+9PkRE9BaL77m5ucV73sPDIznaQ2RRTtx5HmvISeR59gBzNk9C0Uf/qON5FT/FtKptEWGXtP8cs7hwrRoiomRdUZiIXp/F5OMfhJsBNggPjB1oml7aj/G/z0H6sFd4mtYVA5oMxP58ZZL0PaSKxtPNCeXz8h8SREQxMdQQGa0Y2A4Zbl9VnzmGh2LUnp/Q+uxOdfx3zqLo03QQHrlkStL30JcFy7RuFgkTEZlpqBk7diy2bdumFgGUAmV/f39TN4nojcXAz4PDkf/pPTW76YPHtxEFG8yp1AIzq7ZGpO1/dWkST2J+rf7Y3dke/sHh0eelh4br1BARmXmokbVxPvvsM1SqVAkLFy40dXOI3lgMLD6+sAff75oH5/BQPE7njn5NBuGvPCXVc/p+lm7V82LzWZ9YtTf68CLTtmU4S4qCpYZGhpzYQ0NEZOahZsyYMerjkiVLTN0UolhUDU2cYuC0YSH4dvcP+OzCH+r4r9zFMbrFcFy3TR9vr8uQBh8kGF44bZuIyMJCzduQXcNj7hweGBioPoaHh6uHtdL/7NZ8D5KTFAXHVPDxHczdNBHvPb2LSBtbzKzSSg05TWpRAp6uTvB7EYosLo4omzuDCi7630PZXK4A5AFERUYgKtIkP47Z4N+x8fEeGx/vsWEMvT8WHWpk13B9D09Mu3btUisiW7vdu3ebugkWQWY5SVEwdDp8dn43vt29AGkjQvEovQf6Nh2Eo7mKq+tuXzoLezedXImnAH7XtnOid8S/Y+PjPTY+3uPEBQcHwxA2Op3OZNv+6rddSMzly5dRqFCh6GMZfurXr59BhcLx9dTkzJkTT548gaur9i9ia0288h9Q3bp1uV9XMtXUNBz3O/qun4aPLu1T5w7kKYX+TQbiaTr3f6dgO2LvgOqsh0lG/Ds2Pt5j4+M9Noy8f8siwLIAcGLv3ybtqRk4cCA6duyY6DX58uV769d3dHRUj7jkD4d/PLwPycX+7FlsXdYP6W7fRISNLaZWb4cfKnwCnY1tjCnYReDk+N+2IpR8+HdsfLzHxsd7nDhD741JQ03mzJnVg8gcF9jzC3yFotvWIN/3I5AuNBSvsnqhX7Mh+D1DwehrpYdGAg2nYBMRGZ/Z1NTcvXsXz549Ux8jIyPVejWiQIEC3HOKUnyBvRd+zzB+52zkv3JQnferXgdZfl2FeR4Z/1tR+OIZ9Pq8OntoiIhSiNmEmpEjR6qdwfVKlSqlPu7duxc1a9Y0YcvI2hbYK+x7A6s2TUQefx+E29phcvUO+Ln8R5jnG44GmWzUFOzwcFdsv3+aNTRERCnIFmZCCoSlpjnug4GGUmyBvc0X0e7kFmxYMUgFmvuuWdCi9UT8WOFjVT8jPThyHRERmYbZ9NQQpWi9TJxF8E6evYWRS0eh4bXD6rpdBStiUKN+CHTShj4lysgCfPK1XCyPiMg0GGqIEtyQEvByc8K0PKEoPuhLpHt4D2G2aTC+VicsLuMN2Lw+tCRhiIiITIOhhiihDSl1OjT6YzXK7FsCh6gI3HXLil7NhuKc13sJvo707hARkWkw1JDVi29DSrdXLzBl+3TUvXFMHe8pWg3jmg/EzbD4/5PRFtjThquIiMg0zKZQmCilNqQsff8yti/uowJNqJ09vq73P3RpNATe1Qur5+MOOv23wF5hznYiIjIhhhqyevo6GBtdFLr/vR5rVw5F9hePcTNDNjRvNxUrSjVS9TN5MjljftvSqkcmJjmW81xgj4jItDj8RFZP6mA8ggMwdds01Lp5Up3b9EENDK/fE0GOzrGuk5lNdQt7xjtDioiITIuhhmDt07XL37+I35f2QebApwhJ44DRH3bD6hL1o2c3xa2Xka/htG0iotSHoYasdrp2NhcHLHm0B+/NnYzMUVG44ZEDvT4ahiuZ80Rfw3oZIiLzwVBDVjldO1PQc0xcMw3v3T6tnWjfHrd6foOAPXeAGMFHemgk0LBehogo9WOoIaubrl3pzlnM3DIFWYKeI9jeEVO9+2D44omoa2uD2mXzs16GiMhMMdSQRYs5Xds2KhJ9Dq9Gn79WwxY6XM2UCz2bDcONTLlQ59/tDVgvQ0RkvhhqyCqma2d++QyztkxGpbvn1fHq4vUwuk43hNhr07O5vQERkfljqCGLJkNI1W6dwvStU5EpOABB9k5qqvamIrVeu46IiMwbQw1ZrogIVFg4FRXWTYCtTofLmfOo4aabGXNEX8LtDYiILAdDDVmm+/eB1q1he/CgOlxRsiG+r/0FQuwdoy/hdG0iIsvCbRLI8mzfDpQsCUigcXEB1qxBpuULkSGTW6zLuL0BEZFlYU8NWcwqwVmd7FB+4VTYTpmiPVm6tAo0KFAADQBub0BEZOEYasgiVgnOHuCH2ZsnwvbhVe3J3r2ByZMBx/+Gmzhdm4jIsjHUkNmvElz3+lFM3j4D7iEvEeiYDkMa9sVH3XqhQYxAQ0RElo+hhsx2leA0keEYtm8JupzYpM6f8SqIXt5D8cDdE2e3XFLDTRxeIiKyHgw1ZHakLsbuzm2s2zwRJX2uq3M/lfsIk2p0QLidvTqWISm5jsNNRETWg6GGzI7db79i+5IBcA0Ngr9Tegxs3B97ClR47TquEkxEZF0Yash8hIQAgwah/Ny56vBktkLo3WwIHrpmifdyrhJMRGRdGGrIPNy4AbRoAZw+rQ6XV/8c35ZvhXC71/+EuUowEZF14uJ7lPqtXq2tOSOBJlMmtbhe5rnTEWGXJnpVYD2uEkxEZL0Yaij1evUK6N4daNUKePECqFYNOHMGaNhQrQIsqwFLj0xMXCWYiMh6cfiJUqerV7XhpnPnABsbYMQIYNQoIM1/f7ISXLhKMBER6THUUOqzYgXw5ZdAUBCQJYt2XLduvJdylWAiItLj8BOlHhJiOncG2rXTPq9VSxtuSiDQEBERxcRQQ6nDxYtA+fLA4sWArS0wZgywezfgxdoYIiIyDIefyLR0OmDJEqBnT60w2NMTWLUKqFnT1C0jIiIzw54aMp2XL4H27bUhJwk09eoBZ88y0BAR0VthqCHTkFlNZctqRcAy3DR2LLBjh1YYTERE9BY4/EQpP9z0009Anz5AaCiQPbs23CRr0BAREb0DhhpKOYGB2mJ6skKwaNQIWLpUWyWYiIjoHXH4iVKGbHFQpowWaGQBvUmTgC1bGGiIiCjZsKeGjD/cNG8eMGAAEBYG5MqlBZtKlUzdMiIisjAMNWQ8/v7AF18Av/6qHXt7a+vQeHD3bCIiSn4cfiLjOH5c21lbAo29PTBjBrBxIwMNEREZDXtqKPmHm2bOBIYMAcLDgbx5gTVrgHLlTN0yIiKycAw1lHyePQM6dQI2b9aOP/kE+PlnwN3d1C0jIiIrwOEnSh5HjgClSmmBxsEBmDMHWLeOgYaIiFIMQw29m6goYPJkoHp14O5doEAB4OhRbS8nGxtTt46IiKwIh5/o7T15AnToAGzfrh23bAksWAC4ur7Vy0VG6XDs1jP4vQhBFhcnlM/rATtbBiMiIjIMQw29nYMHgVatgAcPoHNyws2vx+JCoxbI8jgc5dPrkhxGdl7wwZgtl+ATEBJ9zsvNCaOaFkaDol5G+AGIiMjSMNRQ0oebJkwARo4EIiPxMk9+fNl0KA69yAasOftWYUQCTY8Vp6CLc943IESdn9+2NIMNERG9EWtqyHB+fkCDBsCIESrQPGj6KSo0n4BDztniDSMSVgwZcpIemriBRujPyfNyHRERUWIYasgwe/cCJUoAu3cDadMi6ueF+LRidwQ5pH2nMCI1NDGHnOJ7LXleriMiIkoMQw0lLjISGDMGqFMH8PUFChcGTpzA3zWbwScw9J3DiBQFG8LQ64iIyHox1FDCfHyAunWB0aO1WprOnbXtDwoXTrYwIrOcDGHodUREZL0Yaih+MsxUsqQ27JQuHbB8ObBwIeDsnKxhRKZtS2FxQnOl5Lw8L9cRERElhqGGYouIAL7+GqhfXysMLl5cDTehbVujhBGZ+i0zpfRfE/c1hDzP9WqIiOhNGGroP/fvA7VrA2PHahtTdu+urQ5cqJBRw4hM15Zp255usXt15JjTuYmIyFBcp4Y0O3YA7doBT58CLi7Ajz9qKwQbEEbiLprn+RaL5sm1dQt7ckVhIiKy7FBz+/ZtfPfdd/jzzz/h6+uLbNmyoW3bthgxYgQcZPNEenvh4dpw06RJ2rFsSrl2rbaHUwqHEfmaSvkzJvnriIiIzCbUXLlyBVFRUViwYAEKFCiACxcuoGvXrggKCsKUKVNM3TzzJRtQSu+M7LAtevXSNqd0StpMI4YRIiJKDcwi1DRo0EA99PLly4erV69i/vz5DDVvyfPYMaTp1Al4/hxwc9NmNn3yiambRUREZNmhJj4BAQHw8Eh8Zk1oaKh66AUGBqqP4eHh6mGVwsKAYcNQYc4cdRhVtiwif/kFyJtXG4qiZKH/+7Lav7MUwHtsfLzHxsd7bBhD74+NTifTXMzLjRs3UKZMGdVLI8NQCRk9ejTGyGq4caxcuRLO/663Yk2cHz1C2SlTkOH6dXV8w9sbl9q1g87e3tRNIyIiSlBwcDBat26tOjRcXV1TZ6gZNmwYJk6cmOg1ly9fRqEYU4ofPHiAGjVqoGbNmvj555+T3FOTM2dOPHnyJNGbYolsfvsNdt26wSYgALoMGXCsRw8UGzEC9gw0RvtXxe7du1G3bl3eYyPhPTY+3mPj4z02jLx/Z8qU6Y2hxqTDTwMHDkTHjh0TvUbqZ/QePnyIWrVqoXLlyvhRphy/gaOjo3rEJX84VvPHI6Fu0CDg3+EmVKqEiGXL4HvxIkpb030wEav6WzMR3mPj4z02Pt7jxBl6b0waajJnzqwehpAeGgk0Muy0ePFi2Npy3cA3unED+Pxz4NQp7XjIEOD777XPL140adOIiIisslBYAo0MN+XOnVvV0Tx+/Dj6OU9PT5O2LdVaswaQeqMXL4CMGYFly4BGjbTnWJBGREQWyCxCjYw3SnGwPHLkyBHrOTOsczauV6+A/v2BBQu046pVgVWrgDj3jYiIyNKYxRiO1N1IeInvQTFcvQpUrKgFGhsbYMQIbZdtBhoiIrICZtFTQwZYsQL48ksgKEiKlQBZe6ZuXVO3ioiIKMWYRU8NJSI4GOjSRdvuQAJNrVrA2bMMNEREZHUYaszZpUtA+fLAokXacNPo0VKABHgZvjs2ERGRpeDwkzmSWqIlS4CePbXCYJkBtnKl1ktDRERkpdhTY25evgQ6dAA6d9YCjQwznTnDQENERFaPocacnDsHlCsHLF8OyOKDY8cCO3cCWbOaumVEREQmx+Encxlu+uknoG9fICQEyJ5dW3umWjVTt4yIiCjVYKhJ7QIDge7dgdWrteOGDbXVgTNlMnXLiIiIUhUOP6Vmp08DZcpogcbODpg0Cdi6lYGGiIgoHuypSa3DTfPna9sdhIUBOXNqezlVqmTqlhEREaVaDDWpTUAA8MUXwPr12rG3N7B4MeDhYeqWERERpWocfkpNjh8HSpXSAo29PTB9OrBxIwMNERGRAdhTk1qGm2bOBIYMAcLDgTx5gLVrtenbREREZBCGGlN79kxbSG/TJu3444+BhQsBd3dTt4yIiMiscPjJlI4e1YabJNA4OABz5mhDTww0REREScZQYwpRUcDkydrieXfvAvnzA0eOaHs5ycaURERElGQcfkppT54AHTsC27Zpx59/Dvz4I+DqauqWERERmTWGmpR06BDQsiXw4AHg6AjMmgV07creGSIiomTA4aeUGm4aPx6oWVMLNO+9Bxw7BnTrxkBDRESUTNhTY2x+fkC7dsCuXdpx27baasHp05u6ZURERBaFocaY9u0DWrcGfHyAtGm12U2dOrF3hoiIyAgYaowhMhIYOxYYM0YbeipcWFtMr0iRlGtClA7Hbj2D34sQZHFxQvm8HrCzZZgiIiLLxVCT3Hx9gTZtgD//1I6lZ2b2bCBduhRrws4LPhiz5RJ8AkKiz3m5OWFU08JoUNQrxdpBRESUklgonJz++AMoUUILNBJili0DFi1K8UDTY8WpWIFG+AaEqPPyPBERkSViqEkOERHA118D9epphcHFigEnTmgFwilIhpykh0YXz3P6c/K8XEdERGRpOPz0rmSKthQDHzigHcs07RkztMLgFCY1NHF7aGKSKCPPn7jzPEXbRURElBIYat7Fzp1ab4ysEixTtH/6SVtcz0SkKNiw60JhZ/TWEBERpSwOP72N8HBg2DCgYUMt0MimlKdOmTTQCJnlZNh1jkZvCxERUUpjqEkq2YBSVgaeOFE7lk0oDx8GChY0dcvUtG2Z5ZTQxG05L8+XzZ0hhVtGRERkfAw1SbFli9YrIyFGNqBct05bUM/JsB4SY5N1aGTatogbbPTH8jzXqyEiIkvEUGOIsDBg4EDA2xt49gwoWxY4fRr49FOkNrIOzfy2peHpFjtoybGc5zo1RERkqVgo/Ca3bmm1MrIBpejXTxt6cnBAaiXBpW5hT64oTEREVoWhJjEbNgCdOwMBAYC7O7BkCdCsmalbZRAJMJXyZzR1M4iIiFIMh5/iExoK9O4NfPKJFmgqVgTOnDGbQENERGSNGGriunEDqFxZKwAWgwdrC+vlzm3qlhEREVEiOPwUk+yk/cUXwIsXQMaMwNKlQOPGpm4VERERGYA9NeLVK6BHD+Dzz7VAU7WqNtzEQENERGQ2GGquXtVqZn74AbCxAYYPB/buBXLkMHXLiIiIKAmse/jpl1+A7t2BoCAgc2ZgxQptp20iIiIyO9bZUxMcrNXOtG2rBRrZ9kCGmxhoiIiIzJZ19tTUqgVcuaINN40cCXzzDWDHfauJiIjMmXWGGgk0np7a8FPt2qZuDRERESUDqwo1Op1OfQyU2U2LFwNZsgCBgbA24eHhCA4ORmBgIOzt7U3dHIvEe2x8vMfGx3tsfLzHhpH7E/N9PCE2ujddYUHu37+PnDlzmroZRERE9Bbu3buHHInMTraqUBMVFYWHDx/CxcUFNlJPY8WJV8Kd/HG4urqaujkWiffY+HiPjY/32Ph4jw0jUeXFixfIli0bbG0TnuNkVcNPciMSS3jWRv4D4n9ExsV7bHy8x8bHe2x8vMdv5ubm9sZrrHNKNxEREVkchhoiIiKyCAw1VsjR0RGjRo1SH8k4eI+Nj/fY+HiPjY/3OHlZVaEwERERWS721BAREZFFYKghIiIii8BQQ0RERBaBoYaIiIgsAkONFbt9+za6dOmCvHnzIm3atMifP7+qwg8LCzN10yzK2LFjUblyZTg7O8Pd3d3UzbEIc+fORZ48eeDk5IQKFSrg2LFjpm6SRTlw4ACaNm2qVm+V1dc3btxo6iZZlPHjx6NcuXJqdfssWbLgo48+wtWrV03dLIvAUGPFrly5oraOWLBgAS5evIjp06fjhx9+wPDhw03dNIsiIfGzzz5Djx49TN0Ui7BmzRoMGDBABfBTp06hRIkSqF+/Pvz8/EzdNIsRFBSk7quER0p++/fvR8+ePXH06FHs3r1bbWpZr149dd/p3XBKN8UyefJkzJ8/Hzdv3jR1UyzOkiVL0K9fP/j7+5u6KWZNembkX7lz5sxRxxLMZe+c3r17Y9iwYaZunsWRnprffvtN9SaQcTx+/Fj12EjYqV69uqmbY9bYU0OxBAQEwMPDw9TNIEqw1+vkyZOoU6dOrD3d5PjIkSMmbRvRu/x/V/D/ve+OoYai3bhxA7Nnz0b37t1N3RSieD158gSRkZHImjVrrPNy7Ovra7J2Eb0t6WmUHtwqVaqgaNGipm6O2WOosUDSBS9dxok9pJ4mpgcPHqBBgwaq9qNr164ma7sl32MioriktubChQtYvXq1qZtiEdKYugGU/AYOHIiOHTsmek2+fPmiP3/48CFq1aqlZuj8+OOPKdBC67vHlDwyZcoEOzs7PHr0KNZ5Ofb09DRZu4jeRq9evbB161Y12yxHjhymbo5FYKixQJkzZ1YPQ0gPjQSaMmXKYPHixao+gZL3HlPycXBwUH+re/bsiS5cle57OZY3CCJzIPNzpLBdCrD37dunltWg5MFQY8Uk0NSsWRO5c+fGlClTVAW+Hv/Vm3zu3r2LZ8+eqY9SD3LmzBl1vkCBAkifPr2pm2d2ZDp3hw4dULZsWZQvXx4zZsxQU2E7depk6qZZjJcvX6oaO71bt26pv1spZM2VK5dJ22YpQ04rV67Epk2b1Fo1+nowNzc3tWYYvQOZ0k3WafHixTKdP94HJZ8OHTrEe4/37t1r6qaZrdmzZ+ty5cqlc3Bw0JUvX1539OhRUzfJosjfZnx/s/K3TO8uof/vyv+T6d1wnRoiIiKyCCygICIiIovAUENEREQWgaGGiIiILAJDDREREVkEhhoiIiKyCAw1REREZBEYaoiIiMgiMNQQERGRRWCoIbIQsoeM7A7u7+8PcyJt3rhxY7K9Xp48edTWCebu9u3b6t7ot9Uw198vUUpiqCEyA/Jmlthj9OjRSO2kjSVLlnztvI+PDxo2bJiibZG9uPr166f2PZNNMrNly4bOnTur/blMQXZ812/QqZczZ051b4oWLWqSNhGZI25oSWQG5M1Nb82aNRg5ciSuXr0afU42xjxx4oRJ2hYWFqaCwdtK6c1TJdBUrFhRtfmHH35AkSJFVK/I119/jXLlyuHIkSPIly8fTM3Ozo4byxIlEXtqiMyAvLnpH7KTr/TOxDwXc7fvkydPqh2snZ2dUbly5VjhR8jOwKVLl4aTk5N68x4zZgwiIiKin5feimbNmqnXdHV1RYsWLfDo0aPXelx+/vln5M2bV72OkGGRL774ApkzZ1ZfV7t2bZw9e1Y9t2TJEvV95FjfuyTn4ht+un//Plq1aqV2hE6XLp36Wf7++2/13D///KPaljVrVtU+CSF//PFHku7liBEj8PDhQ/V10kMku05Xr14dv//+O+zt7dUOyokNZcnPHrNnbNq0aShWrJhqq/Su/O9//1O7XOvJz+nu7q5e/4MPPlDtbtCgQXRQlddaunSp+r3o740MNcUdforPoUOHUK1aNbWzs3zvPn36qB3L9ebNm4eCBQuq35Hcs08//TRJ94rI3DDUEFkYedOeOnWq6rlJkyaNGlbRO3jwINq3b4++ffvi0qVLWLBggXrTHTt2rHo+KipKhQbpzdi/fz92796Nmzdv4vPPP4/1PW7cuIFff/0VGzZsiH7T/eyzz+Dn54cdO3aoYCXB6cMPP1SvJV8/cOBA1Ssib+byiPuaQsJAjRo18ODBA2zevFmFoCFDhqh26Z9v1KgR9uzZg9OnT6tw0LRpU4OHjeR1Vq9ejTZt2rzWCyLBQAKJhA9ps6FsbW0xa9YsXLx4UYWTP//8U7U5puDgYEyZMgXLly/HgQMHVHsHDRqknpOPEhz1QUceEkbfRAKefM0nn3yCc+fOqR48CTm9evVSz8vvX0LOt99+q4Ltzp07VXgjsmjvuMs3EaWwxYsX69zc3F47v3fvXp38J/3HH39En9u2bZs69+rVK3X84Ycf6saNGxfr65YvX67z8vJSn+/atUtnZ2enu3v3bvTzFy9eVK9x7NgxdTxq1Cidvb29zs/PL/qagwcP6lxdXXUhISGxXjt//vy6BQsWRH9diRIlXmu3vPZvv/2mPpdrXVxcdE+fPjX4fhQpUkQ3e/bs6OPcuXPrpk+fHu+1vr6+6vsl9PyGDRvU83///XeCryU/g/wsCVm3bp0uY8aMsX5f8po3btyIPjd37lxd1qxZo487dOiga9asWazXuXXrlvq606dPx/r9Pn/+XB136dJF161bt1hfI78HW1tb9fv+9ddf1e8kMDAwwbYSWRrW1BBZmOLFi0d/7uXlpT5KD4oMs0jPx19//RXdMyMiIyMREhKiehMuX76shjHkoVe4cGE1fCLPyXCPkAJbGWbSk9eVXpSMGTPGasurV69Uj4KhpNenVKlSaugpPvI9ZLhm27ZtqkdDhs3keyS1wFfLUglLSo2QDGONHz8eV65cQWBgoGqT/n7KEKCQj/nz54/1e5HfybuQey49NL/88kusn0t6o27duoW6deuq35MMMUqPjjyaN28e3SYiS8RQQ2RhpC5ET2oyRMzhG6lt+fjjj1/7On1tjCGkfiQmeV15o5ZakLgkEBlKhoASI0M1MiQmQzkFChRQ10udiBQrG0KCmD6gxUfOy5Cd1Arph5biBqDw8PDoz6XupUmTJujRo4cKihLGZAioS5cuqk36ABHzd6L/vbwpWL2J3PPu3burIaa4JMBKMDt16pT6nezatUsVl0sgPH78eJJ+J0TmhKGGyIpInYvUV0ggiI8Ust67d0899L01UnsjRcDSY5PY6/r6+qpAIMW18ZE3WekVelMvkxQgS01LfL010ssk05+lx0H/xi7BwlASUqR+RXo3pNYkZl2N9PhIYa28thRj60NQzJln0hMjvSB6UjskgVFqmOS1xdq1a5FUhtyb+O65/G4S+l0K+X3UqVNHPUaNGqXCjNT8xBdqiSwBC4WJrIj8a33ZsmWqt0YKW6VnQgpnZTqzkDc/mckjhbTyr/xjx46pwmIp3pVZSAmRr6tUqZJaa0V6BSRoHD58WBUt66eaS9iRQCBDTE+ePEFoaOhrryOzniRoyOtIgJEiZSlIlmnWQmby6IuTZfildevW0b1QhpIeFfkeMjwjRc0S4KR4t379+iqYzJw5M/pamcElxb1SYH3+/Hl06NBBTbXWk0AhPTezZ89WbZVrZZp4Usm9kaEkCZxyb2L2BiVk6NCh6h5LYbDcj+vXr6sZVPpC4a1bt6oCZnnuzp076vcu9+r9999PcvuIzAVDDZEVkTduebOT4CH1MbJey/Tp01XthX5YRN4YM2TIoGbKSFiRmgyZWZMY+brt27err+nUqRPee+89tGzZUr2ZylRiIbN0pK6jVq1aqgdk1apV8fZYSNuyZMmiZjlJwJowYUJ0kJDp09I2mR0ks57k55Eei6TIlCkTjh49qtohwzcy1CShTXpKJADo65DEV199pZ6TIabGjRursBWzNqZEiRKqTRMnTlSL5EkPkNTXJFXXrl1V2JDgKPdGAt2bSK+WzFC7du2amtYttUgSWmUhQSG9MhIAJZhJD5yELbnnMgONyFLZSLWwqRtBRGRKCxcuVNO5JbzFXdmXiMwHe2qIyOpJYa8Mw8lwnNTWEJF5Yk8NERERWQT21BAREZFFYKghIiIii8BQQ0RERBaBoYaIiIgsAkMNERERWQSGGiIiIrIIDDVERERkERhqiIiIyCIw1BAREREswf8BuxTVeY12Z3IAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import statsmodels.api as sm\n", + "\n", + "sm.qqplot(residuals, line='45', fit=True)\n", + "plt.title(\"Q-Q график остатков\")\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "ef5fef28", + "metadata": {}, + "source": [ + "### Проверка нормальности с помощью критерия $\\chi^2$\n", + "\n", + "**Этапы:**\n", + "1. **Гипотезы:**\n", + " - $H_0$: Остатки имеют нормальное распределение.\n", + " - $H_1$: Остатки не имеют нормального распределения.\n", + "2. **Разделить данные на интервалы (бины):** Используем те же интервалы, что и в гистограмме.\n", + "3. **Рассчитать наблюдаемые ($O_i$) и ожидаемые ($E_i$) частоты:**\n", + " - $E_i = N \\cdot P$ (для $i$-го интервала), где $P$ — вероятность из нормального распределения $N(\\mu, \\sigma^2)$.\n", + "4. **Вычислить статистику $\\chi^2$:**\n", + " $$\n", + " \\chi^2 = \\sum \\frac{(O_i - E_i)^2}{E_i}.\n", + " $$\n", + "5. **Сравнить с критическим значением $\\chi^2$:** Если $\\chi^2 > \\chi^2_{\\text{крит}}$, отвергаем $H_0$." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "bd170677", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Хи-квадрат статистика: 2.7737\n", + "Критическое значение: 13.3882\n", + "p-value: 0.7348\n", + "Не отвергаем H0: распределение нормальное\n" + ] + } + ], + "source": [ + "# Разбиение на интервалы (используем 6 интервалов для примера)\n", + "mu = np.mean(residuals) # Среднее остатков\n", + "std = np.std(residuals, ddof=1) # Стандартное отклонение (несмещенное)\n", + "observed_freq, bins = np.histogram(residuals, bins=8)\n", + "n_bins = len(observed_freq)\n", + "\n", + "# Ожидаемые частоты для нормального распределения\n", + "expected_freq = []\n", + "for i in range(n_bins):\n", + " bin_start = bins[i]\n", + " bin_end = bins[i+1]\n", + " cdf_start = norm.cdf(bin_start, mu, std)\n", + " cdf_end = norm.cdf(bin_end, mu, std)\n", + " expected_freq.append(len(residuals) * (cdf_end - cdf_start))\n", + "\n", + "# Критерий хи-квадрат\n", + "chi2_stat = sum((observed_freq - expected_freq)**2 / expected_freq)\n", + "dof = n_bins - 1 - 2 # 2 параметра (mu, std) оценены по данным\n", + "alpha = 0.02\n", + "critical_value = chi2.ppf(1 - alpha, dof)\n", + "p_value = 1 - chi2.cdf(chi2_stat, dof)\n", + "\n", + "print(f\"Хи-квадрат статистика: {chi2_stat:.4f}\")\n", + "print(f\"Критическое значение: {critical_value:.4f}\")\n", + "print(f\"p-value: {p_value:.4f}\")\n", + "\n", + "# Визуальная оценка\n", + "if chi2_stat > critical_value:\n", + " print(\"Отвергаем H0: распределение не нормальное\")\n", + "else:\n", + " print(\"Не отвергаем H0: распределение нормальное\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "f498c322", + "metadata": {}, + "outputs": [], + "source": [ + "# from scipy.stats import chi2\n", + "\n", + "# # Разбиваем остатки на бины (используем те же, что в гистограмме)\n", + "# counts, bin_edges = np.histogram(residuals, bins=8, density=False)\n", + "# bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2\n", + "\n", + "# # Ожидаемые частоты для каждого бина\n", + "\n", + "# # Ожидаемые частоты для нормального распределения\n", + "# expected = []\n", + "# for i in range(n_bins):\n", + "# bin_start = bins[i]\n", + "# bin_end = bins[i+1]\n", + "# cdf_start = norm.cdf(bin_start, mu, std)\n", + "# cdf_end = norm.cdf(bin_end, mu, std)\n", + "# expected.append(len(residuals) * (cdf_end - cdf_start))\n", + "\n", + "# # Удалим бины с ожидаемой частотой < 5 (требование χ²)\n", + "# observed_filtered = []\n", + "# expected_filtered = []\n", + "# for o, e in zip(counts, expected):\n", + "# if e >= 5:\n", + "# observed_filtered.append(o)\n", + "# expected_filtered.append(e)\n", + "\n", + "# # Статистика χ²\n", + "# chi2_stat = sum((o - e)**2 / e for o, e in zip(observed_filtered, expected_filtered))\n", + "\n", + "# # Степени свободы: (число бинов - 1 - число параметров распределения)\n", + "# df_chi2 = len(observed_filtered) - 1 - 1 # 1 параметр σ, mu известен (?)\n", + "# p_value = 1 - chi2.cdf(chi2_stat, df_chi2)\n", + "\n", + "# print(f\"χ² = {chi2_stat:.3f}, p-value = {p_value:.3f}\")\n", + "\n", + "# # Критическое значение χ² (α = 0.01)\n", + "# chi2_crit = chi2.ppf(1 - alpha, df_chi2)\n", + "# print(f\"Критическое значение χ² (α=0.01): {chi2_crit:.3f}\")\n", + "\n", + "# # Вывод\n", + "# if chi2_stat > chi2_crit:\n", + "# print(\"Отвергаем H₀: остатки не нормальны.\")\n", + "# else:\n", + "# print(\"Не отвергаем H₀: остатки нормальны.\")" + ] + }, + { + "cell_type": "markdown", + "id": "d221f57a", + "metadata": {}, + "source": [ + "**Визуально:** Остатки близки к нормальному распределению.\n", + "\n", + "**Статистически:** Критерий $\\chi^2$ не выявил значимых отклонений от нормальности на уровне $\\alpha=0.02$.\n", + "\n", + "##### Предположение о нормальности ошибок выполняется." + ] + }, + { + "cell_type": "markdown", + "id": "fc40aaba", + "metadata": {}, + "source": [ + "## Пункт d)" + ] + }, + { + "cell_type": "markdown", + "id": "ff51dc4b", + "metadata": {}, + "source": [ + "### Частные доверительные интервалы\n", + "Частные интервалы строятся для каждого параметра отдельно, используя t-распределение.\n", + "\n", + "**Формула:**\n", + "$$\n", + "\\hat{\\beta_j} \\pm t_{1-\\alpha/2, n-p} \\cdot SE(\\hat{\\beta_j}),\n", + "$$\n", + "где:\n", + "- $\\hat{\\beta_j}$ - оценка параметра,\n", + "- $SE(\\hat{\\beta_j})$ - стандартная ошибка параметра,\n", + "- $t_{1-\\alpha/2}$ - критическое значение t-распределения,\n", + "- $n$ - число наблюдений,\n", + "- $p$ - число параметров модели (для квадратичной модели $p = 3$).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "id": "ca6842f7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Доверительные интервалы (уровень 0.98):\n", + " 0 1\n", + "X -4.292994 2.051449\n", + "X2 -0.331008 0.590162\n", + "Доверительный интервал для β₂ (98.0%): [-4.2930, 2.0514]\n", + "Доверительный интервал для β₃ (98.0%): [-0.3310, 0.5902]\n" + ] + } + ], + "source": [ + "import statsmodels.api as sm\n", + "conf_int = model_poly.conf_int(alpha=alpha)\n", + "print(f\"Доверительные интервалы (уровень {1-alpha}):\")\n", + "print(conf_int.loc[['X', 'X2']])\n", + "\n", + "print(\"Доверительный интервал для β₂ (98.0%): [-4.2930, 2.0514]\")\n", + "print(\"Доверительный интервал для β₃ (98.0%): [-0.3310, 0.5902]\")" + ] + }, + { + "cell_type": "markdown", + "id": "657258f6", + "metadata": {}, + "source": [ + "### Совместные доверительные интервалы\n", + "Совместные интервалы учитывают корреляцию между оценками параметров. Используем метод **Бонферрони** или **F-распределение**.\n", + "\n", + "#### Метод Бонферрони\n", + "**Формула:**\n", + "$$\n", + "\\hat{\\beta_j} \\pm t_{1-\\alpha/(2k),n-p} \\cdot SE(\\hat{\\beta_j}),\n", + "$$\n", + "где $k=2$ (число параметров $\\beta_2$ и $\\beta_3$)." + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "68365ffd", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAIjCAYAAADxz9EgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAobVJREFUeJzt3Qd0VFUXBeBN770ISJfem3QEpIMoKL0JIr1KB6lSVKRIlS6oIAqIIlJEeu+9iUiTIiJIlZ5/7Xed/JOQhAQm86bsb61ZIclk5ubOy/DOO+eeGyUgICAAIiIiIiIi4hJRXfMwIiIiIiIiQgqyREREREREXEhBloiIiIiIiAspyBIREREREXEhBVkiIiIiIiIupCBLRERERETEhRRkiYiIiIiIuJCCLBERERERERdSkCUiIiIiIuJCCrJERJ7TiBEj8PjxY+vf/Pjhhx/aPSTxEl999RVOnz4d+Pns2bNx/vx5W8cknm3mzJnIli0bYseOjaxZs+L999/HvXv34GkuXLiAt956C4kSJUKSJElQvnx57Nixw+5hibiNgiwRL3fy5Em0adMGmTNntv7TTZgwIUqVKoVx48bh33//tXt4fmHOnDkYNWoU/vjjD4wePdr6XCQ8Nm7ciF69elmB1sqVK9GhQwdEjar/miVkP/30E959910kSJDAes9588038cknn6B///5B7nfu3DkMGTIERYsWtQKc5MmTo1y5cvjll1/cNtY33ngDS5YsQatWrawLUbdv30aFChXw559/Brnf4sWLUaVKFaRJkwaxYsVC2rRpUadOHRw6dMhtYxWJDFECAgICIuWRRcQt/+HWrVvX+o+pWbNmyJMnD+7fv49NmzZh0aJFaN68OaZNm2b3MH3eN998Y80/556vBbMTPEkQeZpjx45ZJ7+OE89u3bpZgbpISGrXro2ff/7ZCqKSJk1qfa1jx4748ssvcf369cD7TZw40Qrea9WqZV10e/jwIb744gvs2bMHs2bNQosWLSJ1nPv370eBAgXQp0+fwMw+j3EGUgwO33vvvcD7fvDBBzhy5AgKFixoBYOXLl2yxnjx4kVs3boV+fPnj9SxikQWBVkiXurUqVPIly+fddVvzZo1SJ06dZDv//bbb1YQ1qVLF9vG6E8uX75szTnLd1KkSGH3cMSL8Ao/r9rzBPOll16yezjiwXLmzGkFV5s3bw782pQpU9CuXTv89ddf1jFEhw8fxgsvvBD4ObGkkIHPrVu3rCAtsi88NWjQwAoIK1WqFPj1VKlSWRegGASGhQEZ/29r2bKl9fuJeCPVJIh4qZEjR1r/WbI+P3iARVmyZAkSYPFK5tChQ62TOGZbMmbMiH79+j1Ry8+vR4kSxbqxbIn/KdavXx9nz54NvA9Lmxz3+f7774P8/N27d63yFH6PVyydca3JO++8Y/3nzzHkzp3bumIZHB9j8ODBgesO+PuxLIalkc7PHdqNGTzH+hZ+vmvXriCPf+XKFevrfA4H/ptf4/dCw7lxPLbz43NMKVOmRMmSJZEsWTIr+OXX+f3w4GOG9Xs4mzx5sjVvnD9eFWZ52T///BPkPsyMOD8OT7Rq1KgRYvkNs26FCxdGnDhxrJM3nhgFPwHj4zFLunv3but35H0zZcr0xMnPunXrrOfjR2d8buf5dsx1WDfnx9i+fTuqVq1qre2IGzcuypYtG+QkM7TjN7TH431ee+21MF8Tx3EW/BgmzgXnJPjvvXDhwlAfj68lnzf44/MYiRcvHooVK2b9bfL1DO21D2l8wY+xkH4+vH8HkfG6OB6TGbt69epZ5cz8G+F7E//OnTk/T7Ro0fDiiy+idevWQY5vZosHDhxoHbN8Xs5dmTJlsHbt2hDnKbTf6Wnz+7Sfd379g78mId2CX5Bh8JA+fXrr93TcJ378+E8dj+P91RmDK8f8OfA9wjnAIr5nVK9e3SprvnnzZpjP4/ze5sD1puF9b3O8ts5j5c9fvXr1ifkICd9PeUwFf28T8SbR7R6AiDybH3/80VqHxZPe8GAdP9cK8Spi9+7drRMklnEcPXrUqol3xpMWntzwP0WemH/66afWImauH3HGAOjzzz+3SlIcvvvuuydOnhxXJosXL279B8vyFmZ7li9fbp1s3LhxA127drXu9+jRI+sEePXq1dYJP0/GeEKwatUqaywVK1a0SmOcn4/jd/6andkAjuPgwYMR/jmeAM2YMSPI6xXSCR/XWXAOeOX6+PHj+Oyzz7Bz507r5DZGjBiB982RI4e1IJ7FCgxOx4wZY51gOQfLw4cPx4ABA6yTXz4fT9YmTJiAV155BXv37kXixIkD73vt2jXr53nfhg0b4ttvv7XGEDNmTCtwDs2GDRuwbNmyIF9jwMyLAA4sHeIVeh5zDvycmKWtVq2adVI9aNAgK/DnMffqq69axyPXnATnOH6JxzfXg3gDZkKnT59u289H5uvC44ZBJt9ztm3bhvHjx1vHFEvYgpfDcRy8KMRSMZY7c22p4++b7xX8O+ExyLU+fG/ghSau6WFTBWZqQuL8/uBcqhZe/DtzBEF9+/YN876cLx6Dzu9Pzt5++21rbVSnTp2sUjgGWvw9Wcr3NCEVH7Fige+njvLBsLAUj8ELb5H53hbSOLnm8MGDB9Z7U0gYUPH7HCP/z+FrzTVcIl6L5YIi4l2uX7/O/8EC3njjjXDdf9++fdb933333SBf79Gjh/X1NWvWBH4tQ4YMAW+//XaQ+zVq1Cggbty4gZ+fOnXK+rmGDRsGRI8ePeDSpUuB36tQoYJ1f37/k08+Cfx6y5YtA1KnTh1w5cqVII/doEGDgESJEgXcuXPH+nzWrFnWz44ZM+aJ3+Px48dPfG3QoEHW/UPy+eefW9/buXNnkK//9ddf1tf5s8Efh98LTfC5cTw+54Pu3r0bkD59+oBq1apZX+f3w4PzFT9+/CBfixcvXpDnunz5ckDMmDEDKleuHPDo0aPAr0+cONF6Ls6bQ9myZa2bs379+ln34+PQ6dOnA6JFixYwfPjwIPc7ePCg9Zo6f52PxZ8dPXp04Nfu3bsXUKBAgYCUKVMG3L9/3/ra2rVrrfvxo0OxYsUC58N5vp2FdMw5Xu+sWbMGVKlSJchrz2MlU6ZMAZUqVXriZ1588cWAFi1aBH4e0pj4fDVq1AgIi+MYdz6GHXLnzh1kfh3PsWDBglAfj78fnzf44zsfI/Xq1QvIkydPQLp06UKcj5DGF56fj8jfgatfF8ff1euvvx7kMdq3b299ff/+/YFfC2ksJUuWDMiVK1fg5w8fPrSOPWfXrl0LeOGFFwLeeeedJ8b6/vvvB0SJEiVcv1dIHH83zu9bwV9/hxMnTlj3nTNnzhO/v8O///4bEDVq1IA2bdoE+VmOh3/zT+M4djkHu3btCmjWrJn1+L169Xrqz3J8sWPHDmjatOlT7/u8723Ox9z58+cDvv7664BUqVIFJEiQIODPP/8M8WeyZ89u/QxvfD/s379/kPc6EW+jckERL8QrfMQOU+HhyCRwUb0zZrQcV0KdsYSQpUQsa2EGiVetQ7qiWKhQIassxXGV+MyZM1bZTvBSHJ4/sRFHzZo1rX/zsR03XoHmgm3HVVzej2UuvMobXHjKTELCx3d+TpashIbf4324TiaiJk2ahL///tu6sh8RzPwxKxgWXvlmqRQzfs7d53g1nyVYwV9DXhHm78HsFDMCvJrOUh9HCRGvsDNTyQyD89ywPJTryoKXX0WPHt3qYunADBY/5zHCMsKQ8DmYZfvoo4/wLPbt24cTJ06gUaNG1rw6xujoUsYsmaN1voOj+cjTOOaHj8usSWju3LkTZH54Y7Y1JMyq8PvPUuLEOVywYIGV6XmW7oLh+fmI/B24+nVhGaMzx9938CynY76ZzeB7ARsoOL/3MOvDY8+5/IyvX5EiRULMBIX3eAiNIyv/tL9Px3NRWM/HOeK4WTL5PLZs2WL9zswEsiTvaeWPnFc2SWKp77P8PT7rexvxOGHmka8ps3ihZdyYCV2xYoVVEs2MKTOYof2tiXgDlQuKeCGeVNPT6uodGPzwxMu5FIh4Qs2SMH7f2fz5862bw8svvxyklM0Zu1Sx1KVHjx5WnT7LF3mS7own+jzx5P1C63bIk3ViaVv27Nmtk3pXYXldePG5ndcFMIhhiR5P7sLCE1iWpTGQ5ZqziOBJJdeXhMXxGjmPj3jCybLR4K8hT8KcG3DwNeH6OUegypNkBrzBXysH59JD4vovrn9xxjVzxHUbLAV1xpMjrvlr3LixFdw9C46ReGIW1rw7r/vg5+FZ28IF+Y754WvLMfLks3LlykHux5PKkE4sQ3qNncsmOQZeVBg7dmy4jgd2YWOJGUtlWU4bUeH5+Yj8Hbj6dQl+nLGkl+9Jzmt+iO3IeXPgmq+PP/44yH1Y9swOjFznxWDZgesEg+P7TniOh7D+Nvm3EJ7yOkdwHdbzMbjiXPD9lGvYWN7IeYjoPlcsM2RQ/fvvv1sXufg4LOFl2/Tg+LfI0mt28GOJNv+WI+J53tuIgf+vv/6K9evXW+//DNJZDu4Ilh1KlCgR+G+O11GaGtK6SBFvoCBLxEuDLP5HGdF9RMKbCeKJZs+ePa1/c5E0T3K4kSQXzvNKqLMmTZpYrYK5zoInP8H3ayHHVW3eN7QTs2c9EQ/vVVhHQODIBHKTzJDw6jnnl1d+mf3huiV+zt8xLJwjnixx3njFNyJ4ohlasPOsOJ+OVuAMcrkGhov1ebWfwTVfEx4PPOkKKYB8nhNT4joZx95Pz8px3PCkO7S1Ns7jZFaD2QT+fk/DRhPDhg2z/s31hnz9uB6IXdmcG1RwfQ0zAM4YeIeEDRkY6PDEn5kltqbmiXfwbE1IAR8zlcw4Povw/nxE/g5c+bpE5L2oadOm1nYIfA4GEGzWw8CRvx9/ho1amLXhOlD+rfFCCI9fnsjzAk1wzJ6E53gIDY9hNqgIz3snn4ue9nzsvMeLD8ziOwt+ESMsDGAd20QwK8isFucjpCCLx+vSpUsxd+5ca81cRD3Pe5sjeOKN7/18D+JHNolhhius349j5ZgVZIm3UpAl4qV44sGrgjyxcr4CGJIMGTJYJy28Au24OuhoRsGTQH7fGbv5OV/1ZvaEGSpmQlj2EfzK7Ouvvx5YOuYoP3PGjAFLG3lF9WlX03mFm005eKIaPJvyrLgInychDmF1EGTTB0dJHX8vNpRgCUtYQRZP0rn5M0/0+HtG5ESEARCbUQSf1+AcrxGbXTBz5cCggu38g88rT1Kcv8aTGwbmLMnhwn3OMzNZvPrvfOId1u/IUifnE0FenSbnoIQYoDL71759+yeOrYhwNDBhkBueLAyv1JPzMR4avsbOj8ksL/cTYqmb8+/D4Df4c4d2Mpw3b97A+7IpBF9XXngIqxyRrwGzUAzwgmcDwyMiPx+RvwNXvi7E9x7nTBObdPA9Kfixw2Pb+TGZ4eXJOC/i8H2OJ+e8D0tRnQOf0MrYeEywrPlZ8HVjuSKzaeHB5+KYgmebg+N+UGxQwoCcgThfNwasoXXMfBpe+GK1QUjdLRkY8W+ejSSe9h7j6ve20N5fHY/7NCwXdN77S8TbaE2WiJfiST9P9tgVzrGRqTNe1eV/jsSucMT/aJ2x45yjxfbT/rOj0EpaWCZ14MAB64p/SFeweaWZV8yZJQop++ZoQUy8H0/+QtpHxd3b+vH5eHtaqSADCpbRtG3bNsLPwZIfCukKtDOeeLK8hhkp53lgxognIhF9DdnBjb8Xxx58Xvl58JMpnnBOnTo1SHDHzxlAs8OcMx53DMjY3fB58HF5Qs8r2dyuIKzjhljiyjkqXbr0M2dnnvZaR/QxmQEIKwvCMfNvx7Fha0Q978+743VxZNGcsYulIxiNyHHreH2cj1lelAkpi8fMO98HnyV748gQ8m/raX+bjr8Pvr8xkH1aFo8ZRGbseBGHmX/+bYe0DUdoGKDyQobzccbfNXhXVQZufI1Ytvus+yU+z3sb8dh0xg6Q5DxWR6l48AwiSwqdLwqIeBtlskS8FP+TmjdvnrWHFa/cs8SG+/fw5JfrcXjy7lgMzfp9lmgw88XMFdcC8D87XmVn2Q1LAZ2xTIdlOY69rRjw8Kp1aO10eaWXJ1ZhnVxwvQubKbBMi+UruXLlssq7WL7GUiDHInz+HlzMzfp/jpFXe3nCzvswMxKeE57nwSYfzuWCPKFxtJcP62SMZS3B1xg8DU88eZLFQIUng87lTjxp4+vAxiPczJP3YQaKJz2cb56gMavFReK8is1STGcMvB2vIYNWBkRc5+bYH4rHD8vl+Jg8oeFxwCvVzIrx92aZHNfZOTALxrIh3peZL5Y8cW0Fj6ngGUfOB8ssn3dxPwMUrl3hiTgbrHD9H/dO4jHJY4mvE7cyYJaEmYyvv/7ayuo41iyGhccrM5R08eJF63dj1iT430JEcD74N8DXjuWCPI55vIYVuHGu+PfwtOxHZP18ZL4uznhc8ZjlscuAiMcmM1R8bwp+Us7vObYe4EUFbkrrONnm8cssFjN3vLDAx+V+bXw/cQ74mCFisM+sF99TIorHN49/NrFgoOf4WyIGXszKM7PPvxu+N3ErBI49+O8dEjYB4WOGts71afh3z/ngBTZmsfj3yjJX58fj13ghjplY/v/gPH7ie0p41lc963ubA99HGAQz+OS6Ub6ezBo7B9fMAPP/FpaeMgPPv2dePGI1w7M2zRHxCHa3NxSR5/Prr78GtGrVKiBjxoxWi2+2yC1VqlTAhAkTrLa7Dg8ePAgYMmSI1WI5RowYVpvnvn37BrmPo0Wwo40ub8mTJ7fahm/dujVc7a3D+j5b93bo0MF6bo6BLX3Z8n3atGlB7sdW0Gy97Bgr71enTp2AkydPRnoLd8ctTpw4VuvosWPHBpmbkFpjs5W5cyvrkNprh8T5+UK7BW8VzZbtOXLksOaFbavbtWtntbB25mi57rglTpzYOiaWLVv2xBgWLVoUULp0aat9NG98bL5Gx48fD/J4bFvNltElSpSw2kBzLjgWZ45W5mzVf/v27Sd+14i2CnfYu3dvwJtvvhmQLFmygFixYln3Z7vy1atXW99ne2i2Lh83btwTbf5Da+Ee0jG+bdu252rh7rixBT6fo3PnzoGvTWgt3HmcscV1ROYjoj/v6hbu4X1dnP+ujhw5Yv0N8/0pSZIkAR07drTamTtznkO2XeffPR//6NGjgffh6ztixAjruficBQsWDFi6dOkT85s2bVqrpfuFCxci/Hs57vO0v03H83Xq1CnglVdeCVixYsVT3594rPJ3C37fiLRwL1KkiDUvPG45n5wDbuHgfOwHfz8LfnP+ewjJ8763OX6ec8P3FL5n8H2f21Vw+4jgc8TficcF/3bSpEljbe1x4MCBp86HiCezNo+wO9ATEfFHLCPjlX+ulwoJuzXytm7dOtiJ42M2LKKNVkQcG2gzc+hY6+gNuFaMYw+tNTr/Jvm94N0R3TEuViywkYUn4/sWM5zcwkElf+KvtCZLRERERETEhRRkiYjYhG2cw1oXwXVTXDshIu7FNV/BG0k4498t7yMiEho1vhARsUnwxejBsekHbyLiXtxEOixsJvG0+4iIf9OaLBERERERERdSuaCIiIiIiIgLKcgSERERERFxIa3JegrupH7hwgVrk062WxYREREREf8UEBCAmzdvIk2aNNbm7KFRkPUUDLDSpUtn9zBERERERMRDnDt3DmnTpg31+wqynoIZLMdEJkyY0O3P/+DBA/z888+oXLkyYsSI4fbn9yeaa/fSfLuX5tt9NNfupfl2L823+2iuPXO+b9y4YSVgHDFCaBRkPYWjRJABll1BVty4ca3n1h9Y5NJcu5fm27003+6juXYvzbd7ab7dR3Pt2fP9tGVEanwhIiIiIiLiQgqyREREREREXEhBloiIiIiIiAtpTZaIiIi4tL3xw4cP8ejRI7eto4gePTru3r3rtuf0Z5pv99Fc2zPffP/ix+fduklBloiIiLjE/fv3cfHiRdy5c8etQV2qVKmsLsDazzLyab7dR3Ntz3yfOnUK8eLFQ+rUqREzZsxnfjwFWSIiIvLcHj9+bJ2cRIsWzdqkkycn7jgx5PPeunUL8ePHD3NjUHENzbf7aK7tmW++d125csV6P8uaNeszz72CLBEREXFJFosnKdw/hm2Q3YXPyeeOHTu2TkTdQPPtPppre+abLdwZaJ05cyZw/p+FXjERERFxGZ0Mioi3c8X7mN4JRUREREREXEhBloiIiIiIiAspyBIREREREXEhNb7wcg8fAvv2AefPA3/+aW78Wvz4QIIE5mPSpEC2bEDGjEB0veIiIiJBsEX2oEGDsGLFCqurGFs316pVCwMHDkSyZMnsHp6IeCGdcnupDRuA2bOBJUuAv/82X+MaveTJgRgxgFu3zM157zq2+s+SBcie3dxy5DAf8+QxwZiIiIjt+B/Xxo3AxYtA6tRAmTJAtGiR9nS///47SpQogWzZsuHrr79GpkyZcPjwYfTs2RPLly/Htm3bkJRXK0VEIkDlgl6GWaq+fYGyZYHNm4FWrczHS5fYPtdksv74A/jnH+5cDfz7L3DmDLBqFTB6NPDqq8DNm8DcuUDz5kCJEkCSJECpUsCAAcC6dcC9e3b/liIi4pe++86UXZQvDzRqZD7yc349knTo0MFq1/zzzz+jbNmySJ8+PapVq4ZffvkF58+fx/vvvx9434wZM+LTTz8N8vPNmze3sl7OfvjhBxQqVMhq/Zw5c2YMGTIED/kf+H+4f9j3338f5GfKlSuHrl27hvpc/fv3R9q0aXH69Gnr89mzZyNx4sRBHuOVV16xHnsfS1xCwcflfYLfnH8HZvRKly5tPT4zea+99hpOnjwZ+P2zZ89a+6HNnz8fJUuWtH7PPHnyYP369YH3efToEVq2bGkFrXHixEH27Nkxbty4J+aOzz1mzJggX69du7b1df6OztnGevXqWWNi0PvGG28EzsXgwYND/J1447w6v058LVKkSGG16W7btq3Votvh3r176Ny5M1KmTGn9TpyDnTt3Bn5/3bp1gY/L7nO8H3/Hu3fvhjrf4r8UZHmZtm2BTz4BPv4YOHoU+PBDoGRJ4IUXnrzQxz0g2do/fXqgYkWgY0dgwgQTcJ09azJde/aYr6VJA3z2mfn/jEFX5crmOfje4pwNExERiRQMpOrUMVcKnbEenl+PhEDr6tWrWLlyJdq3b28FAs5SpUqFxo0b45tvvkFAQEC4H3Pjxo1o1qwZunTpgiNHjmDq1KlWsDB8+PBnHufo0aOtx1m1apUVJIXku+++w969e8P1eB988AEuXrwYeGPw4uz27dvo1q0bdu3ahdWrV1sBBQMf7iPkjNm+7t27W8/LbGDNmjXx93/lNbwvg8IFCxZY88DSy379+uHbb78N8hgvvvgipk+fHvj5hQsXsHnz5iB7rT148ABVqlRBggQJrPnl97lBb9WqVa0gqUePHoG/C8fDsTg+57w48Hc5evSoFSwxa8nvMehy6NWrFxYtWoQ5c+Zgz549yJIli/W8PE6cHT9+3ArAv/rqK+v4+Pzzz8M17+JfFGR5kV9/Bfh3zIxUr16mPPB5xIsHFCxoArcFC4DLl03QNXSoWbvFj0WLmhLE2rWBiROBI0eACPxfIyIi8nS8mtelS8j/wTi+xiyPi6/6nThxwgqgcubMGeL3+fVr167hr7/+Cvdj8qS9T58+ePvtt60sVqVKlTB06FArSHoWM2bMsIIiZpdCGyeDkN69e1u38GCwwiDScQseYL711lt48803rSCjQIECmDVrFg4ePGgFS846duxo3Zfj+uyzz5AoUSLMnDnT+l6MGDGsuShSpIiVzWLA2qJFiyeCLH6fmUQGT8TnatCggfXzDgxkGLRxLvLmzWs9HwMbZtQYMDHgcvwu/Dcfz/G5c6knv87Hz507N2rUqGHN6/jx463HZmDJ3+GTTz6xMpm5cuWygj/OjeN3cmAGi+v2+PryMfl7iwSnIMuL8P05RQqgTZvIeXwGbQy6uncHli3jFT5TFv/ee+bf3boBuXPzqhPQrBnLIQBlyEVE5LnxP5vgGazggda5c+Z+kSAimaqn2b9/v3XyzpN9x61Vq1ZWVuXOnTuB92vYsGGQ+ziCjOBlh23atEGaNGmscrzQTJo0yTrRZyDjquCT42MQwbI6R/aMQY0zZowcokePbgVMzBQ5j6tw4cJWeR5/x2nTpj3xGMT54fcY7DCg4efB5/S3336zgkPHfDF4Ypmecxnj0+TPnz9Ihozjv3XrllWKyMdhsFqK6yf+w0CvaNGiQX4nYoYuXrx4yJo1K6pXr27NlUhwCrK8CN+X8uUzJYDuwEYZpUsDAwcCLLO+do112kDTpgArEli+nTKl+ZwNOLSWS0REngmbXLjyfuHETA3X1wQ/iXbg15MkSWIFCeHFk3ZmcLguynFjFoiBC9f5OIwdOzbIfRigBMeyOGZxOEauOwoJM23MlHFdE+/nCiz7Y4kcMznbt2+3buS8fulpuF6LZXxcs8T1bvwdmckK6TGaNGmCZcuWWT/D7BOzVcHnlMGa83zx9uuvv6IR1+65GQNiBn78vfgaBV9TJkIKsrwIS6Fd9P75zOWFVaqYtVoHD5rSwR49TMD1xhsm4GKGa+lSBVwiIhIB7CLoyvuFE5s6sJxv8uTJ+JedopxcunQJc+fORf369SMUvLDhBdfsMIALfuPaJgcGE87fC16yRyw7rFOnjrWmi0GZcxMGBwZYZcqUsZpeuALXVHH8bLRRoUKFwJLJkLDzogMbe+zevTuwpJHBB5ticL1bwYIFrd8xtKwTm1m8/vrrViOK4Fksx5wySGWZXvA5jUipHgMj59eZ42dWLF26dHjppZes0j+O24GZLc45SwedsfyRz81jh+WSixcvDvcYxH8oyPIimTOb4MZT1kTxfZRZrkOHgMOHTTnhrl28AmYacbz9NvDTT6broYiISKjYpj1t2tCvJPLr6dKZ+7nYxIkTra5ybHCwYcMGq3SM6594As2mDMEbVjCYYJma48Yueixz4wk5scHDF198YWWz2Aqe2TBmaBi0RJRjPRFL1th5MHgmiOWHLLMbOXIkXIWZOwaffFyW6K1Zs8ZqghESlgMywDh27JjVpZHB2DvvvGN9j6V0bJzBxiLMOA0YMCDEINE5oGRjDAa1wbEMMnny5FZHQWaRTp06Za3FYifAP8IqMw2Gc8fMGteWMXPGvdG4rozBL8v/2rVrZzXz4OvP+zDg4xzzZ5xdvnzZCsKZ4fvxxx+Rg3viiASjIMuLVKpkKiWCrTv1CLzIM2iQGRuDLq5f3rEDeO01E3C1aGHWeSngEhGRJ7A9rqO9d/BAy/E525lHwn5ZjmCA64/YZY8ZjdatW6N8+fLYunXrE3tk8SScWSfHjR3meKLtyMAwWFu6dKlVSvbyyy+jePHiVhYqQ4YMzzVOBm0M5pzLBhnYMfDiHl+uwoCDQSGzUlwH9t5771nNIELy0UcfWTeuddq0aROWLFliBUPEtWRsnsGgqVixYlaGjFmt0LDFOwMtBjvBcR0VA2C21+djMlvmaJ3ONWPhxcwcX29m/TguZs+c55O/CzNTTZs2tbJnDDIZJDLwDD5WNr5ga3uWeboyyBXfESXAlas9fdCNGzesVPT169cj9IfsKnwD5dUWLqx8+DCG1V6dF9XYnMLT8chihouNhHg7fpwlAaZTIbvFsq08uxh6Cue5du5qJJFD8+1emm/38de55gkvMwwspXJeexQhbLfNq3TO2QlmsBhgvflmiD/CwIP/V/P/aOdyPHfinle8Oe/r5Ks434cOHbICK7ZuZ/dBb8B9sv75558n9ifzZJ5wbPuTx07zzaxnaO9n4Y0N9Ip5EZZrO1qp/1eV4NF48ZHNkD74wOzpdeCA2auL5c7Vqpn/N/v0Ma3pRURErECKG8yuXQvMm2c+njoVaoDlKbgxrz8F1CLydAqyvEzfvub/n6+/hldhwMVmQdx769gxsx9X3brAtGlMu3OXemDOHG6AaPdIRUTEViwJLFeOPc7Nx0goEXQ1duNz3lBXRERBlpdhC3c2lvjwQ5fvyejWgIv7cY0fz53dzcVKtotv3tw0juI+YFzPpUJWERERz8O1UWz44S2lgsRSTm8qFRTvpyDLC7FBEbNBz7h5vEdhmSsvVv7yC/D770DXrqZBRrFiJqBkGf6VK3aPUkREREQk/BRkeaGiRYHWrc16pgh0LvV4mTKZ9Vssh1y+HGBH1F69gBdfNI0yVq703uydiIiIiPgPBVleihsCx48PdOjge2V1LL+vWhVYsAA4f54tVU1reH6Ne4WxVTwDMRERERERT6Qgy0uxFTq7DC5ZAixcCJ+VIgXw3ntmE2ZuLF+lCjBmjAm2KlcGvvkGuHfP7lGKiIiIiPyfgiwvxo62deqY0sGTJ+HT2CyD67TYjfDSJWDWLODff4EGDYA0aQBuRv/bb3aPUkREREQE8KCtYOVZzJgBFCkCvPUWsGULd0WHz+Nm8OxEyBs3OJ450wRdbJLB/bc6dTJZLu3bJyLiGc6ejbwmRo8fc/uPaNb/DXzfT56c3e8i57lERMJLQZaXS5QIWLQIKF4caN8e+Pxzk/XxF9xja+RIYMgQYP58YMIEE2hlzWo2PmYgFsZm3CIi4oYAK2dO4M6dyHoGXlFLEPgZLzYePapAy91+/PFHLFmyBFOnTsXy5cvx+eefY6GHrGe4f/8+cuXKhS+++AIlS5a0ezhioyNHjqBy5co4fvw44vHKTCTStX4fwFbnLKPjZr786I/ixAFatAB27wY2bQIKFQK6dzedCRlsseW9iIi4HzNYDLC++sq8R7v6tnPnY6xbd9P6yOfgc0U0a3bp0iV06tQJmTNnRqxYsZAuXTprg+HVq1dH1rT4nIoVK2Lfvn3W/DVq1Miaz/D49NNPESVKlCduXbmny3/WrVtnfe2ff/4J8rNVqlSxvs49sMIyZcoUZMqUKUiAFdJzli5dOsK/t3iXXLlyoXjx4hjDBf6RTJksH9GkCbB1K9C5swkwXn4ZfolZvFKlzI0bHU+ZYvYTmzQJqFTJlBJWr246GIqIiPswm8X/nyKjXPDGjUdW1cKzlImfPn0apUqVQuLEifHJJ58gb968ePDgAVauXIkOHTrgmK7ShUucOHGwY8cOK2BNmjSpFWyFV9q0abFz587Az9/kovOnWLNmjXWLHj3sU9mAgABMnDgRH3CPmGCYbavK1sX/iRkzZrjHLN6rRYsWaNWqFfr27fvU4+d5KJPlQxiUFyxo1mdpA1/TEIPvqSxV+fJL4Pp14PXXTSnhqFHAtWt2j1BEROzWvn17K4vBAOGtt95CtmzZkDt3bnTr1g3b2Nb2P2fPnsUbb7yB+PHjI2HChKhXrx7+/PPPwO8PHjw4MCPCE7eMGTNi9OjRgd9ntoXfe53/ETkZN26c9fXmrG//z71799CjRw+8+OKLVklTsWLFrGyOs82bN6NcuXKIGzcukiRJYmV1rl27Zj1OSFka5+fgzzlnihzjL1CgQODnvG+tWrVCnLPPPvvMyvoFvy+fI3Xq1Lh165Y1JgauT/Pw4UNrvlKlShV4C0+w06dPH7zzzjtPLfnavXs3Tp48iRo1ajzxPY7P+XkZHIbGkU376aefkC9fPsSOHdvKiBw6dCjwPn///TcaNmxovW58XRiwf/3110Ee5/Hjxxg5ciSyZMliBaLp06fH8OHDAwN+59crWrRo1jzyIzN+DvweX4Nq1apZwS1fi+ClmefOnbOOUf6O/L147PLxnQV/PsfNOWPIf7/77rtIkSKFddy/+uqr2L9/f4Qf54cffkChQoWseeN4hwwZYr32zr/T999/H+Rxgx+n/Jtyngdmmvlzzscp5/fDDz+0Mpecm/z58z8xN5UqVcLVq1exfv16RCYFWT6EF424txS77tWtC9y9a/eIPGdemOnbvt3cmOXq18+UErIzI9vDi4iI/+GJ1ooVK6yMVUgn644ggSduPEl1nJitWrUKv//+O+rXrx/k/gzOLl68aJ10dunSxQqUjnKB2H944r1161ac5yaQ/5k2bZp1Uu6sY8eO1v3mz5+PAwcOoG7dulbG5cSJE9b3WZZXoUIFq/SJ99u0aZNV3vjo0SMraOMYeONJNm+Oz/k9dwh+Ah0WBpQRyXrRggULcPjwYQzixplPsXHjRitwTpDg/+v2nkfPnj2t4JmZNwYenHdmPunu3bsoXLiwFYgx+GrdujWaNm1qBfAOzJ589NFHGDBggLU+aN68eXjhhReCPMcvv/xivV48TphJZaYvOP48Lwow4GncuDEaNGgQeKxxPAy6+Tvz92dAzosDPIa4Pi04x/Mt4iL/YHjsXb582Vpnx4CVgRKPPf4tOGcLw3qcjRs3olmzZtbfBH9nrtvjRQdHcPks+DfZvXt36/dyxgCLa+9YIspj5L333kOTJk2CBFQM4nlBgeOKTAqyfEy6dMB335k9pRo25BUiu0fkWYoWNVmtc+f4Rgf89JNZ01aunNlzTERE/Mdvv/1mnSDmyJEjzPvxivnBgwetE2KeRDOzxBM5nrg5l7k5MjI8KWaGghkI5+AtRowYVqZjFlvigmuIN1n3KcI2wU4ZM5axMZAoU6YMXnrpJStY43ohfp2YCeHPTJ482bpSz+COgVny5MmRKFGiwMwMr+Tz5vic34tsv/76q/X78eQ2PHiyHpEAiMFb//79rRP2NCxZeYozZ86Eej++FjxJd9yCZ1JCwsCOmRBmqebMmWNlMxcvXmx9j8EyXyuewDNbw3VpDGy+/fZb6/s3b960Al2+fm+//bb12vJ1ZabIWbJkyQJfMwZgPEZCCn74cwwghw4dah0PE9j9C9xD9BsrCJkxY4Y1zpw5c1rHDo8t54woA1wKLZPH45MBIo9FPn7WrFkxatQo6+KDc3bIEWSG9jhDhgyxMo/8nTkvnD+OmcHWs+Lcc/y8+OH8+4wYMcI6/hhk8rmYZWWQFfy5eEzw2IhMCrJ8UJkyZoPipUuBd94x9eoSFC8aDRjAFLfZ0PjRI6Bp0/+XXarcUkTE9zmuwD8NMwRshsGbA7NIPNl0zlQxEOPJOkuimFkYP368FWw5Y3Zj5syZ1kkws1hcG+KMj8GMFE+enQMABnQse3POZD0PBmjOj8+T0+CWLl1qfY8lawzmHMFhWHr16oU2bdoEKScMC7M1LDEML87dlStX0Lt373Dd/99//7Vej5CMHTvWmkvHjSf/xDI8x7wwgHVWokSJwH8zmMiePXvgMcDXjcEDAxt+jz/PtX0Mboj3YyDwvK9d8HE4PneMg9ktXkBg8Or4PTgeZtocx5CjvJFYBhgSPg5LPxn0OR8rp06dCvI4N27csD6GVrq5f/9+a02c82PwuGfW645T29HgQW9omSb+DANtBqvOa6r4O/N7fB2dH4cXRJzHS7z44PzckUGNL3wUS4+ZsWnUyLR5Hz/ev1q7h1eMGEC9eubGLlV//AF8/DGvVJlMIBuJcJ2biIj4Hl6Z55oOVzW34Ak325jzZJvruViGyPIqrt1xyJMnj3UVnaWADGIYiDl3MeRJLTMXLM0KnsFwlEbxBPF5scTs/fffD/yc49iwYUOQ+5QvX95a+8NMxbJly6zMSfCgwxkDQZ4YM2vCNTjhwfIx5+YTYeFJMbMiLLkLb1aO2T0GriFh1oVro4JjBojBmSP7GF5snMJMFdcNMdBi0ME1RY4SPVe8buHBY4gZ17lz5z7xPZY4OrDklaVzoWX6+DgMgIOvByTn9XYXLlxA1KhRrfkM7XGGDBkSYkMT5wCYQS+7VDofo6HNM//WWKrpXJrI5yGWawYvwQ1eksoMKjOJkUlBlg9r0IBXF4A2bfjHAAwdaveIPBvLBhlk8UIQu8FOnmw+li8P9OgB8P8AbXAsIuI7eHWfZUWTJk1C586dn7gSz4X7PJlkuRUbCfDmyGYxOOD3mdFy4Amr46SdJ4Es32Ig5RxkETM9bdu2tRbsB28OUbBgQStI4zoYlguGhI0XGJjxxPVZMUhxDjBCavrA+XDch3PAtUTBmx44ZwW5RoZrhZj5Cg+W2nHtUkid/0LC4IWZC5ZGhhfnk4Eix8eAOjyCn6A7Y/DsyE6y0QjLIzk3xLVPLF9jeRoxW8nvO44RBvUMtPjaBS8RjCiOg+ucnD/n70oM7FkymDJlylCzVI6gmG3tQypHdDwOu0U6GrmEhiWzLLkNLWNYqFAha1+qkALasILekIJSZr/4eobUtILzzGCKmcOyZcuG+Vw87urUqYPIpCDLx7GxAwOtnj1NRovBgoSN/8+wCoH7bLHMmp0ImRnke2S3bryywisvdo9SRMS7OFXVuRRL4m/f5ton4PjxiP88Ayy2cC9atKh1ss8Ahut+2NyCJ3MsweLVdWYmeGWdJ/r8PrsS8kTOeT0Vv86TUp5ccy0LF94H7+JHbEbB+wXvNEgsE+Tz8ASaDRZ44vzXX39ZJ+YcG7vkMZPD8XAMDNYY3K1du9Zap8PMjavw92CJmSOTxfIyZuJCOsHl+Jj1YPYuPPj7s3SSwR5/F37uwMwPs1bMNjgHfwxaWeYY2sl8SJiNY4aDrwXH/rx4jLB8jmulmAnkfDu62zGI4lqlLVu2WIEm92JiIOkIsjhuljmypJKvGY87vrYcW8uWLSM0Dsc6Ka7pYsaKxxtLKYnHD7M9DPg4Xq4R5Pqj7777znpuvk4MCLnGkIGzY+4dzSwY4DP453HPMkT+fizN47HJrBUzRbVr17aORwZz/D3DCvgHDhyI1157zQpOGdgw68VgnYHOsGHDIvz3yoYfjoDSGcsjuSaO6wF57HJurl+/bv2uDDa5JozYmIZlqs5Zs8igIMsPMLBiF01HoBWs/FtCwTJfdmnkhY7Nm02wxbljdQUvorVrx8Wpdo9SRMSz8Zw/blzT5TVysMTg/40T+FwRiTO4dmjPnj1WpzNmYnilnCVVLLdikEXMgLD8jY0MXnnlFeskkSVujkYDDjxZ5gksv89sCDvRhVTyxCv0Ya0pYrkdTz45Hp4M8kSe2TCeqBJPdn/++Wf069fPCg75eGzGwTUtrvTjjz9aj+3IZPD35ThCCrJu375tnbCHt7yOa9YcjxNShoNdE5kFci5V42vlnL0JDwZEDAgYiLDz3PPi78imG+z0yAYXnCNHy3muE2IJHrOj7CTJIJIBCk/0HZjp43wy8GDAwuOFgXJEMahhySkDbT4GW8U7gjk+N0s/eYyxRI8NN3g8ci0Ygw1mZB2ZHmZweXPGLKwj88fgmsEk95ZiQMhsE/8GGGSyDJOt//k7ccuD0FSpUsXK6DLg+/jjj61jhJmvZ8nmMXgKqysh18Tx75evNV8LBovMpPFvxYFzVblyZWTIkAGRKUpAeFd9eghGsIzOGXVzESb/4PkGExqm8nlwMHpnhM4J5VWo6tyRNhy4mI9XWfgHElbKNbI4rh5xvBGpCw6OrzI34mUJHLdsCNZ1VsI517/+ypphU0bIqgM2FmEDpUgu6/VJrjq2JXw03+7jr3PNjAcXxHN/muCZBq77j6yGQjzp4gk+S9sY3DDACtZrQlw83zw34jkR5/tZcQ8kdn5z3h/MGVt88xbSeqCIYht8NkNg84PgLb/Di+NgVowlguHZ/ysy55rBDzsahraP2dMwk8P5D75vlgN/P+c9rnzJ/fv3rYwjs3jMJIY237xfaO9n4Y0NvCqTxZQkI2X2vucVGwZLjI5Z58m60+A4Qfyj4veYvmUUz3Spu/44PAkDAja/YOkgryayW2o440xxki0bN2E0mxwzYJ00yXysXduUF5YsafcIRUQ8D4OeyAp8WC5448Yj8FxH62a9B8sAw2oEwe+FtTlwRLCsjRkUnjSzNNHfcQ2WcwOM4ILv2+VLzp49a2W1ggdYkcGrgizWfLLlI1OWxGCLdaFsKcr++8Hx68xesTbWcTUxrIV7vo7/+bD76s2bwFtvAStXAq+8YveovBPfm9iBsFcv08WRbd/598qOqvway+z1n72IiEjIWGEUFm70HHyz5+cRWsbMH7F5i/P+bsExeeGrsmTJ8tQGHH4XZDErxXamXOzpwNQpF62xbjckbKPKBXtchMlaakbtjRo1smpUQ+ukwv0LHJuzOff+Z/mHY7M1d3I8pyufm0GBY60R99JSi/Jnn2uu22LMz7WUDFqZLWTbfP79duliyjIjuJG934iMY1tCp/l2H3+da/6+XIHAkhve3MWx6sHx3BK5/HW+uQ6JXR/JXb93aHPt7nH4i4Bg882PfF8LHjOE973da9ZkcXEgy/2YlXLegI1dUrhwcvv27U/8DBfVsd6Ui065MJCblPEjF/hxx+6QcAFfSB1SWLvJhYQiIiLyJC7m56J4XiV3NAIQEfFGTO6wQQh7QLBrqDN2vmTSxqfWZEUUo1Cux+KO6oxC2SmIXXrYOCO0IIuZMucOKcxk8T8MdiGxq/EF28hybZmrF1BzzzZmWrgJL/erc8EG5F7N1XP922/AxIkM0M2mx6xUaN+e+2+4ZLheLzKPbXmS5tt9/HWuWQXC9Q5sQOGuTVeJ14rZPY3tm8O7D5I8O823+2iu7ZtvNvLh+xi7MAbfyNhR5fY0XhNksX0pAyXuN+CMn4e2wzRbWvI/OOc0HzeMY1TKCDWkK22cyOCTSXwcO/+zjIzn516B3JC9Xj2zhohdB7lWy9+5aq65NyEbYwwYwL09TIMMdiZkOSHb6btguw6fYPfflr/RfLuPv801S/h5IsiTk+Cb+kYmR8kUn/t5ut1J+Gi+3Udzbd98832MHxloBS8XDO/7utcEWQyImIniZneOlpWcDH4e2s7f7BzCMj/ez3Fwcs8FBl8qZTB4sZFrT7mmiMHWjBlmjZG4Dq8BcEsH9mbh/LJJxhdfmO6ObJLB5iO6QCUi3o4nIuzey41MiSX27rj6zv/jeeGUJ0U6EY18mm/30Vy7f76Zkeem21euXLHez0Lr4eBTQRaxjI+7NXOHa+6NxRbu3BvD0W2QG9Rx3ZZjs7l27dph4sSJ1qZx3ECQG8eNGDHiiU3X/B0DcjbDYDUk931iFpRNG8S12Dafe2p16MDtCICRI7lPCFCsGDcwBGrUULAlIt7NUVniCLTcVeLz77//WlecVVIV+TTf7qO5tm++kyRJEmqlnE8GWWzlyd2muUs2S/640/aKFSsC+/mzFtw50udaqpUrV+K9996z9khgAMaAK6xd1v0VA3Xu/5QoEdC1KzdxBgYO1El/ZGAStWlTs1/Z8uXAiBFAzZpA/vwANyRnyeZzXDgREbENTwRZLcL10O7qrsjn2bBhg9X9zZ/KM+2i+XYfzbU9812hQoUnNiD2+SCLWBoYWnlgSLuCsxPhtm3b3DAy78eA6uOPudO3Odm/fh0YPVqBVmThvLJksFo1YMMGYNgw04gke3ZTWti4sckyioh4G5bYPE+ZTUSfi92/eFKkE9HIp/l2H821PfPtqvcuFXjKE7gVGRs2sEnDu+9yPwa7R+T7wVbZssCqVQB3ImCQxQrYrFlNdvHuXbtHKCIiIiIRoSBLQsRW41ynNWcO0KAB9wuwe0T+oWhR0/Fx/35mYc36rcyZTbOM27ftHp2IiIiIhIeCLAkV1wwtXAgsWQK88QY3X7N7RP4jXz7TUv/YMaBqVYDLCDNkMCWFXC8nIiIiIp5LQZaEid3yly0DNm4EqlQx67TEfbJlA2bNMhsbc70WgywGW++/D/z1l92jExEREZGQKMiSp6pQAfjlF+DQIaB8eZ3c24GBFdfJnToFtG4NjBsHZMxoWsKfP2/36ERERETEmYIsCZfixYH164ELF4CSJYETJ+wekX9KnRr45BPgzBmgRw9g9myzZqttWxOAiYiIiIj9FGRJhNYJbdli9nBi0LVpk90j8l/JkgFDhphgix+/+850I2zWDDh61O7RiYiIiPg3BVkSIcyaMNDKm9eUEbI5g9gnYUKzp9bp06YD4Zo1QO7cQN26wN69do9ORERExD8pyJIIS5oU+Pln04ihUSNg+HAgIMDuUfm3uHGBzp2BkyeBqVOBPXuAQoWAGjVMUCwiIiIi7qMgS55JzJhmD63Bg4H+/YGWLbWXlieIFQto1Qo4fhz46iuT4SpVCnj1VWD1agXDIiIiIu6gIEueWZQowKBBZtNintBXq6Y9nDxF9OhA48bAwYPAokWm9X7FiibgYhZSwZaIiIhI5FGQJS7ZtHjVKrMGiJ0HmT0RzxA1KvDmm8CuXWa/s8ePzX5npUubtvwKtkRERERcT0GWuETZssDWrcC9e0CxYsCOHXaPSIJnHZlp5GvEYOvBA6BSJeCVV1RGKCIiIuJqCrLEZbJnB7ZtA156CShXDli82O4RSWjB1vbtwE8/AXfvmjJCBslr19o9OhERERHfoCBLXCpFCpMZee014K23gNGjlSXx1GCrenWTcfzxR+DOHdMcg8HxunV2j05ERETEuynIEpeLEweYPx/o3Rvo0QPo0AF4+NDuUUlowRYD4p07gSVLgJs3gfLlzW39ertHJyIiIuKdFGRJpDVc+PBDYNo0c3v9dXMCL54bbNWsaRpk/PCD6UbIrBazWxs32j06EREREe+iIEsiFfdsWr4c2LwZKFMG+OMPu0ckTwu2GBDv3m3W1F29appjcN3Wpk12j05ERETEOyjIkkjHLnYMsq5dM50H2epdPD/YqlUL2LMH+O474K+/TJDM13LLFrtHJyIiIuLZFGSJW+TJYzoPpklj9mj69lu7RyThLfusXdsExgsXAn/+aTY05l5bbAcvIiIiIk9SkCVukzq1aabwxhtA/fpAv37Ao0d2j0rCG2yxW+S+fcCCBcCFC2bj6apVTfAsIiIiIv+nIEvcKm5cYO5cYORI4OOPzfqff/6xe1QSkWCrTh1g/36TjeQauxIlzN5b2oBaRERExFCQJbas9+nZE1i2zKzv4Tqto0ftHpVENNiqWxc4cMC06z9zxryONWqYdvAiIiIi/kxBltiG63p4Qh49ujlB56a44n3BFks/Dx4Evv4a+P13oGhRs/cW28GLiIiI+CMFWWKrLFnMmp4KFcxarWHDgIAAu0clERUtGtCgAXDoEDBvHvDbb8DLL5tyUHWTFBEREX+jIEtslyABsGgRMGgQMGCAKUO7dcvuUcmzBlsNGwKHDwNffQUcPw4UKgTUqwccO2b36ERERETcQ0GWeEzZGYMsboC7cqXpXMfSM/HeYKtxYxNszZoFbN8O5M4NtGgBnD5t9+hEREREIpeCLPEo3ACX5YP//mvKzX75xe4RyfPgejsGVr/+CowbByxfDmTLBnTsaPbcEhEREfFFCrLE4zDjwXbgDLLYHGPsWK3T8naxYpnA6uRJYOhQs24rf37zvatX7R6diIiIiGspyBKPlCQJ8NNPQPfuQLduwNtvm+yWeLd48YDevU0paKdO5mv58gEffADcuGH36ERERERcQ0GWePS6Hm5azM2LFywAXnnFbH4r3i9xYuD9982/GUCPGAFkzgyMHq1gWkRERLyfgizxeI0aAZs3A5cvA0WKmH+L7xg+3LR8r1MH6NPHtPX/7DPg/n27RyYiIiLybBRkiVdgG3BuXJw9O1C+PDB1qt0jEldKmxaYMsW0eX/1VaBDByBHDuCLL4BHj+wenYiIiEjEKMgSr5Eypek22Lo10LatuSnb4Vteegn48kvgwAGgQAFTSsg1W9xHTc1PRERExFsoyBKvEiMGMHEiMH262X+JWa3z5+0elbhanjzAd9+ZLpPMcrGUkKWiK1Yo2BIRERHPpyBLvNK77wIbNgBnzwIFCwKrV9s9IokMbOPPzanXrQPixAGqVTMNUDZutHtkIiIiIqFTkCVeq3hxYM8eU1ZWubJpoPD4sd2jkshQtqwJrJYtA27fNoFW1arA7t12j0xERETkSQqyxKulSAEsXw707w8MGADUrKnNbX1VlCgmk7Vrl2npf+aMKSF86y3gyBG7RyciIiLyfwqyxCf20xoyxGQ5tm0znQh5Ii6+KWpUs0br0CFg9myTzeQarmbNzCbHIiIiInZTkCU+g+VjPOFmF8JSpUxLcDVJ8O3gmt0Hjx83zVDYeZIt/tu1UzMUERERsZeCLPEpGTKYtTutWpmTbWY3uIZHfFfMmED79mZD4xEjgG+/NRsa9+gB/P233aMTERERf6QgS3xOrFgmszF3rmkDXqyYyXaIb4sbF+jZEzh1Cujd22xYzX23PvwQuHPH7tGJiIiIP1GQJT6rUSNg507g0SPTIIHNEsT3JUwIDB4MnDxpygkHDQKyZjV7qz18aPfoRERExB8oyBKfliuX2dC2Rg2gXj2ga1fg/n27RyXuwLV548YBx44B5coBrVubBhmLF2utnoiIiEQuBVni8xIkAL7+GpgwAZg82Zxw//GH3aMSd8mc2ZSOsilKxozAm28CJUuazaxFREREIoOCLPGbPZY6djQn1gywChY03ejEf/A1X7HCvO4PHpgNjl97DTh40O6RiYiIiK9RkCV+pXhxk9HgXlqVKwNDhwKPH9s9KnGnChVMCek335iGKPnzm7Vb3NxYRERExBUUZInfSZ7cbFw8cKBpisD1Wmr17X8bGnON3pEjwKRJwMqVQLZsQLduwJUrdo9OREREvJ2CLPHbjWzZgW75ctOBkJmt3bvtHpW4W4wYZj817rE1YAAwY4Zp+879trS/moiIiDwrBVni16pUMeWDqVObf5M6z/mf+PGB/v1N2/cWLUwAzrbv06ap7buIiIhEnIIs8Xvp05uGGDy5platgFu37B6V2CFFCuDTT81aLa7datsWyJ0bWLRIwbeIiIiEn4IsEQAxYwKffGL+zfVaL7+srnP+LFMm4MsvTZaTLeDr1DFNU9ats3tkIiIi4g0UZIkEwxNprtUpWhSYPl0ZDH9WoIBZt7dmjTkOypcHqlcH9u+3e2QiIiLiyRRkiQTDLnPbt5u23q1bA40aATdu2D0qsRODKx4TCxaYJhncc6tpU+D0abtHJiIiIp5IQZZICOLEAaZMAebPB376Sd0HxWxozbLBw4eBzz4zmxpnzw68957avouIiEhQCrJEwlC/PrB3L5A4MVCiBDB+vMoH/R1LSdu0MRkt7rU2c6ZZtzV8uNq+i4iIiKEgS+QpuG/S5s1Ahw5Aly7Am28CV6/aPSqxW7x4wPvvA7//Drz7LvDBB0CWLCYD+uCB3aMTEREROynIEgmHWLGAsWOB778H1q83a3K2brV7VOIJkicHxowxbd8rVQLatzdt3xcuVNZTRETEXynIEomAN94A9u0DXnwRKFMGGDkSePzY7lGJJ8iYEfjiC3N8MKNVty5QqpSCcREREX+kIEvkGTYvZjarZ0+gd2+gRg3gr7/sHpV4inz5zF5rbIzx779AyZIm4Dp50u6RiYiIiLsoyBJ5xuYHH35o9lBi18H8+YG1a+0elXiSChXMsTFnDrBtG5Azp+lE+Pffdo9MREREIpuCLJHnULWqKQ/jCTRPqgcMAB4+tHtU4imiRgWaNQN+/RUYMsR0ImQjlVGjgLt37R6diIiIRBYFWSLPKU0a4OefgaFDTXarXDng7Fm7RyWetu9a376m7XvjxkCfPkCOHMDXX2tNn4iIiC9SkCXiAtGimXbeXKt17hxQoACweLHdoxJPkzIlMGkScOiQOUYaNQKKFwc2bLB7ZCIiIuJKCrJEXIjd5Fg+WL682U+Le2upLEyCYxbLsR0A27yXLQvUqmXawIuIiIj3U5Al4mJJkpg9kiZPNmtwihUDjh61e1TiiV55Bdi+HZg3zwTn3F+rY0d1qxQREfF2XhdkTZo0CRkzZkTs2LFRrFgx7NixI1w/N3/+fESJEgW1eLlYJJJFiQK0awfw8HzwAChSBJg1S5vTSsjNMRo2BI4dAz76CPjqK9Mcg+v72AJeREREvI9XBVnffPMNunXrhkGDBmHPnj3Inz8/qlSpgsuXL4f5c6dPn0aPHj1QhrvHirh5z6SdO83am5YtTdODGzfsHpV4otixgR49zH5a77wDDBwIZM9uNjhWcwwRERHv4lVB1pgxY9CqVSu0aNECuXLlwpQpUxA3blzMYoogFI8ePULjxo0xZMgQZM6c2a3jFaF48YDp05lNBX76CShY0AReIiFJlgz49FNTYspS07ffNpnQNWvsHpmIiIiEV3R4ifv372P37t3oyz7I/4kaNSoqVqyIrVu3hvpzH3zwAVKmTImWLVti48aNT32ee/fuWTeHG/+lHR48eGDd3M3xnHY8t7+J7LlmI4xChUyWwrGnVqdOpjOhP9KxHbYMGcxarS5dTOfK114DqlThe5ppnBFRmm/30Vy7l+bbvTTf7qO59sz5Du/rESUgwDtWiVy4cAEvvvgitmzZghIlSgR+vVevXli/fj22c/V4MJs2bUKDBg2wb98+JE+eHM2bN8c///yD79nWKxSDBw+2sl7BzZs3z8qaiYiIiIiIf7pz5w4aNWqE69evI2HChN6fyYqomzdvomnTppg+fboVYIUXM2Vc9+WcyUqXLh0qV64c5kRGFkbLq1atQqVKlRAjRgy3P78/cfdcM7HaujX/WIHx44E33oBf0bEdcffvAzNmAB9/bBqqMMvFbGh4rv9ovt1Hc+1emm/30ny7j+baM+fbUeX2NF4TZDFQihYtGv78888gX+fnqVKleuL+J0+etBpe1KxZM/Brj/9bPR49enQcP34cL7GFVzCxYsWybsFxsu08wO1+fn/irrl+9VXTfbBNG6BuXaBFC2DcOCBBAvgVHdvhx2liYNWsGTBiBDB0qNkqYNgws3YrPKWnmm/30Vy7l+bbvTTf7qO59qz5Du9r4TWNL2LGjInChQtj9erVQYImfu5cPuiQI0cOHDx40CoVdNxef/11lC9f3vo3s1MidkuaFPj2W+Dzz81HNsUI564E4ud7sX3yiWn7zo2M2bmSx87KlXaPTERERLwqyCKW8bH8b86cOTh69CjatWuH27dvW90GqVmzZoGNMbiPVp48eYLcEidOjAQJElj/ZtAm4il7ajVvbjajZWe5kiWB4cPZGdPukYmny5QJ+Pprs6Fx4sRA1aqmOcaBA3aPTERExL95VZBVv359jBo1CgMHDkSBAgWsjNSKFSvwwgsvWN8/e/YsLl68aPcwRZ5Jlixs1sJ1gWaPpPLlgTNn7B6VeIOiRYH164HFi7kvIFCggOlief683SMTERHxT14VZFHHjh1x5swZq806OwoW40Yy/1m3bh1mz54d6s/ye2F1FhSxG8t8uc5m3ToTYOXPb/bXEglPRrRWLeDQIWDCBODHH4Fs2UzLdzZXEREREffxuiBLxB+UKQPs3w9Urw40bGgaHYSzmY34OQbqHToAv/1mPrIpRvbsZs2fiIiIuIeCLBEPxTU2c+cCX34JMAHLErAtW+welXiLRImAkSOBo0dNOWGrVubraqwiIiIS+RRkiXh4CViTJiarlTq1yXANHgw8fGj3yMRbcKeKRYuAZcvM55Uqmeyo1vuJiIhEHgVZIl7SRY6NDdgQg2u2XnkF+P13u0cl3qRUKfNx0iSz5i9HDqB/f+DWLbtHJiIi4nsUZIl4iejRgUGDgI0bgUuXTPkgSwkDAuwemXgTZkZ//RXo3h0YPRrImtXs0/bfXu0iIiLiAgqyRLwM99Hinlq1a5uGGI0aAf/8Y/eoxJskSGAaYnAz43LlTLv3IkVMtlRERESen4IsES+UMCEwZ47ZiHb5ctPqnRkukYjIkMEcQ5s3m66EDLjeegs4edLukYmIiHg3BVkiXqxBA9MUgyfLPEHmGpsHD+welXhjdnTrVuCrr0z3wVy5gF69gOvX7R6ZiIiId1KQJeLlGGCtXWsaYnz8sWlwwD2SRCIialSgcWPg+HHg/fdNgwyu15o6Vd0sRUREIkpBlogPiBYN6NfPlH1du2aaYrCZgZpiSETFjWu6WLI5BjfDbtsWKFgQWLXK7pGJiIh4DwVZIj6Em87u3QvUr2+aGdSrB1y9aveoxBu9+CIwezawc6fZGLtyZaBmTZPpEhERkbApyBLxMfHjAzNnAgsWAKtXA/nyKQshz45dBzdsAL79Fjh0CMiTB+jaVcG7iIhIWBRkifioOnWAAweAnDlNFqJzZ+DOHbtHJd4oShSgbl3g6FGz9m/WLLNea8IENVoREREJiYIsER+WNi2wciUwfjwwfTpQqJAp/xJ5FrFjA336ACdOmFbvXbqYTOlPP2n9n4iIiDMFWSJ+0DWuUyezVov7a5UoAQwerAyEPLsXXgCmTTPHVOrUwGuvAVWrAocP2z0yERERz6AgS8RP5Mhhug8OGAAMG2b2Rjp2zO5RiTfjJthc9/f998Dvv5usVvv2wF9/2T0yEREReynIEvEjMWIAgwaZjWdv3jStuceNAx4/tntk4s3rtd54w2SxRo0C5s0z67X473v37B6diIiIPRRkifihl18G9uwBWrc2neLYGOPcObtHJd4sZkzgvffMRtjc1Jhrt3LnNlkurdcSERF/oyBLxI83nWUWi+3dufdR3rzAl1/qhFieT/LkwKRJprMlM1q1awMVKgAHD9o9MhEREfdRkCXi5ypWNCfA3Gi2WTPTqvvKFbtHJd4uVy5g+XLTefD8eaBAAaBjR+2vJSIi/kFBloggcWKTxeIGxmvXmg1neXIs8ryqVzdB/MiRwBdfmOzW5MnAw4d2j0xERCTyKMgSkSAbGB86BBQubNpyc83WrVt2j0p8Yb1W9+5mf61atUxGi8fYunV2j0xERCRyKMgSkSC479HSpcDUqaZTHNt0b9pk96jEV/bXmjkT2LEDiBcPKF/elKeeOWP3yERERFxLQZaIhNiWm1ms/fuBVKmAV14x3eLUkltcoUgRs2cbS1T5kXu4cWuBO3fsHpmIiIhrKMgSkVC99BKwYQMwYgQwZgxQtKjpGifiikC+SRPg119N6/ePPjLB1jffqMOliIh4PwVZIhKmaNFMFoslXty0mHtssYnBo0d2j0x8Qfz4Jog/cgQoVAho0AAoVw7Yt8/ukYmIiDw7BVkiEi5swb1rF9Cliwm6eCL8++92j0p8KWvKjYtXrgT++ss0xmjbVtsJiIiId1KQJSLhFiuWyWKtXw/88YdpijFjhsq7xHUqVzZrAUePBubPNy3fJ0xQy3cREfEuCrJEJMLKlDFrs+rXB1q1Al5/HfjzT7tHJb4iRgyga1fT8p3dB5k9ZSZ19Wq7RyYiIhI+CrJE5JkkSGCyWD/8YNZrcQPj776ze1TiS1KkAKZNM2Wq3DC7YkXgzTeBU6fsHpmIiEjYFGSJyHNhFosbGJcuDbz1FvD228D163aPSnwJG2Js3Gj2bWNAnzMn0L+/NsoWERHPpSBLRFyScWAWa/ZsYPFik9X6+We7RyW+1vK9YUPg+HGgZ09g1CjT8p2Bl9YEioiIp1GQJSIuOwlmFotZLZ78VqliNjS+ccPukYkviRcPGDoUOHoUKFYMaNzYrBHcs8fukYmIiPyfgiwRcan06U0Wa8oUk2XIm1cNC8T1MmUCFi0CfvkF+OcfoEgR04Tl8mW7RyYiIqIgS0QiKavVpg1w8KDZ/4gNC9q31xoacb0KFczGxePHm6ArWzZg7FjgwQO7RyYiIv5MQZaIRGq2gZmGiROBOXOAfPmAdevsHpX4mujRgY4dgV9/BRo1Anr0MMcaNzYWERGxg4IsEYlUUaMCHTqYfbXSpQPKlwc6dwbu3LF7ZOJrkicHJk8267NSpgSqVjXdL3/7ze6RiYiIv1GQJSJuwbLBtWuBcePM/lolS9o9IvFV+fObjOk335hSwty5gT59gJs37R6ZiIj4CwVZIuLWrBazWPv3Ay+8YL7Wt6+yWhI56wLr1QOOHTPHGIP77NmBuXPV8l1ERCKfgiwRcbusWYFly8y/Z80CChQAtmyxe1Tii+LGBQYPNsFWqVJAkybAK6+YQF9ERCSyKMgSEVtEi2Y+btoEJEsGlC5tNpn991+7Rya+KEMGYMECYNUq4MoVoFAhoFMn4No1u0cmIiK+SEGWiNie1WKg9fHHwIQJQMGCwPbtdo9KfBW3E2AWa+RIYPZs0/J95kzg8WO7RyYiIr5EQZaIeERWi1ksdoVLmNA0xWCjgrt37R6Z+KKYMYHu3U3Ld3YgfPddoHhxYOdOu0cmIiK+QkGWiHiMXLnM2qxhw4AxY4DChXXiK5EndWrgyy+BDRuAe/eAYsWAVq2Av/6ye2QiIuLtFGSJiMdtLMtucMxqxY4NlCgB9O9vToJFIkOZMsDu3aZcdeFCU0I4aRLw8KHdIxMREW+lIEtEPFKePMC2baYzHNfPFCliAi+RyAruuWk2Swjr1DFNMXjMcb2giIhIRCnIEhGPFSOGyWKxZJAnwUWLAoMGAffv2z0y8VUpUgDTp5sAn2u3mOVq2hS4eNHukYmIiDdRkCUiHi9/ftNxkAHXiBEm2NI+RxKZeIwx0JoxA1ixwpQQjh4NPHhg98hERMQbKMgSEa/ArAJLBxlssd02S7mGDtVJr0SeqFGBli1NCWHz5kCvXibgX73a7pGJiIinU5AlIl6Fm8ju2mVavA8ZYlpvHzpk96jElyVJYppicE0gN87mXlv16gF//GH3yERExFMpyBIRr8xqMYvFci7upcXAi2WE6gYnkYlZLLZ7/+IL8zFHDrOJttYIiohIcAqyRMRrsWSQrbe5seyAAabd+8GDdo9KfFmUKKYRxvHjZk+t998H8uUDVq2ye2QiIuJJFGSJiFfjXloffmg2Mb5922xg/MEHyi5I5EqUCBg7Fti7F3jhBaByZdP6/exZu0cmIiKeQEGWiPiEYsXMCW/v3ibIYpaLa7dEIlPevMC6dcDcuSbQz5kTGDPG7lGJiIjdFGSJiM+IFcus1eK+WtGimcCLDTL+/dfukYmvlxA2agQcOwa0bQsMG2a+ri6EIiL+S0GWiPicggWBHTtMwMWSrgIFgM2b7R6V+LqECc1eWsxo0ZtvAm+9pRJCERF/pCBLRHxSjBhAv36mhDBpUqBMGaBLF+DWLbtHJr6OXQdp1izTAZOfDx8O3Ltn98hERMRdFGSJiE/LlQvYtMmsk5k+3ayhURmXuAOzWCwh7NDBbKSdJw+wYoXdoxIREXdQkCUiPo/rs7p2Ne3dM2Y0m8my/fb163aPTHxdggTAJ58A+/cD6dMD1aoBtWsDp0/bPTIREYlMCrJExG+89JLJYk2ZAnzzDZA7N7B0qd2jEn/JqP7yiznu2JiFn3MDbZUQioj4JgVZIuJXokYF2rQBDh82m8jWrAk0aQJcuWL3yMQfuhDWq2dKCDt2BAYNAvLnV/mqiIgvUpAlIn4pXTrgp5+AOXOAZctMZmHBAiAgwO6Ria+LHx8YOdI0ZUmZ0pSvsgX8xYt2j0xERFxFQZaI+HVmoVkz4MgR032QWQY2K7h0ye6RiT9gI4z1602gz1JCdiGcMAF4+NDukYmIyPNSkCUifi9VKmDRIpPJ4n5azGp98YWyWuK+QP/4cZPN4jYDRYsC27fbPTIREXkeCrJERP5Tp47JatWoAbz9NlC9ujaSFfdIkgT47DOzrxYDrxIlzNrBq1ftHpmIiDwLBVkiIk6SJQO+/NJ0HWTLd5Z0TZ0KPH5s98jEHzCLtWOHKRucPx/Inh2YPVvHn4iIt1GQJSISAmaz2IGwQQOgbVugQgXg5Em7RyX+sq8bNzBmCWHVqkCLFkDZsiboFxER7+B1QdakSZOQMWNGxI4dG8WKFcMOXvILxfTp01GmTBkkSZLEulWsWDHM+4uIOEuUCJg2zTQlOHMGyJsXGDsWePTI7pGJv6wVZFZ1zRqzxUDBgkCPHsDNm3aPTEREfCrI+uabb9CtWzcMGjQIe/bsQf78+VGlShVcvnw5xPuvW7cODRs2xNq1a7F161akS5cOlStXxvnz590+dhHxXsxiMYvQujXQvTtQurRZuyXiDuXLA/v3A8OGAZMnAzlzmkYtaswiIuK5vCrIGjNmDFq1aoUWLVogV65cmDJlCuLGjYtZs2aFeP+5c+eiffv2KFCgAHLkyIEZM2bg8ePHWK2dH0UkguLFAz79FNi4Ebh2zWQVRowAHjywe2TiD2LGBPr0McF9kSKmSQsbs/z2m90jExGRkESHl7h//z52796Nvn37Bn4tatSoVgkgs1ThcefOHTx48ABJkyYN9T737t2zbg43btywPvLneHM3x3Pa8dz+RnPtXt4632xMsGsX8NFHwIcfAkuWmOwCSwk9mbfOtzeKzLl+8UWz1cDy5UDPnsDLLwPdugHvvQfEigW/pGPbvTTf7qO59sz5Du/rESUgwDsKDi5cuIAXX3wRW7ZsQQn2tv1Pr169sH79emwPx6YizGqtXLkShw8fttZ0hWTw4MEYMmTIE1+fN2+elTUTERERERH/dOfOHTRq1AjXr19HwoQJvT+T9bw++ugjzJ8/31qnFVqARcyUcd2XcybLsZYrrImMLIyWV61ahUqVKiFGjBhuf35/orl2L1+Z7/v3TRnhyJFApkym9Xbx4vA4vjLf3sDdc/3rr2at4IYNQK1aJsuaOjX8ho5t99J8u4/m2jPn21Hl9jReE2QlT54c0aJFw59//hnk6/w8FVswhWHUqFFWkPXLL78gX758Yd43VqxY1i04TradB7jdz+9PNNfu5e3zzaG//745uX33XeCVV4B27UwpIbsTehpvn29v4q65zp3blA9+/bUpHeTnLMjo1Mkcn/5Cx7Z7ab7dR3PtWfMd3tfCaxpfxIwZE4ULFw7StMLRxMK5fDC4kSNHYujQoVixYgWKcLWwiEgk4Intpk0mk8W22/z8hx/sHpX4iyhRgEaNzN5a3FeL67UKFwY2b7Z7ZCIi/slrgixiGR/3vpozZw6OHj2Kdu3a4fbt21a3QWrWrFmQxhgff/wxBgwYYHUf5N5aly5dsm63bt2y8bcQEV/eRLZjR9MBjt0Hmd2qWxe4eNHukYm/YPZ0/Hhg504gThyz3cA775h9tkRExH0iXC546tQpbNy4EWfOnLEWfqVIkQIFCxa0sklhrXVyhfr16+Ovv/7CwIEDrWCJrdmZoXrhhRes7589e9bqOOjw2WefWV0J67DXrRPus8UGFyIikSFdOtN18Ntvgc6dzb5Go0YBLVuajINIZCtUCGDj3enTudbYZFW5VovHoNN/kyIiYneQxT2nxo0bh127dllBTZo0aRAnThxcvXoVJ0+etAKsxo0bo3fv3siQIUNkjRcdO3a0biFhUwtnp0+fjrRxiIiEhcFU/fpApUpAjx5Aq1bAV18B06YB2bLZPTrxBwym2rQBatcGevc2m2nPnMkLkCbTKiIikSdc17OYqRo/fjyaN29uZbAuXrxo7Vm1adMmHDlyxOqy8cMPP1hrpLjuaQE38RAREXBbPu6X/ssvwB9/AOy9w6YY2vZE3CVlSuDzz033wdu3zWbGXbqwQ5bdIxMR8fMgi535uA8V95liO/Pg2I2vXLlymDJlCo4dO4bMmTNHxlhFRLxWhQrAgQPm5HbAAHOiu2OH3aMSf1KmDLBnD9crm4xWjhzA/PmAd+yWKSLig0FWlSpVwv2AyZIls7oAiohIUNzPnCe4bEoQPTrAxqjvvQeoF4+4CzsPs3z16FGgZEmgYUOgcmXgt9/sHpmIiG8J9/JXlglOnTrVaiRBkyZNisxxiYj4LK6H2b7dbGA8dSqQJw+wYoXdoxJ/wqKUhQuBZctMgMVjcNgw4N49u0cmIuJnQRabWrDpRa1ataxAi40wRETk2TCT1b07cOiQaYRRrRrQpAnw1192j0z8CY+7w4eBrl3NBsa8AMC1WyIi4qYg6+HDh9YeVezs16FDh+d8WhERIS5hXbkSmDMHWL7ctHvnZsZaJyPuLGNle3eu10qcGChb1rR6//tvu0cmIuIHQVbChAmtj9WrV7datO/fvz8yxyUi4lft3ps1M+tkuASW/65alfsS2j0y8Sd58wKbNgFTpgCLFpnGGAr4RUQiOchiBovZLHr//fcxfPjwZ3xKEREJrdU2K7G5TubYMbNOZswYVhLYPTLxt721ePxVrGgCfn789Ve7RyYi4qNBVuXKlRGdiwisq65R0JUF3MGcOHHCtaMTEfHjdTLcwJid4IoXB/bts3tU4k9SpQK+/to0ZGFGlfu7DR2qxhgiIi4PsgoUKGDtlRWaMWPGWPcREZHnFz8+8OmnwNatAJu6cl+tvn2Bf/+1e2TiT1i+yuYs3boBH3wA5M8PrF9v96hERHwoyKpUqRLKlCmDvn374sGDB0GyV6VKlcKHH36IGTNmRNY4RUT8UrFiwO7d5gR37FiTUVizxu5Rib81xhgxAti7l3thAuXKAe+8o8YYIiIuCbImTJiA5cuX4+uvv0ahQoWsdu5jx45F/vz5kTx5chw8eBANuauhiIi4fAPZfv0A9htKkwaoUMF0f7t2ze6RiT/hGsGNG4Fp04DFi01jDHbFVGMMEZHnCLKoQoUKVjCVOXNmFCtWDAMHDrQ2KP7hhx+QigXcIiISabJnB9auNSe57P7Gdu/ffquTXHFvYwyuFWRjjMqVgebNgVdfBY4ft3tkIiJeHGQRM1lr1661giyWDW7YsAG3bt2KnNGJiEiIJ7ls9166NFC/PvDGG8C5c3aPTPzJCy+YTpjc4+3sWVPGys2M1RhDRCSCQdb58+dRpUoV9O7dG+PHj8eWLVusRhg7d+5E7ty5sXr16vA+lIiIPKfUqYGFC4HvvgN27QJy5QImTQIeP7Z7ZOJPmM1iYwx2wRw2zARb69bZPSoRES8KsvLkyWO1bme5YHPWB4BdhvJbQVbTpk1RrVo1tGvXLjLHKiIiwdSubbJaTZpwP0OgVCngwAG7R+VjHj0ykQN7mvMjP5dAceIA3DqT2wykSAGUL2/KCK9csXtkIiJeEGSxe+CKFSuQNm3aIF+PESMGhg0bhs2bN1ulgyIi4l6JEgGffWaaEty4ARQqBPTuDdy+bffIfABThRkzmsihUSPzkZ/z6xJE7twATwOmTwd++ME0xpg9W2sGRcQ/hTvIatu2bZjff/nll7GX/V1FRMQWXKPFt2G2ex8/3nSDW7bM7lF5MQZSdeoAf/wR9Ovnz5uvK9AKcc3gu++axhhVqwItWpi4lJ+LiPiTcAVZt8N5OTRmzJgRur+IiLgW34bZ7v3gQSBrVqBGDaBePeDSJbtH5mVYEtilS8hpGMfXunZV6WAYjTG++gr4+WcTk3IT40GDgLt37R6ZiIgHBVlZsmTBRx99hIsXL4Z6n4CAAKxatcpam8XGGCIiYp8sWUznt3nzgPXrgSJFzNcVE4QTay+DZ7CCB1ps6cj7SagqVTJrBHv14rIDbaYtIv4jenjutG7dOvTr1w+DBw+2ml0UKVIEadKkQezYsXHt2jUcOXIEW7duRfTo0dG3b1+0adMm8kcuIiJhihIF4B7xLNvq3///3eAmTDCZBQlDGBcVn+l+ft4YY+hQs6SNpwfcTLtpU2D0aNMoQ0TEbzNZ2bNnx6JFi/Drr7+iXr16Vjv3hQsXYvr06VYA9uKLL1r/Pn36NNq3b49o0aJF/shFRCRckiQBPv3U/JvV3IULAz17qjHGU3vku/J+Ym2ezeaMM2cCS5eaxhizZqkxhoj4cSbLIX369Ojevbt1ExER78Pub6zoZnOMBQvM3lpctyXBlCkDsJsuFxSFFAUwTcjv834SocYY77wDvPaa2VurZUtgzhxgyhQThImI+F13QRER8Y3GGH37mg1ks2c3J7t16wIXLtg9Mg/Dioxx4/4fUDlzfM70oCo3nknKlMAXXwC//GKOPUdjjHv37B6ZiIhrKMgSEfFDL70ErFhh9tdl7waWbk2cqMYYQbz5JrBwIfDii0G/zgwWv87vy3Ph+ix2wuzTxzTGKFAA2LTJ7lGJiDw/BVkiIn6KCZkGDYCjR01Tgk6dgBIlgH377B6ZB2Egdfo0sHatadXIj6dOKcByodixTfnqnj1A4sSmArNdO+D6dbtHJiLy7BRkiYj4OTbG4JqYzZuBf/817d65XubWLbtH5iFYEliunGnVyI8qEYwU3DybWSx2v+QeW7lyAT/8YPeoRESejYIsERGxlCxpsgnDhwOTJ5uT3B9/tHtU4k8Yv3bsCBw+DBQsCNSqBdSpo075IuLjQRY3HD516hQePnxofX7//n188803+OKLL3DlypXIGqOIiLhJjBhA796mMUbu3MDrrwNvvWWa7Im4S/r0JsCfP9+sGWTnwenTgceP7R6ZiIiLg6zjx48jU6ZMyJIlC3LmzGkFWyVLlkTLli3Rrl0762snTpwI78OJiIgHy5wZWLYM+OYbYMsWc5LL1u9qjCHuXDNYv75ZM8glcK1bA+XL83zE7pGJiLgwyOrduzfy58+Pffv24bXXXkONGjWQNm1aXLt2DVevXkWJEiXwAVeuioiIz5zk1qtnTnKbNAG6dgWKFzclhSLukjSp2bR41Srgjz9Mu/cRI4AHD+wemYiIC4KsLVu2YMiQIcibNy+GDRuGY8eOoUePHogRIwZixYqFPn36YAN3uRQREZ/Cjm9co8XGGNzH6OWXgW7d1BhD3KtiRdPuvUsXYOBAoHBhYMcOu0clIvKcQdatW7eQlJeTAMSLF8+6pU6dOvD76dKlw59//hnehxMRES/D9u67d5v9jNiNUN3fxN3ixgU+/hjYudOsH2RmlXtsiYh4bZCVJk0anD17NvDzkSNHIiW3bP/PX3/9hSTsAywiIj6LJ7a9epnub2y5ze5vtWsD587ZPTLxJ+w8uH07z0WA2bPN11hOKCLidUFWxYoVrRJBBza7SJAgQeDnP//8MwoVKuT6EYqIiMfJlAn46Sfg22+BbdtMVmvcODXGEPeJHt3s58bjj9jqvXFjXvS1e2QiIhEIsqZMmYJ333031O/Xr18fM2bMcNW4RETECxpj1K0L8Ppbs2bAe+8BxYqZkkIRd8mY0XxkCeuKFaYT5hdfcNsZu0cmIv7MZZsRs7278xotERHxD4kSAZMmAVu3mo5vRYsCnTsD16/bPTLxJw0bmk6YlSsDb78NVKkC/P673aMSEX8VoSDrn3/+wc2bNwM/X7hwIV599VVUr14dEydOtDYrFhER/8Qs1q5dpjEBW27nyAF8/bUyCuI+XCo+b54pZeV+Wlw3OHo08PCh3SMTEX8TriDr4MGDyJUrF5IlS4bEiROjTJkyWLx4MRo3boyXXnoJGTNmRP/+/a0W7yIi4t+NMbhOhiWEpUsDjRqZ1ttOS3pFIl316qY5Czcw7tnTdCHcu9fuUYmIPwlXkNWlSxeUKlUKhw4dwqpVq3D//n3UrVsXPXv2xPTp0zF58mR88cUX+PLLLyN/xCIi4vHSpgUWLACWLQNOnwby5QPefx+4c8fukYm/iB8f+PRTU8bq2N+td28dgyLiQUHW7t270a9fP+TMmdMqD/zqq6/w+PFjq0zQoUCBArh06VJkjlVERLxMtWrAoUNAv37AqFFA7tzA0qV2j0r8iaMZC4tt2AGTAf+aNXaPSkR8XbiCLLZqP3DgQODnWbNmRa9evZAtW7bAr61du9YqHRQREXEWJw4weLAJtvjfRs2aZn+tM2fsHpn4i5gxTSZ1/37gxReBChWAd94Brl61e2Qi4quih+dODRs2RKNGjVCzZk1rU2KHESNGWB8fPnyI2bNnI0+ePOjWrVvg98eMGRMZYxYRES+UNatpsb1wIdC1q2m1PXAgwP82eBIsEtmyZ+dFYYA7znBTbTbIGD8eqFfPbEkgIuLWIOujjz6ysldr1qzBvn37QuwiWLhwYevj3v9WlkbRu5WIiISyt1bVqia71b+/2dNo8mSgXDm7Ryf+IGpU0xDjtdeATp2ABg2Ar74yx2C6dHaPTkT8KsiKFi0aWrdubd1ERESeV4IEprU29zNq1w4oXx5o0sSs23rhBbtHJ/6AhTmLFgGLFwMdOgC5cpntB9q2NYGYiMjz0NuIiIjYhk0INm4EZs4Eli835Vzc2PjRI7tHJv6idm3gyBGz3QCDLQb8J07YPSoR8XYKskRExFbMGrAJATeP5dqYjh1NR7idO+0emfiLxImBqVNN18E//jDBP7OqCvZF5FkpyBIREY+QLBkwbZrZ1+jhQxNotW8PXLtm98jEXzCLxWbKLBlkY4ySJc2mxiIiEaUgS0REPErx4sCuXWYjWTYkYAkhm2OE0HNJxOXixQPGjgU2bQJu3AAKFgSGDgUePLB7ZCLiTRRkiYiIx4keHejcGTh2zOxpxAYZ7D6orIK4C7NYbJjco4fZyPjll4E9e+welYh4CwVZIiLi0R3gvv4aWLUKuHQJKFAA6N0buHXL7pGJP4gdm3uCAjt2mExq0aJAv37A3bt2j0xEPJ2CLBER8XgVK5q1Mtxbi5vHst02W2+rhFDcoVAh04hl0CDTEIMlhFu22D0qEfFkCrJERMQrxIoFvP++KRnMmxd4802gZk3g99/tHpn4g5gxgQEDTMlgwoRA6dLAe+8Bt2/bPTIR8UQKskRExKtkzgwsXWoyWcxu5c4NDBsG3Ltn98jEH+TJY7JYn3wCTJli2r2z9buIiDMFWSIi4nWiRAFq1QKOHgW6dDGNCXiy+8svdo9M/EG0aED37ibIT5vWNGdp0wa4ft3ukYmIp1CQJSIiXt1u+6OPgP37gdSpgUqVgAYNgAsX7B6Z+IOsWYG1a4FJk4B580xW9aef7B6ViHgCBVkiIuL12AiDJ7vcT4sfc+QAxo0zmxqLRKaoUc2m2YcOmSDrtdeAZs2Av/+2e2QiYicFWSIi4jMlhE2bmr21+JFNCYoUATZvtntk4g8yZABWrABmzQJ+/NEE/osW2T0qEbGLgiwREfEpSZKY8q3t201HOHaB42bGf/5p98jEHwL9Fi1MB8wSJYA6dcxNx56I/1GQJSIiPunll4Ft24Bp08w6mWzZzB5bKiEUd2yize6X8+cD69ebrNaXX2pfNxF/oiBLRER8er1Mq1bA8eNAo0ZA165A4cLAxo12j0z8IatVvz5w5AhQpYpZp8X1WufO2T0yEXEHBVkiIuLzkiUDPvsM2LEDiBMHeOUVs27r4kW7Rya+LkUK03nwhx+AvXtNcwxmV5XVEvFtCrJERMRvsBEGN5KdMcM0KcieHfj0U5UQSuR7/XWT1apb1+ypxb21fv/d7lGJSGRRkCUiIn5XQtiypSkhZDarWzegYEFgwwa7Rya+LnFiYOZMYOVKE2DlzWu2Gnj0yO6RiYirKcgSERG/lDSp6UK4axcQPz5QtizQuLE2MpbIV7kycPCg6UTIdYJlypitB0TEdyjIEhERv1aokNlLi/sbrVplSghHjwYePLB7ZOLLEiQAJk40GdQrV4ACBYBPPlFWS8RXeF2QNWnSJGTMmBGxY8dGsWLFsIOrmMOwYMEC5MiRw7p/3rx5sWzZMreNVUREvKeEkFkFlhA2bw706mVOetets3tk4uuYxdq/H+jYEejd2+zrxuNQRLybVwVZ33zzDbp164ZBgwZhz549yJ8/P6pUqYLLly+HeP8tW7agYcOGaNmyJfbu3YtatWpZt0OHDrl97CIi4h0bGU+YAOzebf5dvjzQsCFw/rzdIxNfxo6Xo0aZrQUcWa0xY5TVEvFmXhVkjRkzBq1atUKLFi2QK1cuTJkyBXHjxsUs1niEYNy4cahatSp69uyJnDlzYujQoShUqBAmMj8vIiISCp7k8oR3zhxgzRpTQjhyJHD/vt0jE19WqpTJarH7YI8eZp3giRN2j0pEnkV0eIn79+9j9+7d6Nu3b+DXokaNiooVK2Lr1q0h/gy/zsyXM2a+vv/++1Cf5969e9bN4caNG9bHBw8eWDd3czynHc/tbzTX7qX5di/N97NhFqtGDeDDD4GhQ4G5c02w9eqrof+M5tq9fG2+Y8Qwa7Nq1wbatQOKFwcGDwZatzZlrXbztfn2ZJprz5zv8L4eUQICvGM7vAsXLuDFF1+0SgBLlCgR+PVevXph/fr12L59+xM/EzNmTMyZM8cqGXSYPHkyhgwZgj///DPE5xk8eLD1/eDmzZtnZc1ERERERMQ/3blzB40aNcL169eRMGFC789kuQszZc7ZL2ay0qVLh8qVK4c5kZGF0fKqVatQqVIlxODlLYk0mmv30ny7l+bbNXhZcvFi4P33gatXzR5bXboAsWP//z6aa/fyh/lm6Wr79sDffwO8Dsx93uzKavnDfHsKzbVnzrejyu1pvCbISp48OaJFi/ZEBoqfp0qVKsSf4dcjcn+KFSuWdQuOk23nAW738/sTzbV7ab7dS/P9/OrXNyWEw4YBH3xgWr9/+ilQsyYQJcr/76e5di9fnm+Wp+7cabpedugALFxojruMGe0bky/Pt6fRXHvWfIf3tfCA6t7wYelf4cKFsXr16sCvPX782PrcuXzQGb/ufH9ihBra/UVERMKDmxd/9JHZUDZbNuCNN0zgpSYFEpn7an32mdnL7eRJIG9eYOpUk10VEc/jNUEWsYxv+vTp1jqro0ePol27drh9+7bVbZCaNWsWpDFGly5dsGLFCowePRrHjh2z1lvt2rULHbkZhYiIyHNi18HlywH2Uzp6FMiTx2S3RCJLxYomuOdy87Zt2dALOHvW7lGJiFcHWfXr18eoUaMwcOBAFChQAPv27bOCqBdeeMH6/tmzZ3Hx4sXA+5csWdJqWDFt2jRrT62FCxdanQXz8H9BERERF2CJIDNZR44A/foBkyaZrzPwUpZBIgOXiE+bBqxYYY47ntbMnKnjTcSTeFWQRcxCnTlzxmqzzo6CxYoVC/zeunXrMHv27CD3r1u3Lo4fP27dn5sQV69e3YZRi4iIP2woO2gQsGOH+fztt03WgSfBIpGBWaxDh4A6dYB33wV4ivPHH3aPSkS8MsgSERHxZBkymI+LFgHnzgH58wPdu7Mjld0jE1+UOLFpgvHTT8CBAyarxevNymqJ2EtBloiISCSuneEmxlOmmAYZn3/Opk12j0x8EbNYzGqxdJVL1dnt8sIFu0cl4r8UZImIiEQS7gjSpw9w/Lhpw/3OO0Dx4sC2bXaPTHxRkiTAnDnADz8Au3cDuXMDX32lrJaIHRRkiYiIRLK0aYF588ymsg8fcosRdsRVpkEix+uvm6wWs1tNmwK1awOXLtk9KhH/oiBLRETETUqXNpvKsjMcW7+zBTz327p3z+6Ria9JlgyYOxf47jtg61aT1fr6a2W1RNxFQZaIiIgbRYsGtGplNi5mR7gBA8wJ8JIlOgEW12MW6/BhoFIloFEj04nw8mW7RyXi+xRkiYiI2NQVbuxY0xHupZdMw4KqVc2mxiKulDw5MH8+8O23wIYNJqhfsMDuUYn4NgVZIiIiNsqZ02wqy82Lf/sNyJcPeO894J9/7B6Z+Jq6dU1Wq2xZoF49oH594MoVu0cl4psUZImIiNgsShSTyeLGxWz5Pn26afk+Ywbw6JHdoxNfkjKlyWJxfdYvv5isFrsRiohrKcgSERHxsJbvv/4KVKli1m4VLQps3mz3yMTXgvoGDUxWi1sK1KplthfQhtkirqMgS0RExMOkSQN8+SWwZQsQNarpSsimBX/8YffIxJekSmXKVGfONNktlqquX2/3qER8g4IsERERD8X9tLZvNyfBq1eblu/DhwN379o9MvGlrBazWGzAkiEDUL480KOHjjGR56UgS0RExIMxk8WTYJYQtmsHDB4M5MoFLF6slu/iOpkyAWvWACNHAhMmAEWKAHv32j0qEe+lIEtERMQLJEoEjBoFHDoE5MgBvPmm2fuI62pEXLWHG7NYu3cD0aMDxYoBI0YADx/aPTIR76MgS0RExIuwZHDZMmDpUuDsWSB/fqBzZ+DaNbtHJr4iTx5gxw4TcHGz7FdeMdsLiEj4KcgSERHxQjVqmKzWhx8Cn38OZM0KTJmilu/iGjFjmizWxo3A5csmmOfxpRJVkfBRkCUiIuLFJ8I9ewInTgA1a5o1W4ULAxs22D0y8RUlSwL79gFNm5rjq04du0ck4h0UZImIiPhAK25ms7ZtM3ttlS0L1K9vyglFnlf8+CaLxTLVgwfN19h4RURCpyBLRETER7BRwdatwOzZJpvFBhlDhgB37tg9MvEF1aqZQJ6aNzd7t2ktoEjIFGSJiIj4WMv3t982Ld87dTL7auXMaTab1XoaeV5Jk5qPM2YAy5cDefMCq1bZPSoRz6MgS0RExAclSAB8/LFp8Z4vH1CvHvDqq2bTWZHnVbeuKR1kAF+5MtCxozKmIs4UZImIiPgwdh388UeTdbh4EShY0DQw+Osvu0cm3i5tWmDlSrN58axZ5thi63cRUZAlIiLiF6pWNVmsTz4Bvv4ayJLF/PvePbtHJt5ensos1t69ZsNsdiMcNAh48MDukYnYS0GWiIiIH7V879bNbCzLltx9+wK5cplOcVqvJc+7SfaWLcDAgWYdYIkSwNGjdo9KxD4KskRERPxM8uTAxIkms5UtG/Dmm0D58iYbIfKsokc3QRY7EN6+DRQqBIwbBzx+bPfIRNxPQZaIiIifYhaLa7W4/9Hly2Yj43feMWu3RJ5VkSLAnj1A69ZA165ApUras038j4IsERERP8f9j/bvNw0MfvjBNMsYMQL491+7RybeKk4ck8X65ReznQBbvX/5pcpSxX8oyBIRERHEiAF06GDWazEDweYF3Mx4/nydGMuzq1DBtHp//XWgWTOgTh3gyhW7RyUS+RRkiYiISKAkSYAxY8z+WgUKAA0bAqVLqzW3PLvEiU0Wixtir18P5MkDrFhh96hEIpeCLBEREXkCG2KwdJDlXjdvAsWKAU2aAOfO2T0y8VbMYjGrxf20WKLK9Vp379o9KpHIoSBLREREwiz3YtfBadOAVatMq26WErJ7nEhEpU4N/PSTWa81ZQrw8ssm8BLxNQqyREREJEzRogGtWgEnTgCdOwMffWQyXV98ofbc8mwbGPM42rnTfM5Aa/x4rf0T36IgS0RERMIlYUITYHGT2ZIlgbffNmWEmzbZPTLxRuw4yLV+bdoAXboA1asDly7ZPSoR11CQJSIiIhGSOfP/mxgwk1WmDFCvHnDqlN0jE29t9c692liWmi8fsHSp3aMSeX4KskREROSZvPKKKfmaPdtks3LmBPr2BW7csHtk4m3YCOPAAZMZrVnTbCdw547doxJ5dgqyRERE5LnW17BskBvO9uoFfPqpWa81Ywbw6JHdoxNvkjIlsGQJMHkyMGsWUKQIsG+f3aMSeTYKskREROS5xY8PfPABcPy46UjIRhmFCwNr19o9MvEmUaIA7doBu3cDMWMCRYsCo0erwYp4HwVZIiIi4jLp0wNz5wJbt5r1Nq++CtSqZToTioRXrlzA9u2mC2GPHkCVKsCFC3aPSiT8FGSJiIiIyxUvDmzZAsybB+zZA+TODXTvDvzzj90jE28RKxYwahTw88/A4cOmG+HixXaPSiR8FGSJiIhIpJV+NWwIHDsGDBwITJ0KZMli1tw8fGj36MRbVKpkmmKwi+WbbwKtW2szbPF8CrJEREQkUsWNC/Tvb5pjsHNcx45A/vzA8uXagFbCJ3lyk8WaNs2UoxYqBOzaZfeoREKnIEtERETcIk0a4PPPzckxT5q5+SyzFOogJ+HNjLKhCstPEyQASpQAPv5YXSzFMynIEhEREbdiFmLdOuCHH4A//jCfN29u/i3yNNmzm/V+XOPHfdkqVgTOnbN7VCJBKcgSERERW7ISr78OHDwITJwILFsGZM1qygq1mbE8Ddu7f/QRsHq16VyZLx+wYIHdoxL5PwVZIiIiYpsYMYD27YHffgO6dTN7IrE5xmefAQ8e2D068XTly5umGMxm1asHtGgB3Lxp96hEFGSJiIiIB0iYEBg+3DTHqFYN6NDBZCeWLFFzDAlb0qTAt98Cs2aZbFaBAmaPLRE7KcgSERERj5EuHTBnDrB7t2mU8cYbJluhTnLytPJTZrHYRIVNVUqVAoYNU1MMsY+CLBEREfE4BQsCv/wC/PQT8NdfwMsvA40bA2fO2D0y8WQsNd20yTTEGDQIKFdOTTHEHgqyRERExGOzE2zzvn+/2R+JTQ7YWa53b+Cff+wenXjyOr+hQ00Hy9OnzZ5s7GQp4k4KskRERMSjRY9u9kdicwwGWOxGyIzF+PHA/ft2j048VZkypnzwlVeAWrWATp2Au3ftHpX4CwVZIiIi4hXixweGDDEtu3nS3LUrUKyY+Z6aY0hIkiUDFi82gTmzocWLA8eO2T0q8QcKskRERMSrsCHGjBmmjDBzZvO1KlWAbdvsHpl4atkpu1Wy4yAzWYULA7NnKzCXyKUgS0RERLxS3rzAokXm37dvAyVKAPXrA7//bvfIxBOxtTu7VvIYYSfCJk208bVEHgVZIiIi4vU2bAA+/9x0lsuRw2xsfPWq3aMSTxMvntlPa+5c4McfgUKFtD2ARA4FWSIiIuL1okUDmjc367UGDgSmTwdeegkYMwa4d8/u0YmnadQI2LMHSJwYKFnSHCePH9s9KvElCrJERETEZ8SNC/TvbzoRNmgA9OoF5MwJfPON1uBIUOxQuWUL0Lkz0L07ULOm2ZNNxBUUZImIiIjPeeEF4LPPgIMHgTx5TMDFNVssJxRxiBkTGDUKWLYM2LHD7Km1dq3doxJfoCBLREREfBazWEuWAGvWAA8emL2T3nwT+PVXu0cmnqRaNeDAAbOer2JFs1XAo0d2j0q8mYIsERER8XnlywM7dwJffmk6zOXObTanVXmYOKRODaxaBQwaBHzwgQm2Llywe1TirRRkiYiIiF+IGtW07eZmtMOGAV98YZpjDB0K3Lpl9+jEUxqosHHK6tXA8eOm7fvKlXaPSryRgiwRERHxK3HiAL17m/20WrUyARebIEyebEoKRcqVM5tdc+PiqlWBPn10bEjEKMgSERERv5QsGTB6tFmfxRPpjh2BXLmAb79VO28BUqQAfvoJ+Phj0xyjbFng7Fm7RyXeQkGWiIiI+LUMGYDZs03mInt2oH59oFgxUzIm/o0lptwGYONG4Px5Uz7IRioiT6MgS0RERARA3rzA0qXAunVmbQ4bH1SpAuzda/fIxG5s/8/jgNmsN94A3nsPuH/f7lGJJ1OQJSIiIuKEJ9JbtwLffQecOQMUKgQ0amTWcIn/SprUHBPjx5v1e6VKASdP2j0q8VQKskRERESCiRIFqF0bOHQImDYNWL/e7KHUuTNw+bLdoxM7jwu2/t+yBbh2zQTgixbZPSrxRF4TZF29ehWNGzdGwoQJkThxYrRs2RK3wui3yvt36tQJ2bNnR5w4cZA+fXp07twZ169fd+u4RURExHtFj246EJ44YfZOcrR952a1N2/aPTqxC7sO7tljyknr1AG6dVP3QfHSIIsB1uHDh7Fq1SosXboUGzZsQOvWrUO9/4ULF6zbqFGjcOjQIcyePRsrVqywgjMRERGRiIgb17TxZnlY27bAhx+atu+TJmltjr9KmBD45hvg00+BCRPMhtdsjiHiNUHW0aNHrQBpxowZKFasGEqXLo0JEyZg/vz5ViAVkjx58mDRokWoWbMmXnrpJbz66qsYPnw4fvzxRzx8+NDtv4OIiIj4Rtv3Tz4xbd+rVzelY2z7Pn++2r77a/lgly7Ahg3A6dNAwYLqSilGdHiBrVu3WiWCRYoUCfxaxYoVETVqVGzfvh21WTQdDiwVZLlhdOb+Q3Hv3j3r5nDjxg3r44MHD6ybuzme047n9jeaa/fSfLuX5tt9NNf+Md+pU5u1Wl27mtLBd94Bxo0zJYXcyNZX6fgOGU9Rd+4EWDDF7oPvv29KCNkC/llprt0rvPMd3tcjSkBAQAA83IgRIzBnzhwcP348yNdTpkyJIUOGoF27dk99jCtXrqBw4cJo0qSJldEKzeDBg63HDG7evHmIy1oBERERERHxS3fu3EGjRo0Ckzcemcnq06cPPuY22k8pFXxezEbVqFEDuXLlsoKosPTt2xfdeOnB6WfTpUuHypUrhzmRkYXRMtehVapUCTFixHD78/sTzbV7ab7dS/PtPppr/51vXrZetowXbE054VtvAQMGAJky2Tosn51vT7ZqlWmYEj8+8OWXpowwojTX7hXe+XZUuT2NrUFW9+7d0bx58zDvkzlzZqRKlQqXg/VL5boqdhDk98Jy8+ZNVK1aFQkSJMDixYufepDGihXLugXHn7PzALf7+f2J5tq9NN/upfl2H821f853rVrAa68Bc+YAgwaZtVpslNG/P/DCC/AZnjLfnorr9djmvW5doEwZU0rapo1ZwxVRmmv3etp8h/e1sDXISpEihXV7mhIlSuCff/7B7t27rZI/WrNmDR4/fmw1wggr0qxSpYoVNC1ZsgSxY8d26fhFREREguPSb67NadjQdJ376CPg88+BHj14gRlIkMDuEYo7ZMgAbNxo1mZxZcvmzcCUKUC8eHaPTNzBK7oL5syZ08pGtWrVCjt27MDmzZvRsWNHNGjQAGnSpLHuc/78eeTIkcP6viPAYonf7du3MXPmTOvzS5cuWbdHjx7Z/BuJiIiIr+NS7t69Tdv39u1NsMU9tiZOVNt3f8HiKLb5nzsX+O47gLmBYC0GxEd5RZBFc+fOtYKoChUqoHr16lYb92ls6+NUR8nGGFyMRnv27LE6Dx48eBBZsmRB6tSpA2/nzp2z8TcRERERf5I0KTBypNnQuGZN0/I7Z07g66/V9t1fNGpkug/yOj87ES5YYPeIJLJ5TZCVNGlSq8Mf11ixm8esWbMQn6sJ/5MxY0awUWK5//qm8iM/D+nG+4qIiIi4U7p0wMyZwIED3M/TnHizIcKPP5qmGeLbuJ8aC65q1ADq1TPt/5XR9F1eE2SJiIiI+ILcuYEffjBrdJjlev11rj/nenO7RyaRjevxmMHkWr3Jk82ean/8YfeoJDIoyBIRERGxQcmSJrBiu2+WDVaoYG7bttk9MolM7DDYsSOwYYMJsJjN5DEgvkVBloiIiIiNJ9wVKwLbtwPffw9wxxpmtZjdYlmh+K7ixdlDAChUCKhSBRg6VGv0fImCLBEREREPCLbeeAPYvx+YNw84ehTIn9+0gefGxuKbkic3G1gPHGj2VeN6rb//tntU4goKskREREQ8RNSoJrA6cgSYPh3YtMk0THj3XeDsWbtHJ5EhWjRg8GBg+XLTgZCZrf92JBIvpiBLRERExMPEiGECK7Z9Hz0aWLIEyJrVtH//80+7RyeRgSWDLB9MnRooXRqYM8fuEcnzUJAlIiIi4qFixzaB1e+/m3Iynnhnzgz06wdcu2b36MTV0qc3DTFatgQ6dzZfU5t376QgS0RERMTDcWtQBlanTpn9lcaNAzJlAoYPB27dsnt04koxYwKffWZeY+JaPTZEEe+iIEtERETESyRJYgIrZraaNwc++MBktj79FLh71+7RiSvx9aXffgOKFAF277Z7RBIRCrJEREREvMwLL5jAimu2mOno0cOs2WKzjAcP7B6duNL69eb15jotdp4U76AgS0RERMSL1/AwsGLL9zJlgNatgZw5zcm49lzyDWnSmHVadesCjRsDPXsCjx7ZPSp5GgVZIiIiIl6OWSwGVtxnK3duczLOfbZ++AEICLB7dPK84sQxTU/GjjW36tWBq1ftHpWERUGWiIiIiI/Il88EVlu3mhKzWrWA4sWBVasUbPnChtVserJyJbBrF1C0KHD4sN2jktAoyBIRERHxMQysfvkFWL3abHBcuTJQvjywebPdI5PnVaGC2bQ4blzzOn//vd0jkpAoyBIRERHxUa++CmzZAvz4o9lXi80TatQwm96K92JHSb6uVasCtWsDgwdrDZ6nUZAlIiIi4uNlZq+9BuzdC8yfb1qCFy5sSgn37bN7dPI8e6d9+y0wbJhp5f/mm8DNm3aPShwUZImIiIj4AZYN1q9v1vF88YX5WLCgyYSwYYZ4ZwD9/vvAkiXAmjWmfJBBtNhPQZaIiIiIH4keHWja1LR9nz0bOHgQKFAAeOst4MABu0cnz4KZyh07gIcPgZdfBlassHtEoiBLRERExE+DrbffBo4dAz7/3JQOsu17nTom8BLvkiMHsH07ULKkWXc3cqQ6StpJQZaIiIiInwdbzZubYGvWLNMUg63g69UDDh2ye3QSEYkTm9LBPn2A3r3Nfml37tg9Kv+kIEtEREREECMG0KIFcPw4MGOGaRPOYMuxjku8Q7RowPDhpikG90xjR8lz5+welf9RkCUiIiIiQYKtli1NsDVtmilBy5sXaNDAZLvEO9Sta9q8//23aYjB7pLiPgqyREREROQJMWMC774L/PorMGUKsHWrOVknBmDi+bjGjkFymjRAmTLA0qV2j8h/KMgSERERkTCDrdatgRMngLFjzdeKFTPrfRRseb5UqYB164BKlYA33gAmTrR7RP5BQZaIiIiIhCvY4potGj0a2LAByJULaNLEZLvEc8WLByxcCHTtCnTqZD4+emT3qHybgiwRERERiRCu2eKmtxMmmCxJzpxAs2Ym2yWe2xCDwfGkSeZ1e/NN4PZtu0fluxRkiYiIiEiExYoFtG9vgq1x44DVq81eTdx7i18Tz8TXjG3e+XqVLQtcvGj3iHyTgiwREREReWaxYwMdOwInTwKffgqsWmWCLZYW8mviebhZ8aZNJsBiMxPth+Z6CrJERERExCXBFtf7MLBiWdqKFUD27MA77wC//2736CS4AgVM58EkSYBSpYCff7Z7RL5FQZaIiIiIuEycOECXLiawGjUKWLYMyJYNaN5c3Qg9Tdq0wMaNJsiqXt1sQi2uoSBLRERERCIl2GIXO0ewxTJCNsioXx/Yv9/u0YlDggRmjRbb9LdqBfTtCzx+bPeovJ+CLBERERGJNHHj/j/Y+uwzYOdOU6pWsyawbZvdoxOKHt10HWSZ58cfAw0aAP/+a/eovJuCLBERERFxSzfCNm3MnlpffGE6EJYoAVSoAKxdCwQE2D1C/xYlCtCtm9lPa+lS87r89Zfdo/JeCrJERERExK1Zk6ZNgcOHgQULgKtXgVdfNeuCfvpJwZbduH8W9z5jAxN2Hjx2zO4ReScFWSIiIiLidlGjAnXqAHv2mOCKXnsNKFzYZFO0Lsg+RYuazoPsGFmyJLB5s90j8j4KskRERETE1jI1drbjifyaNUDSpEDdukDu3Kas8MEDu0fonzJmNK9JvnxA5cpq8R5RCrJERERExCOCrfLlgV9+AbZuBbJmBd5+27R/nzoVuHfP7hH6n8SJgeXLzevCLOOiRXaPyHsoyBIRERERj8K1QGwrvm+fKV1r1w7InBkYOxa4fdvu0flfK/7vvjNrterVA2bPtntE3kFBloiIiIh4pPz5gW++AY4cASpVAnr2NGVsI0YA16/bPTr/ETMmMHcu8O67QIsWwPjxdo/I8ynIEhERERGPliOHyaCw7TvXa33wAZAhA9C/P3Dlit2j8w/RogFTpphAt0sXYOhQdYIMi4IsEREREfEKzGJNnmw2Nm7Z0pQPMtjq3h24cMHu0fnHujluVjx8ODBwINCjhwKt0CjIEhERERGvkiYNMHo0cOaM2UB35kwgUyazduv0abtH5/uBVr9+wIQJwJgxQKtWwKNHdo/K8yjIEhERERGvlDy5KVtjsDVokNlfK0sWoEkTYP9+u0fn2zp2BObMMWWcjRoB9+/bPSLPoiBLRERERLxaokQmu8IsFjNcGzcCBQoAVauavbdU0hY5mjUDFiwAvv8eqFULuHPH7hF5DgVZIiIiIuIT4sUzTRnYIOOrr4CLF4EKFYCXXwa+/RZ4+NDuEfqe2rWBn34C1q83Qe2NG3aPyDMoyBIRERERnxIjBtC4sdlna+VKs6lu/fpA9uymcYYyLq5VsaLZRPrgQeDVV9XxkRRkiYiIiIjPNmmoXNkEALt2mYxWp06mIyHbwP/9t90j9B0lSgDr1gHnzgGvvGKyiP5MQZaIiIiI+LzChYH584ETJ0xW66OPgPTpgc6dgVOn7B6d72wezfVwN26YzaP9OYhVkCUiIiIifiNzZmDiRNORkBvrzptnOhIy8Nq50+7Reb9s2Uzm8M8/gerVgZs34ZcUZImIiIiI30mRAhg82ARb3PNp926gaFGgbFlgyRLg8WO7R+i9cuQwa+GOHQPeeAO4exd+R0GWiIiIiPh1R8L27YHjx4HvvjMdCBkY5MwJTJ0K/Puv3SP0ToUKma6D27YB9eoBDx7AryjIEhERERG/Fy2aaUe+eTOwZQuQNy/Qrp1ZtzVkCPDXX3aP0PuULm0C1xUrgObN/Ss7qCBLRERERCRYp7yFC02TjAYNgJEjTbDVtq3JeEn4Va0KzJ1rmo507Og/G0MryBIRERERCcFLL5n1WmfPAv37A99/b8oIWU64erX/BAzPq25dYPp04LPPgH794BcUZImIiIiIhCFZMuD9902TjBkzgN9/Nxvw5sljAodbt+weoed75x1g7FjTOp83X6cgS0REREQkHGLFMsHCgQPA2rWmix5L4NKmBd57D/jtN7tH6Nm6dgUGDQL69gWmTIFPU5AlIiIiIhIBUaIA5coBixaZjYzZIOPLL80eUTVqmEYP/tTkISIGDQK6dDEdHblHma9SkCUiIiIi8ozYEOPDD4Fz54CZM4GLF4Fq1UyWa/x44MYNu0foeQHqmDGm22CzZsD69fBJCrJERERERJ5TnDhAixZmU+NNm8w+Ud27Ay++aEoKuTGvGFGjAtOmmY2f69cHLlyAz1GQJSIiIiLiwkxNqVKmZTkbZXCt1oIFpith5crAjz8Cjx7ZPUr7RY8OfP21+cjug/fvw6coyBIRERERiQRp0gAffGBawHPN1vXrwOuvA1mzAqNHA9euwa+lTGn2I9u5E+jZEz5FQZaIiIiISCR3JWzSBNi+3dyY6WKHPXYlbNMGOHgQfqt4cdPanevXmNnyFQqyRERERETcpGhRk9Vio4w+fYClS4F8+YDy5U23wgcP4HfatwcaNwbefRc4fBg+QUGWiIiIiIibvfACMGAAcPq0Wb/F4KpOHSBdOqB3b+DECfjVOrapU4HMmYE33/SNjowKskREREREbBIjhumwx46E+/YB9eoB06cDRYqY78+dC9y+DZ8XLx7w3Xem0yCDTG+nIEtERERExAPkz2/WJjHQmDXr/6V0qVMDrVub9VwBAfBZWbOaPcemTDFBpzfzmiDr6tWraNy4MRImTIjEiROjZcuWuHXrVrh+NiAgANWqVUOUKFHw/fffR/pYRURERESeVezYwFtvmX+zKQbbwK9YYZpE5M1rGkVcuQKf1K6d+T1btQLu3YPX8pogiwHW4cOHsWrVKixduhQbNmxAa4b04fDpp59aAZaIiIiIiDdJnx4YMgQ4dcoEWrlymXI6tofn/lL8mi/tuxUtmimXPHkSGDECXssrgqyjR49ixYoVmDFjBooVK4bSpUtjwoQJmD9/Pi48ZYvoffv2YfTo0ZjlyLmKiIiIiHhh8FGlCvDtt6accORI4NgxoFo1IFMmYOBAE4j5gjx5gO7dgVGjvDdjFx1eYOvWrVaJYBHHCkAAFStWRNSoUbF9+3bUrl07xJ+7c+cOGjVqhEmTJiFVqlTheq579+5ZN4cb/7U3efDggXVzN8dz2vHc/kZz7V6ab/fSfLuP5tq9NN/upfn2jLlOlAjo0MGs19q927SE5zomBiVlywLNmgE1a5r9ubxV167AjBlmjRq7MHrKsR3eYz9KABcsebgRI0Zgzpw5OH78eJCvp0yZEkOGDEE7Fm+GoE2bNnj06JGVASOWDC5evBi1atUK9bkGDx5sPWZw8+bNQ9y4cZ/7dxEREREREe/kSOJcv37d6hXhkZmsPn364OOPP35qqeCzWLJkCdasWYO9e/dG6Of69u2Lbt26BclkpUuXDpUrVw5zIiMLo2WuQ6tUqRJisMenRBrNtXtpvt1L8+0+mmv30ny7l+bbO+aae2yx9fvChWbT4xQpgNdfB1j8VbKkKT30Bn/+aUoHhw4F2rb1jPl2VLk9ja1BVvfu3dG8efMw75M5c2ar1O/y5ctBvv7w4UOr42BoZYAMsE6ePGmVGTp76623UKZMGaxbty7En4sVK5Z1C46Tbeebid3P70801+6l+XYvzbf7aK7dS/PtXppvz55rNscYPhwYNgzYuRNYsMCs5Zo40WyCzM6F3I+rdGnPDrjSpjX7hbG5R6dOnjHf4X0tbA2yUqRIYd2epkSJEvjnn3+we/duFC5cODCIevz4sdUII7Qs2bvvvhvka3nz5sXYsWNRk0WqIiIiIiI+jM21ixY1NzbK2LHDBFsMuiZPBpircARcpUp5ZsBVqZLJZN2/D8SMCa/hFd0Fc+bMiapVq6JVq1bYsWMHNm/ejI4dO6JBgwZIw/6VAM6fP48cOXJY3ydmuPLkyRPkRunTp0cmtmAREREREfGjgIu5idGjgdOn2VgOaNgQ+OEH0ywjXTqgc2dg40bg8WN4jLJlgdu3zX5h3sQrgiyaO3euFURVqFAB1atXt9q4T5s2LUgdJRtjcDGaiIiIiIiELGpUs+HvmDHAmTPA5s1A/frAd98Br7xiAq4uXYD1600GyU6J/1v5422n+F7Rwp2SJk1qdfgLTcaMGfG0Role0EhRRERERMStARebYfDGLBczXCwpZNMMtk9nc+0yZYAKFcytQAHzM+5sfkFJksCreE0mS0REREREIg+DJ67NGjfOdCXctQsYNMh8b/BggK0R2E6B67i4pou7K0V2DmPqVJNZy5YNXsVrMlkiIiIiIuK+gItBFW+9egH37gHbt7P5HLB6tSknfPgQePFF4NVX/5/pYkdAV2Eb+vnzTUDnTU0vSEGWiIiIiIiEiTsccb0Wb8xq3bplmmQ4gq6vvjJZrSxZ2NEbyJ79/7ccOcJf7semG9u2mQzWF18ATZsC77wDr6MgS0REREREIiR+fKBaNXOjv/8GuA3thg3A0aMAWymcPfv/+7PMkAHXSy8BCROan+ctThzg2jXg0iWz/orZMn7kfl4zZpgAi50RvY2CLBEREREReS7Jkpm1Wrw5sPX6iRNm7daxY+bjr7+aLJjjxq6BzHIxqOKNmatatUz3Q0/ctyu8FGSJiIiIiIjLxYtnuhHy5m/UXVBERERERMSFFGSJiIiIiIi4kIIsERERERERF1KQJSIiIiIi4kIKskRERERERFxIQZaIiIiIiIgLKcgSERERERFxIQVZIiIiIiIiLqQgS0RERERExIUUZImIiIiIiLiQgiwREREREREXUpAlIiIiIiLiQgqyREREREREXCi6Kx/MFwUEBFgfb9y4YcvzP3jwAHfu3LGeP0aMGLaMwV9ort1L8+1emm/30Vy7l+bbvTTf7qO59sz5dsQEjhghNAqynuLmzZvWx3Tp0tk9FBERERER8ZAYIVGiRKF+P0rA08IwP/f48WNcuHABCRIkQJQoUdz+/IyWGeCdO3cOCRMmdPvz+xPNtXtpvt1L8+0+mmv30ny7l+bbfTTXnjnfDJ0YYKVJkwZRo4a+8kqZrKfg5KVNm9buYVgvtv7A3ENz7V6ab/fSfLuP5tq9NN/upfl2H8215813WBksBzW+EBERERERcSEFWSIiIiIiIi6kIMvDxYoVC4MGDbI+SuTSXLuX5tu9NN/uo7l2L823e2m+3Udz7d3zrcYXIiIiIiIiLqRMloiIiIiIiAspyBIREREREXEhBVkiIiIiIiIupCBLRERERETEhRRkeZGMGTMiSpQoQW4fffSR3cPyeffu3UOBAgWs+d63b5/dw/FJr7/+OtKnT4/YsWMjderUaNq0KS5cuGD3sHzS6dOn0bJlS2TKlAlx4sTBSy+9ZHVTun//vt1D81nDhw9HyZIlETduXCROnNju4ficSZMmWf8/8v2jWLFi2LFjh91D8kkbNmxAzZo1kSZNGuv/w++//97uIfmsDz/8EC+//DISJEiAlClTolatWjh+/Ljdw/JZn332GfLlyxe4CXGJEiWwfPny535cBVle5oMPPsDFixcDb506dbJ7SD6vV69e1n8qEnnKly+Pb7/91vpPZNGiRTh58iTq1Klj97B80rFjx/D48WNMnToVhw8fxtixYzFlyhT069fP7qH5LAawdevWRbt27eweis/55ptv0K1bN+tCwZ49e5A/f35UqVIFly9ftntoPuf27dvW/DKolci1fv16dOjQAdu2bcOqVavw4MEDVK5c2XoNxPXSpk1rJS12796NXbt24dVXX8Ubb7xh/R/5PNTC3YvwSl3Xrl2tm7gHr2TwP3Ce+OfOnRt79+61sloSuZYsWWJduWMWMUaMGHYPx+d98skn1pW833//3e6h+LTZs2db79///POP3UPxGcxc8Yr/xIkTrc95ASFdunTWBcg+ffrYPTyfxUzW4sWLrfdpiXx//fWXldFi8PXKK6/YPRy/kDRpUuv/RlZ+PCtlsrwMI+1kyZKhYMGC1ov/8OFDu4fks/7880+0atUKX375pVXmI+5x9epVzJ071yqvUoDlHtevX7f+QxHxtgwhrzxXrFgx8GtRo0a1Pt+6dautYxNx9Xs06X068j169Ajz58+3soYsG3weCrK8SOfOna0Xfu3atWjTpg1GjBhhlbKJ6zHB27x5c7Rt2xZFihSxezh+oXfv3ogXL551EeHs2bP44Ycf7B6SX/jtt98wYcIE6z1FxJtcuXLFOiF64YUXgnydn1+6dMm2cYm4ErOzzICXKlUKefLksXs4PuvgwYOIHz8+YsWKZZ37MVObK1eu53pMBVk2YzlD8GYWwW9cQ0EsWytXrpy1OI8HwOjRo62TI5ZUiWvnm/N68+ZN9O3b1+4h+8WxTT179rTKMX/++WdEixYNzZo1s4JdiZz5pvPnz6Nq1arWeiFmbSVy51tEJKK4NuvQoUPWRXaJPNmzZ7eam23fvt1aP/v222/jyJEjz/WYWpPlAXW2f//9d5j3yZw5M2LGjPnE17kgj1c1+B85Dw5x3XzXq1cPP/74o3Wi5MArpjz5b9y4MebMmeOG0frvsf3HH39Y6yq2bNny3Ol6fxHR+Wb3Rl60KV68uLVWiGVWErnHt9Zkub5ckKXcCxcuDLI2iCdHnGNlwyOP1mS5R8eOHa3jmJ0d2RFW3Idlx+y+yyZRzyq6S0ckEZYiRQrr9iwYcfPEiIshxbXzPX78eAwbNizwc56QsmMVO1lxobVE7rHN8ghSljZy5psZLHZ0LFy4MD7//HMFWG4+vsU1GMDyGF69enXgyT7fO/g5T05FvBXzH2zewkB23bp1CrBswPeS5z0HUZDlJbiIlylMnhhx3wR+/t5776FJkyZIkiSJ3cPzOdyzyRnrdIlXNdjqU1yHx/XOnTtRunRp61hm+/YBAwZYc60slusxwGIGK0OGDBg1apSVkXFIlSqVrWPzVVxjyIYu/MiMuGO/vSxZsgS+t8izYRk9M1dcO1u0aFF8+umn1oL1Fi1a2D00n3Pr1i1rDafDqVOnrGOZzRiC/58pz18iOG/ePCuLxXM+xxrDRIkSWfsbimtxaUi1atWs45hLRTj3DG5Xrlz5fA/MckHxfLt37w4oVqxYQKJEiQJix44dkDNnzoARI0YE3L171+6h+YVTp06xrDZg7969dg/F5xw4cCCgfPnyAUmTJg2IFStWQMaMGQPatm0b8Mcff9g9NJ/0+eefW8dySDeJHG+//XaI87127Vq7h+YTJkyYEJA+ffqAmDFjBhQtWjRg27Ztdg/JJ/F4Dek45vEtrhXaezTfv8X13nnnnYAMGTJY7yEpUqQIqFChQsDPP//83I+rNVkiIiIiIiIupEJ8ERERERERF1KQJSIiIiIi4kIKskRERERERFxIQZaIiIiIiIgLKcgSERERERFxIQVZIiIiIiIiLqQgS0RERERExIUUZImIiIiIiLiQgiwREfFJDx8+RM+ePfHiiy8iYcKEKFeuHA4cOOCSxz5+/DhSpUqFmzdvRujnihcvjkWLFrlkDCIi4rkUZImIiE+aNWsWJk6ciAkTJmDv3r3IkiUL6tevH/j9q1evolOnTsiePTvixImD9OnTo3Pnzrh+/fpTH7tv377WzyZIkMD6/LPPPkPixIlx7ty5IPfjfbJly4Y7d+5Yn/fv3x99+vTB48ePXf77ioiI54gSEBAQYPcgREREXI0BFf+L+/bbb63Pjxw5gty5c+Pvv/9G0qRJcejQIQwaNAjNmzdHrly5cObMGbRt2xb58uXDwoULQ33cs2fPWgHbqVOnrCwZ8XmqVKli/fvnn3+2Pq5evdr62oYNG1CyZEnra48ePbJ+ZubMmahRo4YbZkFEROygTJaIiPiky5cvI02aNIGfX7p0yfoYLVo062OePHms0r2aNWvipZdewquvvorhw4fjxx9/tEoNQ8OgLX/+/IEBFkWJEsUKnLZv344pU6bgxo0beOedd9CtW7fAAMvx3NWrV8f8+fMj6bcWERFPoCBLRER8knOhxokTJ6wSvxIlSiBRokSh/gxLBbl+K3r06KHeZ+PGjShSpMgTX0+XLh0+/fRTax1YkyZNED9+fAwdOvSJ+xUtWtR6DBER8V0KskRExKf17t3bWhe1c+dOdO/ePdT7XblyxQqKWrduHebjsazQOUPmrEWLFlaGjNmwzz//HLFixXriPvxZrt3SuiwREd+lIEtERHwaAytmjthwomHDhoFrtJyxvI9rpLg2a/DgwWE+3r///ovYsWOH+L39+/djz549iBs3bqjZKjbZYIB17969Z/yNRETE04VeDyEiIuIDUqZMad1Kly5trdOaPHky6tWrF/h9tmGvWrWq1Slw8eLFiBEjRpiPlzx5cly7du2Jr9+/fx/NmjVD48aNUbZsWauJxmuvvWZ1L3TGrobx4sWzgi0REfFNCrJERMRnBW9gwQDKOQvFDBY7ALKsb8mSJaFmqJwVLFjQ6lQY3AcffGAFUGPHjrXWfbGpBssHN23ahKhR/184wq6GfAwREfFdKhcUERGfNXv2bOvGdVQMoubNm4dq1aoFBliVK1fG7du3rc6A/JwdCHljq/XQMCjbunVrkPtwvdfHH39sPY6jscbUqVOtTYsZdDljGSGfV0REfJf2yRIREZ9Urlw53L17F7du3cLJkyeRKlUqq+sf11yxlfq6detQvnz5EH+We2BlzJgx1OxYhgwZrM2OGXBxbRUzUyxHnDZtWpD7Mqhr2bIl9u3bZ5UNnj9/HpkyZcLvv/+OtGnTRsrvLSIi9lOQJSIiPhtkFShQwGqr7mqTJk2yMmMrV66McKdDrucKHoyJiIhv0ZosERGRCGrTpg3++ecfq2kGG2aEFxtwcINiERHxbcpkiYiIT4rMTJaIiEhYFGSJiIiIiIi4kLoLioiIiIiIuJCCLBERERERERdSkCUiIiIiIuJCCrJERERERERcSEGWiIiIiIiICynIEhERERERcSEFWSIiIiIiIi6kIEtERERERASu8z+vTrD6bw53zAAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.stats import f\n", + "\n", + "# Параметры модели\n", + "n = model_poly.nobs # количество наблюдений\n", + "k = 2 # количество параметров (β2, β3)\n", + "alpha = 0.02 # уровень значимости\n", + "\n", + "# Ковариационная матрица оценок параметров\n", + "cov_matrix = model_poly.cov_params().loc[['X', 'X2'], ['X', 'X2']]\n", + "\n", + "# Критическое значение F-распределения\n", + "f_critical = f.ppf(1 - alpha, dfn=k, dfd=n - model_poly.df_model - 1)\n", + "\n", + "# Точки оценок параметров\n", + "beta2_hat, beta3_hat = model_poly.params[['X', 'X2']]\n", + "\n", + "# Границы совместной доверительной области (эллипс)\n", + "# Для простоты выведем диапазоны по осям\n", + "eigenvalues, eigenvectors = np.linalg.eigh(cov_matrix * f_critical * k)\n", + "angle = np.degrees(np.arctan2(*eigenvectors[:, 0][::-1]))\n", + "\n", + "# Визуализация\n", + "plt.figure(figsize=(10, 6))\n", + "plt.scatter(beta2_hat, beta3_hat, color='red', label='Оценки параметров')\n", + "ellipse = plt.matplotlib.patches.Ellipse(\n", + " (beta2_hat, beta3_hat),\n", + " 2 * np.sqrt(eigenvalues[0]),\n", + " 2 * np.sqrt(eigenvalues[1]),\n", + " angle=angle,\n", + " edgecolor='blue',\n", + " facecolor='none',\n", + " label=f'Совместный ДИ (F-распределение)'\n", + ")\n", + "plt.gca().add_patch(ellipse)\n", + "plt.xlabel('β2 (X)')\n", + "plt.ylabel('β3 (X²)')\n", + "plt.title('Совместный доверительный интервал для β2 и β3')\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "76e0b82d", + "metadata": {}, + "outputs": [], + "source": [ + "# from scipy.stats import t\n", + "# import statsmodels.api as sm\n", + "\n", + "# # Число параметров k = 2 (beta2 и beta3)\n", + "# k = 2\n", + "\n", + "# # Критическое значение t-распределения\n", + "# t_crit = t.ppf(1 - alpha/(2*k), model_poly.df_resid)\n", + "\n", + "# # Совместные интервалы Бонферрони\n", + "# beta2_conf_bonf = [\n", + "# model_poly.params.iloc[1] - t_crit * model_poly.bse.iloc[1],\n", + "# model_poly.params.iloc[1] + t_crit * model_poly.bse.iloc[1]\n", + "# ]\n", + "\n", + "\n", + "# beta3_conf_bonf = [\n", + "# model_poly.params.iloc[2] - t_crit * model_poly.bse.iloc[2],\n", + "# model_poly.params.iloc[2] + t_crit * model_poly.bse.iloc[2]\n", + "# ]\n", + "\n", + "# print(f\"Совместный интервал (Бонферрони) для beta2: [{beta2_conf_bonf[0]:.3f}, {beta2_conf_bonf[1]:.3f}]\")\n", + "# print(f\"Совместный интервал (Бонферрони) для beta3: [{beta3_conf_bonf[0]:.3f}, {beta3_conf_bonf[1]:.3f}]\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "f791c572", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Ковариационная матрица для β2 и β3:\n", + " X X2\n", + "X 1.734960 -0.245172\n", + "X2 -0.245172 0.036575\n", + "\n", + "Совместные интервалы (Бонферрони):\n", + "β2: [-4.657, 2.415]\n", + "β3: [-0.384, 0.643]\n" + ] + } + ], + "source": [ + "from scipy.stats import t\n", + "# Ковариационная матрица\n", + "cov_matrix = model_poly.cov_params().loc[['X', 'X2'], ['X', 'X2']]\n", + "print(\"\\nКовариационная матрица для β2 и β3:\")\n", + "print(cov_matrix)\n", + "\n", + "# Совместные интервалы Бонферрони\n", + "m = 2 # количество параметров\n", + "alpha_bonferroni = alpha / m\n", + "t_crit = t.ppf(1 - alpha_bonferroni/2, df=model_poly.df_resid)\n", + "\n", + "beta2_se = np.sqrt(cov_matrix.iloc[0, 0])\n", + "beta3_se = np.sqrt(cov_matrix.iloc[1, 1])\n", + "\n", + "bonferroni_beta2 = [\n", + " beta2_poly - t_crit * beta2_se,\n", + " beta2_poly + t_crit * beta2_se\n", + "]\n", + "\n", + "bonferroni_beta3 = [\n", + " beta3_poly - t_crit * beta3_se,\n", + " beta3_poly + t_crit * beta3_se\n", + "]\n", + "\n", + "print(\"\\nСовместные интервалы (Бонферрони):\")\n", + "print(f\"β2: [{bonferroni_beta2[0]:.3f}, {bonferroni_beta2[1]:.3f}]\")\n", + "print(f\"β3: [{bonferroni_beta3[0]:.3f}, {bonferroni_beta3[1]:.3f}]\")" + ] + }, + { + "cell_type": "markdown", + "id": "cdc01a33", + "metadata": {}, + "source": [ + "#### Метод F-распределения\n", + "**Формула:**\n", + "$$\n", + "(\\hat{\\beta} - \\beta)^T \\cdot Cov(\\hat{\\beta})^{-1} \\cdot (\\hat{\\beta} - \\beta) \\leq F_{1-\\alpha, 2, n-p},\n", + "$$\n", + "где $F_{1-\\alpha, 2, n-p}$ - критическое значение F-распределения." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "9b48da35", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Полная ковариационная матрица:\n", + " const X X2\n", + "const 4.7543 -2.7403 0.3629\n", + "X -2.7403 1.7350 -0.2452\n", + "X2 0.3629 -0.2452 0.0366\n", + "[-1.120772, 0.129577]\n" + ] + } + ], + "source": [ + "from scipy.stats import f\n", + "full_cov_matrix = model_poly.cov_params()\n", + "print(\"\\nПолная ковариационная матрица:\")\n", + "print(full_cov_matrix.round(4))\n", + "\n", + "beta2_hat = model_poly.params['X']\n", + "beta3_hat = model_poly.params['X2']\n", + "\n", + "print(f\"[{beta2_hat:3f}, {beta3_hat:3f}]\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "b34812e2", + "metadata": {}, + "outputs": [], + "source": [ + "# from scipy.stats import f\n", + "\n", + "# # Параметры модели\n", + "# n = model_poly.nobs # количество наблюдений\n", + "# k = 2 # количество параметров (β2, β3)\n", + "# alpha = 0.02 # уровень значимости\n", + "\n", + "# # Ковариационная матрица оценок параметров\n", + "# cov_matrix = model_poly.cov_params().loc[['X', 'X2'], ['X', 'X2']]\n", + "\n", + "# # Критическое значение F-распределения\n", + "# f_critical = f.ppf(1 - alpha, dfn=k, dfd=n - model_poly.df_model - 1)\n", + "\n", + "# # Точки оценок параметров\n", + "# beta2_hat, beta3_hat = model_poly.params[['X', 'X2']]\n", + "\n", + "# # Границы совместной доверительной области (эллипс)\n", + "# # Для простоты выведем диапазоны по осям\n", + "# eigenvalues, eigenvectors = np.linalg.eigh(cov_matrix * f_critical * k)\n", + "# angle = np.degrees(np.arctan2(*eigenvectors[:, 0][::-1]))\n", + "\n", + "# # Визуализация\n", + "# plt.figure(figsize=(10, 6))\n", + "# plt.scatter(beta2_hat, beta3_hat, color='red', label='Оценки параметров')\n", + "# ellipse = plt.matplotlib.patches.Ellipse(\n", + "# (beta2_hat, beta3_hat),\n", + "# 2 * np.sqrt(eigenvalues[0]),\n", + "# 2 * np.sqrt(eigenvalues[1]),\n", + "# angle=angle,\n", + "# edgecolor='blue',\n", + "# facecolor='none',\n", + "# label=f'Совместный ДИ (F-распределение)'\n", + "# )\n", + "# plt.gca().add_patch(ellipse)\n", + "# plt.xlabel('β2 (X)')\n", + "# plt.ylabel('β3 (X²)')\n", + "# plt.title('Совместный доверительный интервал для β2 и β3')\n", + "# plt.legend()\n", + "# plt.grid(True)\n", + "# plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "ed363cbc", + "metadata": {}, + "source": [ + "## Пункт e)" + ] + }, + { + "cell_type": "markdown", + "id": "dd92108d", + "metadata": {}, + "source": [ + "#### Гипотеза линейности\n", + "- $H_0$: Зависимость $Y$ от $X$ линейна ($\\beta_3 = 0$).\n", + "- $H_1$: Зависимость нелинейна ($\\beta_3 \\neq 0$).\n", + "\n", + "#### Гипотеза независимости\n", + "- $H_0$: $Y$ не зависит от $X$ линейна ($\\beta_2 = \\beta_3 = 0$).\n", + "- $H_1$: $Y$ зависит от $X$ линейна (хотя бы один из $\\beta_2, \\beta_3 \\neq 0$)." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "1fde6d40", + "metadata": {}, + "outputs": [], + "source": [ + "# import statsmodels.api as sm\n", + "# from sklearn.preprocessing import PolynomialFeatures\n", + "\n", + "# # Создание моделей\n", + "# # Константная модель (Y ~ 1)\n", + "# X_const = sm.add_constant(np.ones(len(Y)))\n", + "# model_const = sm.OLS(Y, X_const).fit()\n", + "\n", + "# # Линейная модель (Y ~ X)\n", + "# X_linear = sm.add_constant(X)\n", + "# model_linear = sm.OLS(Y, X_linear).fit()\n", + "\n", + "# # Квадратичная модель (Y ~ X + X²)\n", + "# poly = PolynomialFeatures(degree=2, include_bias=False)\n", + "# X_poly = poly.fit_transform(X.values.reshape(-1, 1))\n", + "# X_poly_sm = sm.add_constant(X_poly)\n", + "# model_poly = sm.OLS(Y, X_poly_sm).fit()\n", + "\n", + "# # F-тест: Линейная vs. Квадратичная\n", + "# ftest_linear_vs_poly = model_poly.compare_f_test(model_linear)\n", + "# print(f\"F-тест (линейная vs. квадратичная): F = {ftest_linear_vs_poly[0]:.3f}, p-value = {ftest_linear_vs_poly[1]:.3f}\")\n", + "\n", + "# # F-тест: Константная vs. Квадратичная\n", + "# ftest_const_vs_poly = model_poly.compare_f_test(model_const)\n", + "# print(f\"F-тест (константная vs. квадратичная): F = {ftest_const_vs_poly[0]:.3f}, p-value = {ftest_const_vs_poly[1]:.3f}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "405456a9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Проверка гипотез:\n", + "Проверка гипотезы линейности (H₀: β₃ = 0):\n", + "t-статистика: 0.6775\n", + "p-значение: 0.5014\n", + "Нет оснований отвергать гипотезу о линейности\n", + "\n", + "Проверка гипотезы независимости (H₀: β₂ = 0):\n", + "t-статистика: -0.8509\n", + "p-значение: 0.3991\n", + "Нет оснований отвергать гипотезу о независимости\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\margaery\\AppData\\Local\\Temp\\ipykernel_15852\\3529389018.py:4: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", + " print(f\"t-статистика: {model_poly.tvalues[2]:.4f}\")\n", + "C:\\Users\\margaery\\AppData\\Local\\Temp\\ipykernel_15852\\3529389018.py:5: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", + " print(f\"p-значение: {model_poly.pvalues[2]:.4f}\")\n", + "C:\\Users\\margaery\\AppData\\Local\\Temp\\ipykernel_15852\\3529389018.py:6: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", + " if model_poly.pvalues[2] < alpha:\n", + "C:\\Users\\margaery\\AppData\\Local\\Temp\\ipykernel_15852\\3529389018.py:13: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", + " print(f\"t-статистика: {model_poly.tvalues[1]:.4f}\")\n", + "C:\\Users\\margaery\\AppData\\Local\\Temp\\ipykernel_15852\\3529389018.py:14: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", + " print(f\"p-значение: {model_poly.pvalues[1]:.4f}\")\n", + "C:\\Users\\margaery\\AppData\\Local\\Temp\\ipykernel_15852\\3529389018.py:15: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", + " if model_poly.pvalues[1] < alpha:\n" + ] + } + ], + "source": [ + "print(\"\\nПроверка гипотез:\")\n", + "# Тест на линейность (значимость β₃)\n", + "print(\"Проверка гипотезы линейности (H₀: β₃ = 0):\")\n", + "print(f\"t-статистика: {model_poly.tvalues[2]:.4f}\")\n", + "print(f\"p-значение: {model_poly.pvalues[2]:.4f}\")\n", + "if model_poly.pvalues[2] < alpha:\n", + " print(f\"Гипотеза о линейности отвергается\")\n", + "else:\n", + " print(f\"Нет оснований отвергать гипотезу о линейности\")\n", + "\n", + "# Тест на независимость (значимость β₂)\n", + "print(\"\\nПроверка гипотезы независимости (H₀: β₂ = 0):\")\n", + "print(f\"t-статистика: {model_poly.tvalues[1]:.4f}\")\n", + "print(f\"p-значение: {model_poly.pvalues[1]:.4f}\")\n", + "if model_poly.pvalues[1] < alpha:\n", + " print(f\"Гипотеза о независимости отвергается\")\n", + "else:\n", + " print(f\"Нет оснований отвергать гипотезу о независимости\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "259f90f3", + "metadata": {}, + "source": [ + "- **Проверка гипотезы линейности (H₀: β₃ = 0):**\n", + " - Нет оснований отвергать гипотезу о линейности (p > 0.02).\n", + "\n", + "- **Проверка гипотезы независимости (H₀: β₂ = 0):**\n", + " - Нет оснований отвергать гипотезу о независимости (p > 0.02)." + ] + }, + { + "cell_type": "markdown", + "id": "eccd4f5e", + "metadata": {}, + "source": [ + "## Пункт f)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "c00ff024", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Сравнение моделей по AIC и BIC:\n", + "--------------------------------------\n", + "Модель AIC BIC\n", + "Линейная 232.83 236.66\n", + "Квадратичная 234.35 240.08\n" + ] + } + ], + "source": [ + "# f) AIC и BIC\n", + "# Добавляем константную модель для сравнения\n", + "model_const = sm.OLS(df['Y'], sm.add_constant(np.ones(len(df)))).fit()\n", + "\n", + "print(\"\\nСравнение моделей по AIC и BIC:\")\n", + "print(\"--------------------------------------\")\n", + "print(\"Модель AIC BIC\")\n", + "print(f\"Линейная {model_lin.aic:.2f} {model_lin.bic:.2f}\")\n", + "print(f\"Квадратичная {model_poly.aic:.2f} {model_poly.bic:.2f}\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "d66aad56", + "metadata": {}, + "source": [ + "**AIC/BIC** линейной модели меньше, она лучше описывает данные." + ] + }, + { + "cell_type": "markdown", + "id": "a6887b63", + "metadata": {}, + "source": [ + "## Пункт g)\n", + "### Характер зависимости $Y$ от $X$\n", + "- **Линейная модель:**\n", + " $$\n", + " Y = 15.59 - 0.25X,\\ R^2 = 0.014.\n", + " $$\n", + " - Крайне низкий $R^2$ (1.4%) указывает на отсутствие линейной зависимости.\n", + " - Коэффициент $\\beta_2 = -0.25$ статистически незначим (доверительный интервал [−4.29, 2.05] включает ноль).\n", + "\n", + "- **Квадратичная модель:**\n", + " $$\n", + " Y = 16.87 - 1.12X + 0.13X^2,\\ R^2 = 0.024.\n", + " $$\n", + " - $R^2 = 2.4\\%$ показывает, что модель объясняет лишь незначительную часть вариации.\n", + " - Коэффициенты:\n", + " - $\\beta_2 = -1.12$ (линейный член): интервал [−4.29, 2.05] включает ноль.\n", + " - $\\beta_3 = 0.13$ (квадратичный член): интервал [−0.33, 0.59] включает ноль.\n", + "\n", + "### Проверка гипотез\n", + "Остатки близки к нормальному распределению. Критерий $\\chi^2$ не выявил значимых отклонений от нормальности на уровне $\\alpha=0.02$.\n", + "\n", + "*Предположение о нормальности ошибок выполняется.*\n", + "\n", + "### AIC/BIC\n", + "| Модель | AIC | BIC |\n", + "|----------------|--------|--------|\n", + "| Линейная | 232.83 | 236.66 |\n", + "| Квадратичная | 234.35 | 240.08 |\n", + "\n", + "- **Линейная модель** имеет более низкие AIC/BIC, чем квадратичная.\n", + "\n", + "### Аномалии в результатах\n", + "\n", + "**Парадокс низкого $R^2$:**\n", + " - Обе модели объясняют менее 3% вариации, что ставит под сомнение их практическую применимость.\n", + "\n", + "### Итоговый вывод\n", + "- **Отсутствие значимой связи:** Ни линейная, ни квадратичная модели не демонстрируют статистически значимой зависимости $Y$ от $X$ на уровне $\\alpha=0.02$.\n", + "- **Артефакты анализа:** Низкий $R^2$, незначимые коэффициенты и противоречивые результаты тестов указывают на то, что переменная $X$ не является релевантным предиктором для $Y$ в данном наборе данных.\n", + "- **Рекомендации:** \n", + " - Проверить данные на наличие выбросов или ошибок.\n", + " - Рассмотреть другие предикторы или преобразования.\n", + " - Увеличить объем данных для повышения надежности тестов." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/idz4/ИДЗ 4_2 Артём.ipynb b/idz4/ИДЗ 4_2 Артём.ipynb new file mode 100644 index 0000000..0cc9f55 --- /dev/null +++ b/idz4/ИДЗ 4_2 Артём.ipynb @@ -0,0 +1,634 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "05af2cce", + "metadata": {}, + "source": [ + "![Задача №2](2.png)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "a34b5583", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    YAB
    013.1711
    111.7811
    211.7011
    312.5411
    411.5911
    \n", + "
    " + ], + "text/plain": [ + " Y A B\n", + "0 13.17 1 1\n", + "1 11.78 1 1\n", + "2 11.70 1 1\n", + "3 12.54 1 1\n", + "4 11.59 1 1" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Данные\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import statsmodels.api as sm\n", + "\n", + "Y = list(map(float, \"13.17, 11.78, 11.70, 12.54, 11.59, 11.21, 9.57, 9.07, 10.10, 10.60, 9.22, 7.91, 17.17, 14.74, 16.37, 15.34, 16.72, 16.53, 11.08, 12.01, 12.62, 11.07, 11.36, 11.78, 14.85, 14.60, 15.40, 13.23, 15.32, 13.23, 21.08, 20.70, 23.04, 21.22, 23.35, 22.51, 20.08, 18.89, 21.47, 19.55, 20.88, 20.01, 17.06, 18.76, 18.05, 17.83, 17.33, 18.30\".split(\", \")))\n", + "A = [1]*24 + [2]*24\n", + "B = [1]*6 + [2]*6 + [3]*6 + [4]*6 + [1]*6 + [2]*6 + [3]*6 + [4]*6\n", + "\n", + "df = pd.DataFrame({\"Y\": Y, \"A\": A, \"B\": B})\n", + "\n", + "Y = df[\"Y\"]\n", + "A = df[\"A\"]\n", + "B = df[\"B\"]\n", + "alpha = 0.02\n", + "h = 0.82\n", + "\n", + "df.head()\n" + ] + }, + { + "cell_type": "markdown", + "id": "e2bdb245", + "metadata": {}, + "source": [ + "## Пункт а)\n", + "### 1. Формулировка модели двухфакторного дисперсионного анализа\n", + "Модель с взаимодействием факторов:\n", + "$$\n", + "Y_{ijk} = \\mu + \\alpha_i + \\beta_j + (\\alpha \\beta)_{ij} + \\epsilon_{ijk},\n", + "$$\n", + "где:\n", + "- $Y_{ijk}$ — наблюдаемое значение переменной $Y$ для $i$-го уровня фактора $A$, $j$-го уровня фактора $B$, $k$-го повторения,\n", + "- $\\mu$ — общее среднее,\n", + "- $\\alpha_i$ — эффект $i$-го уровня фактора $A$,\n", + "- $\\beta_j$ — эффект $j$-го уровня фактора $B$,\n", + "- $(\\alpha \\beta)_{ij}$ — эффект взаимодействия факторов $A$ и $B$,\n", + "- $\\epsilon_{ijk} \\sim N(0, \\sigma^2)$ — случайная ошибка.\n", + "\n", + "### 2. Построение МНК-оценок параметров" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "31f5b8b6", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Оценки параметров полной модели:\n", + "Intercept 11.998333\n", + "C(A)[T.2] 2.440000\n", + "C(B)[T.2] -2.586667\n", + "C(B)[T.3] 4.146667\n", + "C(B)[T.4] -0.345000\n", + "C(A)[T.2]:C(B)[T.2] 10.131667\n", + "C(A)[T.2]:C(B)[T.3] 1.561667\n", + "C(A)[T.2]:C(B)[T.4] 3.795000\n", + "dtype: float64\n" + ] + } + ], + "source": [ + "from statsmodels.formula.api import ols\n", + "\n", + "# Формируем модель с взаимодействием\n", + "model_full = ols('Y ~ C(A) + C(B) + C(A):C(B)', data=df).fit()\n", + "\n", + "# МНК-оценки параметров\n", + "params = model_full.params\n", + "print(\"Оценки параметров полной модели:\")\n", + "print(params)" + ] + }, + { + "cell_type": "markdown", + "id": "f22e1f79", + "metadata": {}, + "source": [ + "### 3. Несмещенная оценка дисперсии\n", + "Несмещенная оценка дисперсии ошибок:\n", + "$$\n", + "\\hat{\\sigma}^2 = \\frac{SS_{\\text{res}}}{df_{\\text{res}}},\n", + "$$\n", + "где:\n", + "- $SS_{\\text{res}}$ — сумма квадратов остатков,\n", + "- $df_{\\text{res}} = n - p$ — степени свободы ($n$ — число наблюдений, $p$ — число параметров)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "7594c82a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Несмещенная оценка дисперсии: 0.757\n" + ] + } + ], + "source": [ + "# Несмещенная оценка дисперсии\n", + "sigma2 = model_full.mse_resid\n", + "print(f\"Несмещенная оценка дисперсии: {sigma2:.3f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "08b41deb", + "metadata": {}, + "source": [ + "## Пункт b)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "db397206", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Сводная таблица средних значений Y:\n", + "B 1 2 3 4\n", + "A \n", + "1 11.998333 9.411667 16.145000 11.653333\n", + "2 14.438333 21.983333 20.146667 17.888333\n" + ] + } + ], + "source": [ + "# Группируем данные по комбинациям A и B, вычисляем средние Y\n", + "grouped = df.groupby(['A', 'B'])['Y'].mean().reset_index()\n", + "\n", + "# Создаём сводную таблицу для визуализации\n", + "pivot_table = grouped.pivot(index='A', columns='B', values='Y')\n", + "print(\"Сводная таблица средних значений Y:\")\n", + "print(pivot_table)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "ca70b1e2", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAIjCAYAAAA9VuvLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAtuhJREFUeJzs3Qd802X+B/BP924ppdBCSwcte6ooiOwN7vO8k/s7Tr3Tkw2KDFFQXOzp9tQ7z/PUw3NAmbIVERSQ3UJb6ABKKd0zzf/1fWLSJE26aJuk/bx9xfQ3kjxJfw2/7+/5Pt/HSavVakFEREREREQGzhU/EhERERERkWCgREREREREZIaBEhERERERkRkGSkRERERERGYYKBEREREREZlhoERERERERGSGgRIREREREZEZBkpERERERERmGCgRERERERGZYaBERERERERkhoESkY289dZbGD16NNq0aQM3NzeEhIRg8ODB+Mc//oHy8nJbN49q6dq1awgNDcWAAQOg1Worbd+/fz+cnZ3xzDPPwF6cPHkSTk5O8PT0VO1vapYuXareX1JSkq2bQtQkPfLII+pvTH9zdXVFeHg4/vjHP+LEiRO2bh7RdWOgRGQjH330EXx8fDB//ny8//77mDt3Ltq1a6f+4fnTn/5k6+ZRLbVo0QIrV67E999/j3fffddkW1lZGZ588klERERg4cKFsBcff/yxCtDFF198YevmEJED8vDwwD//+U91e++999S/Ydu3b8ett96KtLQ0WzeP6Lq4Xt/Diaiudu/erXqSjE2ZMgVBQUFYu3YtXn31VURGRtqsfVR7f/jDH1QAPHv2bNx1112qt1CsWrUKR44cwcaNG+Ht7Q17IL1en3zyCSZMmIDExET861//wuOPP27rZhGRg5FepP/7v/8zWdevXz/cfvvt2LBhA/7yl7/YrG1E14s9SkQ2Yh4k6emDI0nT0vvqq68wfvx4tG3bVl2969ChA1566SVoNBqTxw4ZMsQkDaJVq1bqcceOHTPZT7YtWLDAZN2SJUvUenkOY0VFRWrfjh07qhQtSS+79957cfbsWbVd0prkcR9++KHJ4yZOnKjWy9VFPdlH1rm7uyMjI8Nk/x9++MHQ7oMHD5ps+/zzz3HjjTfCy8tLvSf5Rzk1NbXSZ3fq1Cncf//9CA4OVvt26tQJ8+bNU9vkPRh/NpZuO3fuNHyO3bt3R1288cYbKC4uxowZM9TyhQsX1GtLEDV27NhqH3/u3Dn8/ve/R8uWLVVQJScccrKhJ22s7n2Y/24t2bdvn/rdSYqM3CRwT0lJqVO6jbXP0fizPHTokLrCLL+XqKgolXpqTP++jB8r5Pit6XuS1+jTp4/63B544AF17Ao5/nv27Kl6cB966CEUFBQYHlOX49c4le/48eMIDAxUJ4XSc6gnqYzTp09Xf8/yNxsWFqZe+8qVK7V+v/pjV398+/v7qwsqU6dONbxHPWmDfDfId4S8rry+9FbLMWlM1ut/X/JdIz2LcoyeP3++Uvqi/N7k9eR3J3+Hlnof5XkmTZpUab18LsYXfPSftzyvOTlOjL9/9J9RVb2d8vsxfv4XXnhBvR/p0TD217/+VX3vyAULayT1uVevXha3yXeJpEqbv4cVK1aonmL5bOTx5t+14rvvvsPAgQPV8Sc9z3IRRdJejZl/P/n5+eHmm2/G//73P5P9rH03WUozlWNh0aJF6rtbjgXj59d/x0rb5PN6/vnnTZ5PLqLIfm+++SbqQt9TLUEUkSPjEUxkY3JCJf+g5ebmqhM9+QdPTlzbt29vcoLm6+urTr7lXv5xk3/YcnJyVIBjrHPnzio4kB4DCWaWL1+OcePGVToBMm+D9GCZk0BMTnTkpEPaJCdm0s6tW7eqEwI5GbMkISGhUvqZMRcXF5X2JSeSeh988IEKxMxP/OS9//nPf0bfvn1VGy9duqR6aORE/5dfflEnHuLo0aPqZEQCUDkpkpMnef/ffPMNXn75ZRXcxcTEGJ5XXrtLly5qXz1Zvl7yupJeJ2OR5CROAic5WZC0vOrIe5OTUjmR1/cuSg/VnXfeqU4W77nnHtVGSXHRe+edd9RJl5yw6UlQUB3pQZLfn3yucuIlwcW///3vGo+hkhMvSbMx9tNPP2H16tWV9s3KylLHoJzkSwDz2Wef4W9/+5s6cX300UetvoYEb9ILVxPytzBmzBh1wionh3Js6NsiJ/CS+njx4kW1TvZ5++23rT5XdcevngTB8pryNyfvSX9SmJeXp45F+b3I+7vhhhtUgPT111+rYFSC/bq8X/n85PiSvwMZ8ybvRT5bGdeoJ72Ccszcd999mDlzJn788Ue1v7Tlyy+/NHk+aaMc/zImUv6e5RiVVKk9e/YY9pG/NTn+JB24pKQEn376qQrkv/32WxXU2ZvnnntO/c0/9thj+PXXX1XAsXnzZvX7lADSWiAkHnzwQdX7IZ+FcTAix/WZM2fUcxuTz12+DyWolu8t+ayGDRumXlffm7xt2zZ1gSQ6OloFQ4WFhVizZo0ay/jzzz9XyhrQ/23L8SLfHfJZS3skUKutZcuWqdRu+d549tln1d+s/G7lO0NP2vvUU0+pY+Tuu+9Wx2p6ejomT56MESNGqL+bmtBfAJB/M+Rij7yefH/Jvx9EDk1LRDbVqVMnGflvuD300EPa0tJSk30KCgoqPe6JJ57Qent7a4uKigzrBg8erG7G5s6dq5738uXLhnWy/MILLxiWZ82apW3durX2xhtvNHn83//+d7Xv8uXLK71+eXm5uk9MTFT7fPDBB4Zt999/v7Z79+7a8PBw7cMPP2xYL/vIvg888IC2R48ehvX5+flaf39/7YQJE9T2n376Sa0vKSlR7ZLnKiwsNOz/7bffqv2ef/55w7pBgwZp/fz8tMnJyRbbaS4iIsKkbcbkM+jWrZu2ruT317t3b23Lli1VO99+++0aPW7atGlq/z179hjW5ebmaqOiorSRkZFajUZT6THyHuS91IZ8rkFBQdp58+YZ1sln36tXrxo9Xl7Tx8en0vrPP/9ctX/Hjh0mn6WsW7ZsmWFdcXGx+nzkdyttEfIY88fecsst2rFjx1Y6Xi2RY9TJyUl76tQpw7r77rtPPfY///mPYd2cOXO0Hh4e2osXL9b5+JXHXL16Vdu1a1f193vlyhWTtshxKfutX7++Ujv1x2Nt3q/8LOvuvPNOk+d66qmn1PojR46o5cOHD6vlxx9/3GS/p59+Wq3/7rvvqjz+5RiQ75Sqvnvk9yWfzbBhw0zWy/NPnDix0vsdP368yfGp/7yXLFlSaV/5mzP+/tF/RnJcWWPp+P/111+17u7u6nPIysrStmvXTnvTTTdV+l41d+3aNa2np6f22WefNVk/ZcoUdbzn5eWZvAcvLy9tSkqKYb8ff/xRrZ8+fbphnf44z8zMNKyT35ezs7P6rjf/HRvbsmWLWvfZZ59V+90kn6f+2NTr37+/tkuXLibfgfpjWP8dq//+jYmJUc8r/57I70y+j82/S619/sb/fulv8pkfOnSo2scT2Tum3hHZmPSkSA+NXOGXq6Byb9zLIeQKuJ5cwZSrd3I1WHoeJB3HWGlpqdouqW2SziZXkaWHwdpVbElhkyuccuVRequM/fe//1WPk6uL5iQtwxLpFZNUOblCaZw+aH7lVtqtT/+Q1wkICMDw4cNN9pPtly9fVlc8pbdJT65ky1V8fUqavFe5Gi9X74174qpqZ3Xkyqh8jnKTK+m1IT0LctX26tWrKnWupjn60psg6Ta33XabYZ38TuR4kJSa+qoiFRcXh8zMTNW7oyc/S1qSpJLVN/k8nnjiCcOy9CTJsvxu5XixZP369epK/muvvVaj15Bez65du5pceb/lllvUvXymetKzKGloe/furfPxK70H0ssix92mTZvUlXNjcjxLz4VcyTdn7XisyfuVngtj+r9LfS+U/l6f9qknPUvCOIVTyOcgx7f8HuQ7SHqqzf8Gjb97pPcqOztbffdIb4ilz0X/N6O/yfeRJfLdZb6veSqx+XdeTSszSm+Q9OpKj6eky8ljpZetujQw+Q6StDjpWdVXrpQ2/ec//1G9LZI6Z0zWSQEePTnO5JjT/x6kZ+bw4cOqZ1lSafXk+3jkyJEWew/1n4X0AEp6qrymfIdY+27S34zTSY0/N0kLre47UHqTpedeXnPQoEHqOJEeavPvUmvku1mOH7lJ75301sr3lvQiS08ckSNjoERkY/3791cpDjKoXv5hf/HFF1XwJKllenLyKidd8g+5jE+QMTj6wbNy4mJMqq7J9tatW6s0LknrkxM/a/9YSk6/jH0yPpHVk9Q1OfGsTZ65FDKQE6mqUi6kfRLs/P3vf1fLcv/www9XOjFNTk5W95bSTiRQ0m+XVA9R13FFlkggJ+00Hu8kefs1JSltQsZ01DRYk/dj6b3qUwL17/d6SdqjjBOSVBxJM5ObpOHJCZME6vVNji/zk0wZNyEsle6WE0EZVyPpXjVJI9SnwRmftFqj30f2r+vxK6mgEmjJiajxuCTjv5vaHIs1fb+xsbEmy/I7k78Z/Wcox4csG6eY6seLSIqq+fEjaXRyfEua2KhRo1RZZ/N0SkmxkxN1ORmWk33ZX8atmH/vCKneqf+b0d+2bNli9XvHfF/ziz56cgFEtstJv6TSyXelpKlWRVJIJVg9cOCAei0JomtCxpFJmrI+/VBS5+S15OJOdb8P/XFt/PsQ1v6mJcDJz883Wa//LKS98try9yi/F2vfTfqbvEdL/7bIxTIJXOSCmLyepIVaIqmAkg4rn5cEl1WlxFpKpZZ/w+Qmx5Fc2JG2yzEyZ86cGj8PkT3iGCUiOyNjC2SMkYwtkH+85CqqDBKWAEmCKDk5kpMWuaIreeDmcy7JiZbkpgu54i3jGGQAsOyvH2CrJ1cQ5UqinDhbKy5RG3JSJP9Ayj/O1ZF/iOWkRK6KS2+QnKAZj42wNRk7oB+nIr0v8jnKyZKMNTC/wutIZCyPjOGQq/+WTvQkGJQxXXXtiasPcsItJ5tydbqmzMe2VUfGitT1+JW/JSmwImOf5KRQemIa+/0Ka7+jmv7u5KRWPyZNxk69/vrrGDp0qOrJlYsD8vcoPWfSyyDjZaSQi3xPyIUcSxcNpDfGvKCDjOuRsWHm5HOT8TfGrPW8ynhMCV6ld0p6/OR7UL4XqxrPJRdP4uPj1c8yZqim9HPbyXeivG99CX0JAhqD9MoICaCkZ1LGpUmwKj1Qlr6b9ORimPHYIyG9ohIg1WSckfQu6guLSKAvPVTXU6FTipdIgCjf7USOjIESkZ3Rn8DJVToh/3jJibqk5sg/3HpS0tkSuepq/I+6BElyRV9Obsyv7sly7969VbUrSyQok4BNTlCqC6QkVUWuxkvPV00CCRngLAGfFImQVDN5LfNASapJidOnT6tBx8ZknX67BC/CUsWpupIeEOPPUU7UpDdCTqYbKlCS9yPvy5z+Srv+/V4POY4kqJBeAfN0THltObGV3kzj9L/rJQUC5MTPuFdJn5JjPphdTtAkbUrSLWvzfuUkviZztuirJcrfRF2PXwnqJYCQv1HpeZJAR9Jm9eRYrumxWJv3Kyf+0hOoJz2BcqFE/xnK42VZ9jMuTCI9IhJYmD+/fGbGx7ic2EovtFRak1RMOVGXv1EJ4KT3UU++S6ydHJsHFFIgwlKgJEG6+b7mvY56PXr0MOwr3xvS4yOpdJZ684R8BpLuJheXpk2bhldeeUVdgJK0y+rI71R6rOQCkgSO8llIAKf/PjamD8SMyXFt/PsQ1v6m5e/P/D0bfyYSeMr3rxT4MQ6UzL+bhKT4mZOUUCkO0a1bN/X3LFkD8v1lXgBISI+UXDiT15ILcPK3YKkwS23I78daDxaRo2DqHZGNWLsaKlcK5YqwPjDQ/wOtz5kXMmZGrvDWJvAyLw8sV83lqriMibB2Bfp3v/udSteQeZ3MGbdHn8YjlecsVc+zRNL5pEdJHmMtzeOmm25SKYSSq2/cfhljI/+o66tuSeqJBJGSwmde3c+8nXWl77mzdMJUXySnX1JfjHs0JMCQK8Vy8lXT9KGqyBVyCSzlKrOcPBrfnn76aTW2oL7T7+SEybjKnBy/siy/N0lNNCaVw+Q968u615T8/iVF1XhMhJxkCvlM9fTlliXwrevxq3+sHH8S6EuvjHEqmPzdyHgv8ypzlo7H2rzfdevWmSzL2EKhLzsvx48wr7AolS/17a3Nd4Uc6/LdYDx2SHq+zEtWNzb5W5QUQ2vfW/J+JQVZ/m6k0p0Ef5JWpq/MVh3pOZbxWBJYyIm++RxBevI5GE9TIMeZHHP634cEonIhSoI64/FVEkRLwKL/fVkjn7v8rZh/d9eGviy6BPcSXFn6DtEHYxJUyng2OZ7lO3/Xrl11fl35O5QAsaoqg0SOgD1KRDYiVy1lnI1cwZZUD0mTkwBgx44d6qRJrqIK+UdeeolkDI+UjJaTA7lKaC0AkBM2ORkWcmIgJ6QSlJiPuZB/qOUqZVUpJRLISAlcGRwuJwFygigndZKeJFfA5Yqn8fPJldfalLGVkxj5R1nenyXSiyVXdWVMiKQfylVufXlwCRyMy4vL1U+5airlbeXkQK68y0mdDEy2dLW1OnKCJAP1hRRlkOeX9jRkSWS5iisDyeVES37XMiZETrKk91Cu7lsrLlBT0uMix5c8tyXSayCpR5LGo3+/9UF6b+T3KL8PGcMhg+PldyInsuavIceRpP6ZF0iojhyPEjjIMS0nfJIep0/7kc9VPkN9eXAJbvS9kNdz/Ao5FqX3RlJIpUS4kGNayrlLaplcBJBgUI4hKQ8uQb/xyWNt3q+8B+nJkpLkEkzL37l8j+ifT+7le0I+V33KrvzdyjEkhQckrc48PU3/XSEn/HJyLL0w+oIOcqxL0CGvJ68jRR8kWJMxUBJUNhY5ViSAl4BbUu/kO0m+eyxdtJALKFKYRnqU7rjjDrVOeockYJFjRP87qorMxSVjzOTvQH638p1iiXwO8p0jQZgEMxKgyu9x1qxZhn2k90b+nmW8kPQ66suDy3hTS3OD6X8f8j0rgZj8zcjxXBfS0ynBuvzNy+tZIr3LcsxID58ch0J6OCU9V753JW3RWk+fnvxe9O2WIFbaLMe5/Gxp7BSRQ7F12T2i5urNN9/Ujhs3Ttu2bVutq6urtkWLFtrRo0drN27cWGnfffv2afv166fK0cr+Us578+bNVksx62/ynAMGDKj0nLJNSimbl2+1VF5cygNLGWkpUe3m5qYNCQlRZZfPnj1bqVRuamqqyWPNSxBbKk1rzNp2Ke/cp08fVdZZSm7/6U9/MinLq3fs2DHtPffco963lPmV0s3z58+vU3lwS59jXFyctjaslUyuinyu8vnq38PNN9+syqFbU5vy4FKiW9q0fft2q/t8+OGHap+vvvqq3sqDS9nhgwcPqnLF8p6kvWvXrjV5rL4UdGhoqCpXbKwm5cHF/v37tT179lSv8cc//lG7aNEi9Vj5/KQcvRyjUppeSq7r1eX4NS7BLD766CO1/uuvvzask3LQkyZNUmWSpVR1WFiYei59KfHavF996egTJ06oY0PK4AcGBqrnNy6bL6QE9sKFCw1/r1LiXEqiG08joH9vxsd4q1attKNGjdL+8MMPJvu9//772tjYWPW317lzZ/UZWCpl3ZDlwfU3+Z6U55Jy3VL22/z4Lysr0/bt21d91lLq29iqVasqlYqvyuLFi9X+r7zySqVtxu9B/qbkM5bPZ+DAgYZS7ca2bdumvj/kGJOy23fccYf6XRrTf6b6m+wr5edXrFhhUt67puXB4+Pj1d+o/O6r+o6VUuYuLi6qtLkx+XuVz/tvf/tbrcuDy3scPny4et9Ejs5J/mfrYI2IiJomGSMnPZv1OX6spiSdSHp3pCfGfCyUI5GeB7nKL73O1sr8U/2SnkLpsZbeEfMy2bJOeqylt0jSVYmo6eIYJSIiIqLfyPVjSVuT1MWaziVERE0TxygRERFRsyfjgmQcmYzpkbE5UuyGiJo3BkpERETU7ElqoxStkMl5ZQJgKZxBRM0bxygRERERERGZ4RglIiIiIiIiMwyUiIiIiIiImtsYJZnwTCZZ9PPzszqLNxERERERNX1arRa5ublqMvTqJnJv8oGSBEnh4eG2bgYREREREdmJCxcuICwsrHkHStKTpP8w/P39bdqW0tJSbNmyBaNGjYKbm5tN20KOgccM1RaPGaotHjNUWzxmyJGPmZycHNWJoo8RmnWgpE+3kyDJHgIlb29v1Q5bHyTkGHjMUG3xmKHa4jFDtcVjhprCMVOTITks5kBERERERGSGgRIREREREZEZBkpERERERETNbYxSTcsElpWVQaPRNHh+pqurK4qKihr8tWzBxcVFvT+WYSciIiIiR9fsA6WSkhKkp6ejoKCgUQKykJAQVYGvqQYTMlAvNDQU7u7utm4KEREREVGdNetASSajTUxMVD0hMumUnNw3ZAAjr5eXlwdfX99qJ7hyNBIEStCZkZGhPtPY2Ngm9x6JiIiIqPlo1oGSnNhL8CK11KUnpKHJa8lrenp6NskgwsvLS5V8TE5ONrxPIiIiIiJH1PTO1uugKQYttsLPkoiIiIiaAp7VEhERERERmWGgREREREREZIaBEhERERERkRkGSla89NJLCAwMRH5+vsn6devWwcPDA5cuXUJTt2DBAlUFUH8LCAjAwIEDsWvXLls3jYiIiIioQTFQsuKvf/2rmlvpH//4h0kJ7DVr1uAPf/gD2rRpg+agW7duap4puf3www+q7Pftt9+O7OxsWzeNiIiIiKhpBkqvvvoq+vbtCz8/P7Ru3Rp33303Tp8+bdh+9epVTJ48GZ06dVKlp9u3b48pU6Y0ykm6BEISEElgpLd582bVPmmD2Llzp+pp2bBhA3r27KnKYffr1w/Hjh0zea7//ve/KuCQ9yD7LV++3GR7ZGSkodfGx8cHt956Kw4ePGhSVlw+q6ioKPUcvXr1whdffGHYrm/HtWvXTJ5X1v3vf/9TPyclJanlw4cP1+pzcHV1VZPkyq1r16548cUX1VxQZ86cqdXzEBEREVHzoynXYFfyLuzO2q3uZdlR2DRQkhSuiRMnYv/+/di6dStKS0sxatQoQ7pbWlqaui1dulQFHx9++CE2bdqExx57rFHaJwHRyZMnsWXLFrW8atUq9O/fHzfddJPJfs888wyWLVuGn376CcHBwbjjjjvUexGHDh3C/fffjz/+8Y84cuQIZs+ejeeff169F2MSgEivjQRIEizJ56InQZL0bL311ls4fvw4pk+fjv/7v/9r9BS44uJifPDBB2jRooUKXomIiIiIrFl/cj0iV0Vi5L9GYnnycnUvy7LeEdh0wlkJeoxJ8CA9SxJcDBo0CN27d1e9MXodOnTAyy+/rIKEsrIy1dvRkCQgksBo9erVqtdHepT+/e9/V9rvhRdewMiRI9XPH330EcLCwvDll1+qAEl6j4YPH4758+erniHpmUlMTMSSJUvwyCOPGJ5DetVkmwQhMjZKen/0wckrr7yCbdu2qbaI6Oho7N27F2+//TYGDx7coJ/Br7/+Cl9fX/WzpCJKO//zn//A39+/QV+XiIiIiBzX+pPrcd9n90ELrcn61JxUtf6L+7/AvV3uhT2zaaBkTp9S17Jlyyr3kZN0a0GSBBZy08vJyVH30sOj7+XRk2UZdyQBjNwsmTRpkgrMZHvbtm1xzz33GPbV399yyy2Gn/W9LSdOnFDrpEfqzjvvVD/LawlJrZPeKXl9FxcXte7ZZ5/Fc889h8LCQoSHh6ugTB4jKW4SoOgDMb2SkhL06dPHpO0SoJnTb9fvI68tryntlMBLeussPU5Ie+W96NP3cnNz8dlnn+H3v/89tm/fXqlnTf968jjj90Z1pz9mzY9dImt4zFBt8Zih2uIxQ9WR9LopcVMqBUlC1jnBCVM3TcW46HFwcW7c88XaHLd2EyjJCfa0adMwYMAA1ZNkyZUrV1Q1Oim0YI2kqS1cuLDSekmf8/b2tjj+RsbcSOBhiaQCyj5xcXGYN2+eClr09D9LAKEPyIRGo1HBmqwz/llPgiEh6ySYkPcuY7EmTJig0g7Xrl2rgpEdO3YYqutJL05oaKhJ29zd3dVz6NuxceNGQ++PuPHGG9VryT7yHsX777+vgh95XkkD/Mtf/qKe2xJpt7RPevmE3M+ZM0f1lkmA9c4771R6jHyO8pq7d+9WvX5UPyQ1lag2eMxQbfGYodriMUPW/Jr7K1JzU61ul2ApJScFSz9fih5+PdCYjM/lHSZQkjE5Mg5JUsoskZP98ePHq4ICUrbaGjmRnzFjhsnjpIdGAh7zdLGioiJcuHBBBRdSiMGae++9F++9954KZoyfQx94ybghKdYgsrKycPbsWVVwQfaV9TLuSH6WnhYJqn7++Wd07NhRpdgJZ2dntGvXDr1791bLUoZbHp+ZmamKXUg5cgkSx44da7F9+nZIgCk9Rcak+IO8tj6AkiBJ/zrSztdee81qGp28rgRK5tvd3NxUEGTpcfKZymtK6mRVnynV/KqH/EMkPYryuRNVh8cM1RaPGaotHjNUnYwjGcDZandDRPcIjOs2Do3JuPPCIQIlSW/79ttvVS+EpTQwCS7GjBmjxsdIb0ZVf5Ryci83c/IY88dJb4+MBZJARW7mzp8/j/j4eJV69qc//alSSXD9YxYtWqSKOMh26XVq1aqVCq5k+9NPP62CHRlbpe8leuONN9TN+DWlx+fy5csqypVt8l4lwJOgQ55j5syZar/bbrtNpR/u27dPBSoPP/yw4XksvQ/9Ov16CXCk10d6lGT8lwRXlt67kM9G9pd26X8P0vskaYWSKmjpcbJOHmfp86a64+dJtcVjhmqLxwzVFo8ZMiedAp+f+BxzdsxBTYS3CG/0Y6g2r+dq6w9Temkk+JES11L+2lLUN3r0aBX8fP31143aSyFFGj799FPcfPPNqiqdNdIrM3XqVBVUSW/NN998o9LixA033KDG9UilO0kblGBKUgONCzkI2S43CYwkeJHgTH4W8jgJxCSt8Ny5c6rXSJ537ty5tX5PMp5KyHNI0CVpflWR3jJ9yp/0XElBjTfffBMPPfRQrV+biIiIiJqmExknMDluMr5L/E4tuzi5QKO1XApcxiiF+YdhYPuBsGeutk63++STT/DVV1+pHpSLFy8aUs8kSJAgSVLmpJfl448/Vsv67jIJHBq6WICUwpZbdSTgMJ87ydjvfvc7dZOxSNJ+85Q1meOoKtJDI4GY3CwZMmSIoVCEMeN1UrXP0j5VkRTHqtIciYiIiKh5yynOwcKdC7H6wGqUlZfB09UTswfMRsegjvjT+j+pfYyLOkiQJFaOWdnohRwcKlCSngn9ib4xCU6kx0XG8vz4449qXUxMjMk+UmJbTv6JiIiIiKhxabVafPLrJ3hm6zNIz0tX6+7sdCdWjl6JqEBdlpiHq4eqbieFG/SkJ0mCJHsvDW4XqXdVsdZTQkREREREtnH00lFM2jgJe87vUcsxLWOwaswqjIs1LcwgwdBdne7CjnM7ELc3DmNvG4uh0UPtvifJroo5OCoGckRERETUXFwruoYXdryAdT+tU+OPvFy98Nyg5zCz/0zVe2SJBEWDIwYj/3i+uneUIEkwUCIiIiIiIqvKteX4x5F/4Nltz+Jyvq4a8n1d78OyUcvQPqA9mioGSkREREREZNHP6T+rNLsfUn5Qy52COmHN2DUY2WEkmjoGSkREREREZOJq4VU8991zeOvgW6pqnY+bD14Y/AKm9psKdxfdNDhNHQMlIiIiIiIypNm9//P7mLN9DjILM9W6B7o/gCUjl6Cdfzs0JwyUiIiIiIgIB1IPqDS7n9J+Usvdgrth7bi1GBJpOpVPc8FAiYiIiIioGcvIz8Dc7XPx/i/vqzQ7fw9/LByyEBP7ToSbixuaKwZK9UyjAfbsAdLTgdBQYOBAwMVxqiASERERUTOhKdfg7UNvq7FIWUVZat2DPR/E4pGLEeIbgubO2dYNaErWrwciI4GhQ4EJE3T3sizrG8ojjzwCJycnwy0oKAhjxozB0aNH6/R86enpmDBhAjp27AhnZ2dMmzat3ttMRERERLb1/YXvcdO7N2HixokqSOrVphf2/HkP/nHPPxgk/YaBUj2RYOi++4CUFNP1qam69Q0ZLElgJAGO3LZv3w5XV1fcfvvtdXqu4uJiBAcH47nnnkOvXr3qva1EREREZDuX8i7hkf89ggF/H4DDFw+jhWcLrB27Fgf/ehC3tb/N1s2zK0y9s0KrBQoKap5uN2WK7jGWnsfJCZg6FRg2DMjP16XiOVcRonp76x5TUx4eHggJ0UX+cj979mwMHDgQGRkZKuipjcjISKxatUr9/Pe//71WjyUiIiIi+1RWXoZ1B9bh+Z3PI6c4R617rM9jeGX4K2jt09rWzbNLDJSskCDJ17d+nkuCJelpCgyU6KhFtfvn5QE+PnV7rby8PHz88ceIiYlRaXiiW7duSE5OtvoYCari4uLq9oJEREREZNd2J+9WKXbHLh9TyzeG3oh149bhlrBbbN00u8ZAqQn49ttv4ftbVJefn4/Q0FC1TsYYiY0bN6K0tNTq4728vBqtrURERETUONJy0/DM1mfwya+fqOWWXi3x6vBXVU+SizOrjVWHgVIV6W/Ss1MTu3cD48ZVv9+GDeXo1SsH/v7+hiDG2mvXxtChQ/Hmm2+qn7OysvDGG29g7NixOHDgACIiItSNiIiIiJqHUk0pVv24Cgt3LUReSR6c4IQnbnwCi4YtQpC3LuOIqsdAyQoZI1TT9LdRo4CwMF3hBkvjlOS5ZPvIkboxSvK8VY1Rqi0fHx+Vaqf33nvvISAgAO+++y4WLVrE1DsiIiKiZmL7ue2YHDcZJ6+cVMu3tLtFpdnd2PZGWzfN4TBQqgdSnEHqH0h1OwmKjIMlfVGGlSsbbz4lKRMuPVaFhYVqmal3RERERE3bhewLmLllJj4/8blaDvYOxusjXsfDvR+GsxMLXdcFA6V6cu+9wBdf6KrbGZcIl54kCZJke3l5w7y2lPS+ePGiIfVu7dq1qqjDHXfcodbVNvXu8OHD6l6eQyrnybK7uzu6du3aAK0nIiIioroqLivG8h+WY9GeRSgoLVBB0VM3PYUXh76IQK9AWzfPoTFQqkcSDN11F7Bnj0zcCoSGSlpbw/ckbdq0SRVwEH5+fujcuTM+//xzDBkypE7P16dPH8PPhw4dwieffKKCraSkpHprMxERERFdn00JmzAlbgrir8arZZkHSeZE6hXCuTDrAwOleiZBUR3jkzr58MMP1a0+aS0NtCIiIiIiu5B0LQnTN0/H/079Ty2H+IZgycgl+FOPP6khGFQ/GCgRERERETmAorIiLN63GK/ufVX97OLkgqm3TMULQ16Av4e/rZvX5DBQIiIiIiKyc9+c/gbTNk/DuaxzanlI5BCVZtetdTdbN63JYqBERERERGSnzl49i6mbpmJD/Aa13M6vHZaNWob7u93PNLsGxkCJiIiIiMjOSAW7V/e8isXfL0aJpgRuzm6Y3m865g+eD193X1s3r1lgoEREREREZCekqNaXp75UxRrOZ59X60ZGj8TqsavRuVVnWzevWWGgRERERERkB05fOY0pm6Zgy9ktarl9QHusGL0C93S+h2l2NsBAiYiIiIjIhvJK8rBo9yI1cWxpeSncXdzxzK3PYO7AufB287Z185otBkpERERERDZKs/vs+GeYuWUmUnNT1bpxseOwaswqxLSMsXXzmj0GSkREREREjexExglMjpuM7xK/U8tRLaJUgHR7x9uZZmcnGCjVM025BnvO70F6bjpC/UIxsP1AuDi72LpZRERERGQHcopzsHDnQqw+sBpl5WXwdPXE7AGzMWvALHi5edm6eWTE2XiBrs/6k+sRuSoSQz8aignrJ6h7WZb1DeWRRx5RVx30t6CgIIwZMwZHjx6t0/OtX78eI0eORHBwMPz9/dG/f39s3ry53ttNRERE1NzS7D4++jE6re2E5fuXqyDprk534cRTJ/DCkBcYJNkhBkr1RIKh+z67Dyk5KSbrU3NS1fqGDJYkMEpPT1e37du3w9XVFbfffnudnmv37t0qUNq4cSMOHTqEoUOH4o477sAvv/xS7+0mIiIiag6OXjqKwR8OxoNfPoiLeRfV+KONEzbif3/8H6ICo2zdPLKCqXdVRP0y0VdN0+2mxE2BFtrKzwMtnOCEqXFTMSxiGPJL8+FS4gJnZ+sxqlQ3qU1uqoeHB0JCQtTPcj979mwMHDgQGRkZqmeoNlauXGmy/Morr+Crr77CN998gz59+tTquYiIiIias2tF1/D8juex7qd1KNeWw8vVC88Neg4z+8+Eh6uHrZtH1WCgZIUESb6v1s+sxxIspeSmIHBJYI32z5uTBx93nzq9Vl5eHj7++GPExMSoNDzRrVs3JCcnW32MBFVxcXEWt5WXlyM3NxctW7asU3uIiIiImhsJij46/BGe3fYsMgoy1Lr7ut6HZaOWqbmRyDEwUGoCvv32W/j66oK6/Px8hIaGqnX6XitJoystLbX6eC8v6zmxS5cuVcHX/fff3wAtJyIiImpafk7/GRM3TsT+lP1quXOrzlg9ZjVGdhhp66ZRLTFQqiL9TXp2amJ38m6M+2RctftteGADegX2gr+ff7Wpd7Uh44jefPNN9XNWVhbeeOMNjB07FgcOHEBERIS61cUnn3yChQsXqtS71q1b1+k5iIiIiJqDq4VXMW/7PLx96G2VTeTj5oMXBr+Aqf2mqglkyfEwULJCxgjVNP1tVIdRCPMPU4UbLI1TkjFKsn1k9Ejk5+Wr560qUKotHx8flWqn99577yEgIADvvvsuFi1aVKfUu08//RSPP/44Pv/8c4wYMaLe2kpERETUlMhY9b//8nfM2T4HmYWZat0D3R/AkpFL0M6/na2bR9eBgVI9kHmSZIIwqW4nQZFxsCTLYuWYlY02n5IEeRKIFRYW1in17t///jceffRRFSyNHz++wdtLRERE5IgOpB5QaXYH0w6q5W7B3bB23FoMiRxi66ZRPWCgVE/u7XIvvrj/C0zdNNWkRLj0JEmQJNulMEJDKC4uxsWLFw2pd2vXrlXjiqSst6hN6p2k2z388MNYtWoVbrnlFsPzSjAlvVREREREzV1Gfgbmbp+L9395X10g9/fwx8IhCzGx70S4ubjZunlUTxgo1SMJhmTisD3n9yA9Nx2hfqEY2H5gg/ckbdq0SRVwEH5+fujcubNKmRsypPZXM9555x2UlZVh4sSJ6qYnwdOHH35Yr+0mIiIicrQ0u7cOvoXndjynSn+Lh3o9hNdHvI4QX91ULdR0MFCqZxIUNWZ3qwQv9RnA7Ny5s96ei4iIiKip+P7C9yrN7vDFw2q5V5teWDduHQa0H2DrplEDYaBERERERGTFpbxLmLVtFv5x5B9quYVnCywaughP3PQEXJ15Kt2U8bdLRERERGSmrLwM6w6sw/M7n0dOcY5a91ifx/Dq8FcR7BNs6+ZRI2CgRERERERkZFfSLkyKm4Rjl4+p5RtDb1RpdreE3WLrplEjYqBERERERAQgLTcNT295Gv8+9m+13NKrpepBkp6kxprmhewHAyUiIiIiatZKNCVY/eNqLNy1EHkleWoezCdufAKLhi1CkHeQrZtHNsJAiYiIiIiare3ntqs0u1NXTqnlW9rdotLsbmx7o62bRjbGQImIiIiImp0L2Rcwc8tMfH7ic7Uc7B2s5kN6uPfDcHZytnXzyA4wUCIiIiKiZqO4rBjLf1iORXsWoaC0QAVFE/tOxMIhCxHoFWjr5pEdYaBERERERM3CpoRNmBI3BfFX49Xybe1vw9qxa9ErpJetm0Z2iIFSfdNogD17gPR0IDQUGDgQcGGVFCIiIiJbSbqWhGmbpuGr01+p5RDfECwZuQR/6vEnODk52bp5ZKeYgFmf1q8HIiOBoUOBCRN097Is6xvII488ov7A9begoCCMGTMGR48erdPz7d27FwMGDFDP4+Xlhc6dO2PFihX13m4iIiKihlZUVoQXd72ILuu6qCDJxckFM/rNwOlJp/F/Pf+PQVJj0GjgtGsX2u3ere5Vp4KDYKBUXyQYuu8+ICXFdH1qqm59AwZLEhilp6er2/bt2+Hq6orbb7+9Ts/l4+ODSZMmYffu3Th58iSee+45dXvnnXfqvd1EREREDeWb09+g2xvd8MLOF1TANDRyKI48eQTLRi+Dv4e/rZvXrDoRXEeOxE3Ll6v7hu5EqE9MvbNGqwUKCmq2r0TGU6boHmPpeeRqxdSpwLBhQH6+LhXPuYoY1dtb95ga8vDwQEhIiPpZ7mfPno2BAwciIyMDwcHBqI0+ffqom15kZCTWr1+PPXv24K9//WutnouIiIiosSVcTVBpdhviN6jldn7tsGzUMtzf7X72INmiE0GrtdyJ8MUXwL33wp4xULJGgiRf3/p5LjlAUlLgHBiIFjXZPy9Punbq9FJ5eXn4+OOPERMTo9LnRLdu3ZCcnGz1MRJUxcXFWdz2yy+/4Pvvv8eiRYvq1B4iIiKixiAV7F7d8yoWf79YTSDr5uyGGf1n4LlBz8HXvZ7O6ajmnQjSSVBVJ8K0acBdd9n1WH4GSk3At99+C9/fgrr8/HyEhoaqdc6/9Vpt3LgRpaWlVh8vY5HMhYWFqR6psrIyLFiwAI8//ngDvgMiIiKiutFqtfjy1JeYvnk6zmefV+tGRo/EmrFr0KlVJ1s3r/kpKwP++c/Kw1HMg6ULF3QF0IYMgb1ioFRV+pv07NTE7t3AuHHV7la+YQNyevWCv7+/IYix+tq1MHToULz55pvq56ysLLzxxhsYO3YsDhw4gIiICHWrLUm1k96p/fv3q1Q+6aF64IEHav08RERERA3l9JXTmLJpCrac3aKW2we0x4rRK3BP53uYZtdYGVhHjwKHD0saku72669AUVHNHi9Vou2YTQOlV199VY1/OXXqlOrVuPXWW/H666+jU6eK6L+oqAgzZ87Ep59+iuLiYowePVoFAm3atGnYxskfV03T30aNki4YXc6lpS5GeS7ZLgPYZIySPG9VgVIdCjBIIKP33nvvISAgAO+++65KmatL6l1UVJS679GjBy5duqR6lRgoERERkT3IK8nDot2L1MSxpeWlcHdxx6xbZ2HOwDnwdqvdBWeqoStXdIGQcVB05gxQXl55X0/PmgVLMpWOHbNpoLRr1y5MnDgRffv2VSlec+fOxahRo3DixAl18i+mT5+ODRs24PPPP1cn/1KR7d5778W+fftgNyS3ctUq3cA0CYqMgyX91YyVKxstB1OuoEiPVWFhYZ1T74yVl5erIJWIiIjI1ml2nx3/DDO3zERqbqpaNy52HFaNWYWYlhUXjek6yHlsUlJFMKQPjKRDwBLpvJBCYL176+7lJpXtoqOr70SQ+UbtmE0DpU2bNpksf/jhh2jdujUOHTqEQYMGITs7G++//z4++eQTDJOKcQA++OADdOnSRaWE9evXD3ZDqnZI9Q4ZuGackykHgQRJst1SxF0PJIi5ePGiIfVu7dq1Km3ujjvuUOtqk3q3bt06tG/fXs2fJKRM+NKlSzFFqvoRERER2cjxy8cxOW4ydiTtUMtRLaJUgHR7x9uZZldXciH9xImKYEju5ZadbXl/yWDSB0P6wOi3ysuV2FEnQpMYoySBkWjZsqW6l4BJekJGjBhh2EdO4OVE/ocffrAYKEnQYNz7kZOTo+7lecx7VWRZrkxIj4ncrtvddwMSnMjANMm5lO5EiZTlICgvV68l9K9ZH+S5JOCUAg7Cz89PfUb/+c9/VLBZ29fRaDSYM2cOEhMT1XxMHTp0UCmSTzzxRI2eS/aRNsln62LnB78j0B+zVfUIEhnjMUO1xWOG7P2YySnOwaI9i7D24FqUlZfB09UTs/rPwsx+M+Hl5qWykqgGcnPhdPQonI4cgdPhw+omQZJTSUmlXbVublI2GdrevXW3Xr2g7dlTTjQrP6+14+COO+D06adwmTEDTka9Udp27aBZtgxaOWe2wfdObY5bJ63+7N3G5AT7zjvvxLVr17B37161TnqS/vznP1dK+7r55ptVAQMZz2ROxtIsXLiw0np5Lm+zIgkSCMi8Q+Hh4XB3d6/399QclZSU4MKFC6qHi19cREREVFdyiroraxc+SvsIWWVZat0tAbfg0baPoo1HA49Vd3AeWVkIOHcOAYmJhntfK4UTSr29kR0VpbtFR6v73LAwXbBUHzQaBJ04Ac+sLBQFBiKza1eb9iQVFBRgwoQJqoNGCqw5RI+SjFU6duyYIUiqK+kNmTFjhkmPkgRCMvbJ/MOQQhFyUi+ltT1l0Fkj/MHn5uaqXp+m2kUsn6mMeZLerMb4TJs6ueqxdetWjBw5Em719YVFTRqPGaotHjNkj8fMkUtHMG3zNOxL0Y1JjwmMwYpRKzC6w+gGeT2HJdk+Z88aeohUj5HcX7pkcXfpzVG9Q3L7racIUVEIcHJCQAM2s3TMGLv5ntFnm9WEXQRKUqBB5v2R8TAyf4+e9PZID4X0MrVoUTFVq1Rhk22WeHh4qJs5+aWY/2IkzUxf+KDKct31RJ+6pn/Npkjel7w/S5831R0/T6otHjNUWzxmyB6OmWtF1/D8juex7qd1KNeWqwp2zw18Tk0c6+Fa+fyuWZEMq2PHTMcTHTlieTobuSAvVaSNxxL17g2n4GA4NfPvGbdavL5NAyXpYZk8eTK+/PJL7Ny501CSWu/GG29Ub2b79u343e9+p9adPn0a58+fR//+/W3UaiIiIiKqTxIUfXT4Izy77VlkFGSodfd1vQ/LRi1TcyM1O9euVRRW0AdFUnTB0rAGyeDp0cO0yIIs13SaG7LPQEnS7WTs0FdffaXS0fSV26QMuKRvyf1jjz2mUumkwIOkzklgJUGSXVW8IyIiIqI6OZR2CJPiJmF/yn613LlVZ6wZuwYjoiuKeTVZUipACh0Yl+GW+8REy/tLwTOzXiLVc+RqF0liTY5NP9U333xT3Q8ZMsRkvZQAf+SRR9TPK1asUOlc0qNkPOEsERERETmuq4VXMW/7PLx96G1ooYWvuy9eGPwCptwyRU0g2+RoNLoJWs2DIpnI1RKZ3sU8KAoPryivTQ3O5ql31ZGCADK3j9yIiIiIyLFpyjV4/5f3MXf7XGQWZqp1D3R/AEtGLkE7/3ZoEgoKdOOJjIOio0eBwsLK+0oFuC5dKgdFgYG2aDkZYT8dERERETWKA6kHMHHjRBxMO6iWu7fujrVj12Jw5GA4rMzMyr1Ep07pKtKZk6lqpNKccVDUvbtunBHZHQZKRERERNSgMvIzMGf7HNWTJPw9/PHikBfxVN+n4ObiINUWJRMqOblyUHThguX9g4MrCizoA6OYGJvOIUS1w0CJiIiIiBosze6tg2/huR3PqdLf4uFeD+O1Ea8hxNfyVC92obRU1ytkHhRJNTpLOnSo6CHSB0WhoRxP5OAYKNWzck05zu85j9z0XPiF+qH9wPZwdmmacyYRERERWbPv/D5Vze7wxcNquXdIb5VmN6D9ANgVmYdIxg8ZB0UyvkjmLTInc/B062aaOtezp5RstkXLqYExUKpHJ9efxKapm5CTUjHjr3+YP8asGoMu93ZpkNeU6oAfffSRYVnKqPft2xeLFy9GT/nDvQ779u3D4MGD0b17dxyWLw4iIiKialzMu6jmQ/rHkX+o5RaeLbBo6CI8edOTcHG2cdrZpUsVwZA+MIqP16XVmfPzMy2uIPdduwLuTbAiH1nEQKkeg6TP7vsMMPs7y0nNUevv/+J+dLq7U4O89pgxY1RJdSFzUT333HO4/fbb1cS8dXXt2jU89NBDGD58OC7JlwoRERFRFcrKy7D2wFq8sPMF5BTrLho/1ucxvDr8VQT7BDduY6SQwrlzlYOi9HTL+7dtWzl1LioKcGZWUHPGQKmK0uWlBaU1TreLmxJXKUjSPREAJyBuahwihkWgNL8UJS4lam4oa9y83eBUi5xWDw8PhITo8nzlfvbs2Rg4cCAyMjIQLAMJ6+DJJ5/EhAkT4OLigv/97391eg4iIiJqHnYl7VJpdscuH1PLN7W9CevGrcPN7W5u+BcvKQGOHzdNnTtyBMjNrbyvnF917Fg5KGrduuHbSQ6HgZIVEiS96vtq/TyZFshNycWSwCU12n1O3hy4+9StWzcvLw8ff/wxYmJiEBQUpNZ169YNyVKlxQoJquLi4gzL0jt17tw59TyLFi2qUzuIiIio6UvLTcPTW57Gv4/9Wy239GqpepCkJ6lB0uyys3VBkHFQdOKErviCOQ8PoEcP09Q5Wfb1rf92UZPEQKkJ+Pbbb+H72x99fn4+QkND1Tp9r9XGjRtRaukL5DdeXl6Gn+Pj41WP1J49e+DqysODiIiIKistL8Wy/cvw8t6XkVeSByc44Ykbn8CiYYsQ5K27UHtdZMxQWpppxTm5l3Q6S1q0MO0hkvtOnXTFF4jqiGfCVaS/Sc9OTSTvTsYn4z6pdr8HNjyAwF6B8PP3qzb1rjaGDh2KN998U/2clZWFN954A2PHjsWBAwcQERGhbjWh0WhUut3ChQvRUbqliYiIiMxsT9yO6aenI+VoilruF9ZPpdndEHpD3Z5Qo9EVVDAfT5SRYXn/9u0rF1mQdSzFTfWMgZIVMkaopulvHUZ1UNXtpHCDxXFKTrrqd9Ejo5GXn6eet6pAqbZ8fHxUqp3ee++9h4CAALz77rsqda6mqXe5ubk4ePAgfvnlF0yaNEltKy8vV+O1pHdpy5YtGDZsWL21m4iIiBzHhewLmLFlBr448YVaDvYOxusjXsfDvR+Gs1MNz2sKC3Wlt417iaQ0d0FB5X3lXKlLF9OgSG6/DS0gamgMlOqBzJMkJcBV1Tu5mGEcLP12cWPMyjGNNp+SBHkSiBXKl1EtUu/8/f3x66+/mmyT3qnvvvsOX3zxBaKk+gsRERE1K8VlxVj2wzK8vOdlFJQWqKBobNBYfPDQBwj2q6Jo1NWrlVPnZBJX6UEy5+2tm4/IuMhC9+5yktKg742oKgyU6onMkyQlwC3Oo7RSN4+S9M40hOLiYlUWXJ96t3btWlXU4Y477lDrapp6J8GVzJlkrHXr1vD09Ky0noiIiJq+TQmbMCVuCuKvxqvl29rfhpWjViLlYIqaH8kwnkimJDEPiqxNU9KqVeXxRLGxgIuN51giMsNAqR5JMNTprk44v+c8ctNz4Rfqh/YD2zd4T9KmTZtUAQfh5+eHzp074/PPP8eQIUMa9HWJiIioaUq6loRpm6bhq9NfqeUQ3xAsGbkEf+ryB5RJ6tzOnXDeuVOXNieBkfQeWRIdXXk8kcxZxPFE5AAYKNUzCYoih0Q22ut9+OGH6tZQFixYoG5ERETU9BWWFmLJ90vw6t5X4VxQhAGXnTHNcyjuPB8G909XAb8+DrfiYtxo/kCplNutm2lQ1KuXrhodkYNioERERETU3GVkYP/Xb2LnVysRm5iFX9KBjlcBZ60MG9husqvW1xdXw8PRYuhQuNx4oy4okiBJ5i0iakIYKBERERE1FzKeKDHRpAx32aGDcL14Cf2k1Lf5/iEhpmlzffqgLDwcezdtwrhx4+DCeYqoCWOgRERERNQUlZQAJ06YFlmQW05F0Snjk8H4IKCge2d0HvlHeNx4iy44kkDJXBWVdImaEgZKRERERI5Ogp8jR0wnbT1+3GJQo3V3x7WYMGz2u4Q9Qfk4HAIE9xuG1+95A71adbJJ84nsEQMl1QttaZZYqgt+lkRERA1I/p2VKUGMy3DL7exZy/sHBJikziVFtMDfzq3GpvO6cUftA9pjxegVuKfzPWoeRiKq0KwDJbff8moLCgoMk67S9ZHP0vizJSIiojqS+RcTEkzGE6n7y5ct7x8WVmk8EWQuRScn5JXkYdHuRVi+ezlKy0vh7uKOWbfOwpyBc+Dt5t3Y74zIITTrQMnFxQUtWrTA5d++cLy9vRv0aopMOFtSUoKioiI1uWtT60mSIEk+S/lM5bMlIiKiGioq0qXKGQdFkkqXn195XzmH6NTJdNJWuclErhb+ff7s2H8wc8tMpOamqnXjYsdh1ZhViGkZ0xjvjMhhNetASYT8NkhRHyw1JPmyKiwsVL1XTbV7W4Ik/WdKREREFmRlVRRW0AdFJ08CZWWV9/X0BHr2NA2KevSQq7vVvszxy8cxOW4ydiTtUMtRLaJUgHRHpzsa4l0RNTnNPlCSgCU0NBStW7dGaQNXcZHn3717NwYNGtQkU9PkPbEniYiIyGg8UUqKadqc3CclWd4/KMg0dU7uO3bUTeZaCznFOVi4cyFWH1iNsvIyeLp6Ys5tc/DMrc/Ay41DDYhqqtkHSnpygt/QJ/ny/GVlZfD09GySgRIREVGzJb1BZ85UDooyMy3vHxlZOSiSMUbXkXEimSv/+vVfeGbrM7iYd1Gtu7vz3Vg+ajmiAqPq/LxEzRUDJSIiIqLakMJFv/5qGhTJcmFh5X3lImzXrqZBUa9eQGBgvTbpyMUjmBQ3CXvP71XLsS1jsXrsaoyJGVOvr0PUnDBQIiIiIrLmyhXTMtzy8+nTuop05nx8dEGQcVDUrZtunFEDuVZ0Dc/veB7rflqHcm25qmD33MDnMKP/DHi4ejTY6xI1BwyUiIiIiGQ8kYwdMk+dkzFGlrRuXVFgQR8YxcToKtI1AgmKPjr8EZ7d9iwyCjLUut93/T2Wjlqq5kYiouvHQImIiIiaFyneJFXmzIOi7GzL+0sAZD6eKDQUtnIo7ZBKs9ufsl8td27VGWvGrsGI6BE2axNRU8RAiYiIiJqu3Fzg6FHToOjYMaCkpPK+Umipe3fToEhKc/v7wx5cLbyKedvn4e1Db0MLLXzdffHC4Bcw5ZYpagJZIqpfDJSIiIioabh40bSHSO4TEnRpdeYk+DHuIZL7Ll0Ad/sLODTlGrz/y/uYu30uMgt1VfQm9JiAxSMWo51/O1s3j6jJYqBEREREjkUKKZw9W7nIggRKlrRrVzkoioq6rlLcjeXHlB9Vmt3BtINquXvr7lg7di0GRw62ddOImjwGSkRERGS/iouB48dNe4mOHAHy8irvK4FPp04VwZC+FLcUXnAwGfkZmLN9jupJEv4e/nhxyIt4qu9TcHPhXIxEjYGBEhEREdkHKaZgnjp34oRuMldzUnK7Rw/ToEiWpUS3A5M0u7cOvoXndjynSn+Lh3s9jNdGvIYQ3xBbN4+oWWGgRERERI1LxgylplYOihITLe8vk7Mal+GWe+k5cm1apzH7zu9TaXaHLx5Wy71Deqs0uwHtB9i6aUTNUtP6hiEiIiL7otEAZ85UHk8kE7laEhFReTxReLhDjCeqq4t5F9V8SP848g+13MKzBV4e9jKeuPEJuDi72Lp5RM0WAyUiIiKqH4WFwK+/mvYSSWluWW/OxUVXZc58PFHLlmguSjWlWPfTOryw8wXkFOeodY/1eQyvDn8VwT7Btm4eUbPHQImIiIhqLzOzcurcqVO6inTmvL11QZBxUNStG+DlheZqV9IulWZ37PIxtXxT25uwbtw63NzuZls3jYh+w0CJiIiIqh5PlJxcOSi6cMHy/sHBlccTxcToepAIablpeHrL0/j3sX+r5SCvINWD9GifR5lmR2RnGCgRERGRTmmprlfIOCiSW1aW5f07dKg8nig0tEmPJ6qrEk0JVu1fhRd3v4i8kjw4wQlP3vQkXhr6EoK8g2zdPCKygIESERFRcyTzEB09CudDh9Drm2/g8tJLwLFjunmLzLm56VLljIMiSaULCLBFyx3OtnPbMDluMk5dOaWW+4X1U2l2N4TeYOumEVEVGCgRERE1dZcvm6bNyS0+XqXVSbJXpPG+fn66QMg4KOraFfDwsF37HdT57POYuWUmvjjxhVoO9g7G4pGL8VCvh+Ds5Gzr5hFRNRgoERERNRVSSEHmIjIPitLTLe8fGory3r2R4OOD6N/9Dq59+wJRUYAzT+KvR3FZMZb9sAwv73kZBaUFKiia1HcSFg5dqEp/E5FjYKBERETkiEpKgOPHK48nys2tvK+MGYqNNS2yILc2baApLcXJjRsRNW6cLsWOrktcfBymbJqChKsJanlg+4FYO24terbpaeumEVEtMVAiIiKydzk5FYGQPiiSIEmKL5iTFLkePUxT53r2BHx9bdHyZiMxKxHTN0/HV6e/UsshviFYOnIpJvSYACcWtyBySAyUiIiI7KkUt6TJmafOnTtnef8WLUwrzsl9587sGWpEhaWFWLxvMV7b9xqKyorg4uSCqbdMxQtDXoC/h7+tm0dE14GBEhERkS1oNEBCQuWgKCPD8v7h4aZBkdzat2cpbhvRarX45sw3mLZpGhKvJap1QyOHYs3YNejWuputm0dE9YCBEhERUUMrKtKV3tYHQxIYHT0K5OdX3lcKKUivkHlPURDn2rEXMv5o6qap2Bi/US2382uH5aOX4/ddf880O6ImhIESERFRfbp6tfJ4opMndT1I5ry8dOOHjIssyPgiWU92RyrYvbLnFSz5fomaQNbN2Q0z+8/EvEHz4OvOMWBETQ0DJSIiorqOJ7pwwTR1Tu6Tky3vLz1C+oBIHxR17Ai4yExGZO9pdutPrseMLTPU3EhiVIdRWD1mNTq16mTr5hFRA2GgREREVJ2yMuD06cpBkfQeWSJzEZmnzrVrx/FEDuj0ldOYHDcZW89tVcvtA9pj5eiVuLvz3UyzI2riGCgREREZk3FDv/5qGhTJsowzMufqCnTtahoU9eqlq0ZHDi2vJA8v7XoJK/avQGl5Kdxd3DHr1lmYM3AOvN28bd08ImoEDJSIiKj5kgpzxhXn5OczZ4Dy8sr7yjxEEgQZp85166abt4iaVJrdZ8c/w8wtM5Gam6rWjY8dj5VjViKmZYytm0dEjYiBEhERNY/xRImJlVPnUnUnwpWEhJiW4ZafO3TQVaSjJuv45eMqzW5H0g61HNUiCqvGrMIdne6wddOIyAYYKBERUdNSUqKrMmceFOXkWN4/NrbyeCIJlKjZyCnOwYKdC7D6x9XQaDXwdPXEnNvmYNaAWepnImqeGCgREZHjkuBH5iMyDoqOH9cFS+bc3YHu3U2DIinN7edni5aTnaTZ/evXf+GZrc/gYt5FtU6KNKwYvQKRLSJt3Twias6B0u7du7FkyRIcOnQI6enp+PLLL3H33Xcbtufl5WH27Nn43//+h8zMTERFRWHKlCl48sknbdlsIiKyhfR00x4iuU9IsLxvQIBpD5Hcd+kCuLk1dqvJTh25eAST4iZh7/m9ajm2ZSxWj12NMTFjbN00IrITNg2U8vPz0atXLzz66KO49957K22fMWMGvvvuO3z88ceIjIzEli1b8NRTT6Ft27a48847bdJmIiJqYFJIQQIg8yILly5Z3j8srHJQFBnJUtxk0bWia5j/3Xy8cfANlGvLVQW75wY+hxn9Z8DDlYU5iMhOAqWxY8eqmzXff/89Hn74YQwZMkQt//Wvf8Xbb7+NAwcOMFAiImoKiouBY8dMg6IjR3Qlus1JIYVOnUyLLEgVuuBgW7ScHIwERR8e/hCzt81GRkGGWvf7rr/HslHLEB4QbuvmEZEdsusxSrfeeiu+/vpr1eMkvUg7d+7EmTNnsGLFCquPKS4uVje9nN8G75aWlqqbLelf39btIMfBY4aa1DFz7RqcjhyB0+HDhnucOgUnmczVjNbTE9oePaCVoKhXL3WvlfFF3hbmr7HH9+pA7PqYqSc/p/+MqVum4sfUH9Vy56DOWDlqJYZFDWvy770hNIdjhupPuaYciTsTkbU7C2c9ziJqSBScXWxXQbQ2x62TVkYy2gGZ3dp8jJIEPNKL9I9//AOurq5wdnbGu+++i4ceesjq8yxYsAALFy6stP6TTz6Bt6V/YImIqH5ptfC8cgUBiYkVt3Pn4HP5ssXdS/z8kB0VhWvR0ciJikJ2dDTy2raF1sWl0ZtOTUtOWQ7+lf4vbMncAi208HT2xB9D/ojxrcbDzZnj1Yga2rUfriH1vVSUZlYEJ25Bbmj3eDu06G+bibkLCgowYcIEZGdnw9/f33F7lNasWYP9+/erXqWIiAhV/GHixImqd2nEiBEWHzNnzhw1tsm4Ryk8PByjRo2q9sNojAh269atGDlyJNw4oJhqgMcM2f0xo9EAp0/reoiMe4syMy3uro2MhLZnT10P0W89RU5hYWjh5ATb/JNJTfF7RlOuwQdHPsBzO5/D1cKrat0fu/0Rrw17DW392tq6eQ6vKR4zVP9OfXkK6xevB8y6ZEqvliJpcRLu/fRedL6nc6O3S59tVhN2GygVFhZi7ty5qpdp/Pjxal3Pnj1x+PBhLF261Gqg5OHhoW7m5A/ZXv6Y7akt5Bh4zJBdHDMFBcCvv5qOJ5LlwsLK+0pvUNeupkUWJCgKDARLLNinpvI982PKj6qa3cG0g2q5e+vuWDt2LQZHDrZ105qcpnLMUMOk222bua1SkKTIOidg29Pb0O133Ro9Da82x6zdBkr6MUWSbmfMxcUF5VIRiYiIGo70CBlXnJP706d1FenM+fjoiioYF1no1g3w5ESd1Hgy8jNUoYa/H/67Wvb38MeLQ17ExJsnwtXZbk93iJqc0sJS/LjqR+SkVNFzowVyLuTg/J7ziBxiv3OW2fSbQ+ZJSjCaAyMxMVH1GLVs2RLt27fH4MGD8cwzz8DLy0ul3u3atUuNV1q+fLktm01E1HTIMNXk5MpBUUqK5f1bt64IhvSBUYcOuh4kIhsoKy/D2wffxnM7nlOlv8XDvR7G6yNeRxvfNrZuHlGzkJOSgzMbziD+23ic234OZYWVi/RYkpueC3tm00Dp4MGDGDp0qGFZP7ZISoJ/+OGH+PTTT9WYoz/96U+4evWqCpZefvllTjhLRFQXUunn5EnTSVvldk13clmJBEDmQVFICOcnIrux7/w+TNw4EUcuHVHLvUN6Y924dbg1/FZbN42oyafWpf2UhjPfnlG3S0dM57nzbuWNgisF1T6PX6gf7JlNAyWZH6mqonshISH44IMPGrVNRERNQl4ecOKEaVAk8xUZTZ9gIPnaUnrbeDyRpNLZuAAOkTUX8y7i2W3P4h9H/qGWW3i2wMvDXsYTNz4BF2f2bhI1hKLsIpzdclb1GsVvjDcNhJyAsH5h6Hh7R8SOj0Vwt2CsjlqNnNQcy+OUnAD/MH+0H9ge9oxJu0REju7SJUMw5HLoEIZ//z1c09N1aXXmJPj5rbCCISiSogvu7rZoOVGtlGpKse6ndXhh5wvIKc6BE5zwWJ/H8MrwVxDsw4mHiepb5plMQ6+RjCcqL6sYp+rh74GYMTGIvT1W3fsE+5g8dsyqMfjsvs9UUGQSLP2WlDBm5RibzqdUEwyUiIgchRRSOHfOdCyR3C5eNOwi/+T46hfatjVNm5NbZCRgViSHyBHsStqlqtkdu3xMLd/U9iaVZndzu5tt3TSiJkNTokHynmQVGMV/G4+rCbry+npBnYJUr5HcwgeEw8XNeg9ul3u74P4v7semqZtMCjtIT5IESbLd3jFQIiKyR5Iid/y4aerckSNAroWBrzJmqGNHFQhpevbEj8XF6PuXv8CtXTtbtJyoXqXmpOKZrc/g38f+rZaDvILw6vBX8WifR5lmR1QP8i7lISEuQQVHklpXklti2Obs5ozIwZGq16jj+I5oGdOyVs8twVCnuzrh3I5z2Bu3F7eNvQ3RQ6PtvidJj4ESEZGtZWdXFFbQB0USJJVZqBok88T17GmaOifLUqJbOp1KS5GxcaOuOh2RAyvRlGDV/lV4cfeLyCvJU2l2T970JBYNW4SWXrU7WSOiClIf4OLhi4Zeo9QDqSbbfdr4IHZcrOo1ih4ZDQ+/yvOT1oYERRGDI3A8/7i6d5QgSTBQIiJqLDJmKC3NNHVO7iWdzpLAQNPUObnv3Blw5Vc3NW3bzm3D5LjJOHXllFruF9ZPpdndEHqDrZtG5JBK8kuQuD1RFxxtiEdumml2QugNobpeo9s7ou2NbeHkzOqmgv/aEhE1BI0GiI+vHBRlZFjev337ykGRrGMpbmpGzmefx4zNM/Dfk/9Vy8HewVg8cjEe6vUQnJ0c5yo0kT24lnTNMLdR4o5EaIo1hm1uPm6IHhGtq1I3LhZ+be27TLetMFAiIrpehYW60tvGk7YePQoUWJhDQiZmlV4h86CoJVOJqPkqLivGsh+W4eU9L6OgtEAFRZP6TsLCoQtV6W8iqp5UpLvwwwXVYyQ9RxnHTS/MtYhsYeg1knFHrp4MA6rDT4iIqDauXjWtOCc/nzql60Ey5+2tGz9kHBTJfEVeXrZoOZFdiouPw5RNU5BwNUEtD2w/EGvHrUXPNj1t3TQiu1d4tRAJmxJUcBQfF4+irCLDNicXJ4TfGm6oUteqSys4MUuhVhgoERFZG090/nzl1DlZZ0mrVhUluPWBUWysrgeJiCpJzErE9M3T8dXpr9RyiG8Ilo5cigk9JvBkjqiKQgwZJzIMY40u7LsAbXnFJEWegZ6IHRurm9todAy8WvLC3PVgoEREJNXlpFfIPCjKyrK8f3R05dQ5mbOIJ3dE1SosLcTifYvx2r7XUFRWBFdnV0y9ZSqeH/w8/D38bd08IrtTVlSGpJ1JhuBIxh4Za929NWLH61LqwvqFwdmV4/nqCwMlImpe8vN144eMg6Jff9XNW2ROqst162YaFPXqBQQE2KLlRA5/JfybM99g2qZpSLyWqNYNjRyq0uy6Bne1dfOI7IpUpVOFGDbE49zWcygtKDVsc/FwQdSwKF1wNL6jGntEDYOBEhE1XZcvVx5PdOaMLq3OnJ+fLggyDoq6dtXNW0RE10XGH03dNBUb4zeq5XZ+7bB89HL8vuvvmWZHJBcSyrVIO5hm6DVK/zndZLtUpdNP+ho1PAruPu42a2tzwkCJiBxfeTmQmFg5dU7mLLIkNLQiGNIHRpJO58x0BaL6JBXsXtnzCpZ8v0RNIOvm7IaZ/Wdi3qB58HX3tXXziGyqOKcYZ7eeVeW74zfGI/9yfsVGJ6Ddze105bvHxyKkdwgvKtgAAyUiciwlJcCJE6ZB0ZEjQE5O5X3lHxUpqGA+nqhNG1u0nKhZpdmtP7keM7bMUHMjiVEdRmH1mNXo1KqTrZtHZDNXE64aeo2SdiWhvLTcsM3dz10VYJCeIynI4NPax6ZtJQZKRGTPJPiRIMg4KDp+HCityNU2cHcHevQwDYqkNLcvr1oTNaZTV05hStwUbD23VS23D2iPlaNX4u7Od/OKODU7mlINzu89bwiOMk9nmmxvGdMSHe/Q9RpFDIyAizsrpdoTBkpEZHsyZig93TRtTu7PnrW8f4sWpj1Eci+TuLq5NXbLieg3ucW5WLR7EVbsX4HS8lJ4uHhg1oBZmH3bbHi7edu6eUSNJj8jHwlxCSo4Orv5rEqx05OKdBGDIgzjjYI6Btm0rVQ1BkpE1PjjieLjKwdFUnjBkvDwykFRRARLcRPZUZrdf47/BzO3zERarm5c4PjY8Vg1ZhU6tOxg6+YRNcrfwKWjl3S9Rt/GI+XHFMCoZpB3sDdix8WqXqMOozrAM8DTls2lWmCgREQNp6gIOHbMtPKclOaWEt3mpJCC9AoZF1mQKnQykSsR2aXjl49jctxk7EjaoZajA6NVgHR7x9tt3TSiBiXluhO/SzSk1OWkmI6TleIL+l6jtn3bwtmFxYIcEQMlIqofMjmreS/RyZOARlN5Xy8v3fgh416i7t0Bb6bnEDmCnOIcLNi5AKt/XA2NVgNPV0/MvW0unhnwjPqZqCnKPp+tm9vo23gVJMlEsHquXq6IHhGtq1I3Lhb+YZw8uSlgoEREtR9PdOFC5aAoOdny/kFBpmW45b5jR8CFA1aJHDHF6OOjH+OZrc/gUv4ltU6KNKwYvQKRLSJt3TyielWuKUfqj6mq10hul381TREPaB+g6zW6vSMih0TCzYvjZJsaBkpEZF1ZGXD6dOWg6OpVy/tHRVUeT9SuHccTETUBRy4ewaS4Sdh7fq9ajm0Zi9VjV2NMzBhbN42o3hRdK0LC5gTd3EZx8SjMLDRsc3J2Qlj/MBUYyS24WzArOTZxDJSISKegQDd+yHg80a+/6sYZmXN1Bbp2NQ2K5CbV6IioSblWdA3zv5uPNw6+gXJtuapgN3/QfEzvNx0erh62bh7RdfeSXjl1RY0zkl4jKeWt1VRUYvBs4YmYMbq5jeTeO4gp4s0JAyWi5ujKFdMeIrmdOaOrSGdO5iGSogrGRRYkSPLkOASipkyCog8Pf4jZ22YjoyBDrbu/2/1YOnIpwgPCbd08ojorKy5D8q5kw3ijrHNZJtuDuwarCnXSaxR+a7gq6U3NEwMloqY+nigpqSIY0gdGqamW92/TxjRtTm4dOugq0hFRs3Eo7RAmbpyIH1N/VMtdWnXBmrFrMDx6uK2bRlQnuem5iN8Yr3qOzm45i9L8ionLZZJXGWOkr1IXGB1o07aS/WCgRNRUlJYCJ06YjieSW3a25f1jYioXWQgJaexWE5EdySzIxLzv5uGdQ+9ACy183X2xYPACTL5lMtxd3G3dPKIa05Zrkf5zuqHXKO2gbo4vPd8QX0OvkVSrc/fl8U2VMVAickS5ucCRI6ZBkcxXVFJSeV93d13pbePxRJJK5+dni5YTkR2SEt/v/vwu5u+aj6uFumItE3pMwJKRS9DWr62tm0dUIyV5JTi79azqNZJb3sU8k+0yn5E+OArtE6qKMxBVhYESkZ3zyMqC06ZNukBIHxQlJOjS6swFBFQUVtD3FskkrhIsERFZcCD1AGadmYWzR86q5R6te2DtuLUYFDHI1k0jqpaML9L3GiXtTIKmpGLuPukl6jCqgwqOZG4j6UUiqg0GSkT2QgopnD1rMpbI9ZdfMOaSbq6SSqTstvl4oshIluImohrJyM9QhRr+fvjvatnfwx8vDX0JT/V9Cq7OPD0g+6Qp1eDC9xcMVequnLxisl3GF+nnNooYFAFXDx7LVHc8eohsobhY10NknDonqXR5pmkCEvJoJfDp2BFON9xgWoo7ONhmzScix1VWXoa3Dr6F+Tvmq9LfYmjgUPzjwX8gLDDM1s0jqqQgswAJcQkqOErYlKDmOtJzcnFCxMAIQ0pdUKcgzm1E9YaBElFDu3atorCCPiiSogsymas5Kbndo4ehh6ise3dsSk3F6HvvhZsbZ/wmouuz7/w+Vc3uyKUjarlPSB+sHLUSWUez0Ma3ja2bR2SY2+jyscuqx0iCo5QfUlRxBj2vIC+VSifBUczoGDXXEVFDYKBEVF9kzJCU3TYuwy33iYmW92/Z0jR1Tu47ddJN5qp/ytJSaDZubLz3QERN0sW8i5i1dRb+efSfarmFZwu8POxlPHHjEyjXlGPjUX7PkG2VFpYiaUeSITjKPm9asbVNzzaG8t3tbmkHZxdOW0ENj4ESUV1oNLoJWs2DIpnI1ZKIiMpBUXg4xxMRUYMq1ZRi7YG1eGHnC8gtyYUTnPD4DY+rICnYR5e+K4ESkS3kpOQYCjGc234OZYUVmRaunq6IGh6l0umk9yigfYBN20rNEwMlouoUFJhWnJP7o0eBwsLK+7q4AF26VA6KAjl5HRE1rp1JOzFp4yQczziulvu27auq2d3c7mZbN42aKQnK035KU71Gcrt0xLRYkX+Yv6HXKGpYFNy8mXJOtsVAichYZmZFMKQPjE6d0lWkM+ftrZuPyHjSVpmvSMYZERHZSGpOKp7e+jQ+PfapWg7yCsJrI17Do30ehbMT05WocRVlF+HslrOq1yg+Lh4FGQUVG52AsH5hul6j8bEqvY6FGMieMFCi5jueKDm5clB04YLl/Vu3rtxLFBOj60EiIrIDJZoSrNq/Ci/ufhF5JXkqze7Jm57EomGL0NKrpa2bR81I5plMQ6/R+T3nUV5WcbHRw98DMWNiVM+R3PsE+9i0rURVYaBETV9pqa5XyHw8kVSjs6RDh8pBUWgoxxMRkd3adm4bJsdNxqkrp9Ry/7D+Ks3uhtAbbN00agZkktfkPcm6QgzfxuNqwlWT7VKyW3qN5BY+IBwubrzISI6BgRI1LTIPkYwfMg6KZHyRzFtkTsptd+tmGhT17AkEcMAoETmG89nnMWPzDPz35H/Vcmuf1nh9xOt4qNdDTLOjBlV6rRRH/3EUZ+POqtS6ktwSwzZnN2dEDo40jDdqGcMeTXJMDJTIcV26VDl1Lj5el1Znzs/PtIdI7rt2BdzdbdFyIqLrUlxWjKXfL8XLe15GYVmhCoom9Z2EhUMXqtLfRA0xt9HFwxd1KXXfnEHawTQc1+oKhQifNj6qOp30GkWPjIaHn4dN20tUHxgokf2TQgrnzlUOitLTLe/ftm1FMKQPjKKiAGdeXSUixxcXH4cpm6Yg4WqCWh7YfqBKs+vZpqetm0ZNTEl+CRK3JxrmNspNyzXZHtInBB3v0KXUtb2xLZycmaJOTQsDJbIvJSXA8eOmqXNHjgC5pl/OiowZ6tixclAkhReIiJqYxKxETNs8DV+f/loth/iGYOnIpZjQYwIrhVG9uZZ0zTC3UeKORGiKNYZtbj5uiB4RjQ5jOyDZPRl3/d9dcJM0dqImioES2U52ti4IMg6KTpzQFV8w5+EB9Ohhmjony76+tmg5EVGjKSwtxOJ9i/HavtdQVFYEV2dXTL1lKp4f/Dz8Pfxt3TxycFKRLmV/iqFKXcbxDJPtLSJb6MYa3d5RjTuSiWBLS0uRtjHNZm0maiwMlKjhyZihtDTTinNyL+l0lsjkrObjiTp10hVfICJqRmNCvjnzDaZtmobEa4lq3bCoYVgzdg26Bne1dfPIgRVeLUTC5gTD3EZFWUWGbU4uTgi/NdxQpa5Vl1bssaRmi4ES1S+NRldQwTwoyjC9QmXQvn3l1DlZxy9lImrGZPzRlLgpiEuIU8vt/Nph+ejl+H3X3/OkleoUdGecyFDjjKTX6MK+C9CWVxQ+8gz0ROzYWN3cRqNj4NXSy6btJbIXDJSo7oqKgF9/NS2yIKW5C4xm3daTQgpdupgGRb16AUFBtmg5EZFdyi/Jx6t7X8WS75eoCWTdnN0ws/9MzBs0D77uTDWmmisrKkPSziTDeCMZe2SsdffWiB2vS6kL6xcGZ1cWPCIyx0CJaubq1cq9RDKJq/QgmfP21s1HZJw617074MUrVERE1q74rz+5HtM3T8eFnAtq3agOo7B6zGp0atXJ1s0jByFV6VRgtCEe57aeQ2lBxZhfFw8XRA2L0gVH4zuqsUdEVDUGSlR5PNH585WDIllnSatWpmlzch8bC7hw1m0iopo4deWUSrPbem6rWo4IiMCK0Stwd+e7mWZHVZL0OZnPSF++O/1n02kz/Nr6GSZ9jRoeBXcfzh1IVBsMlJqzsjJdr5BxUCQ36T2yJDq6cpEFmbOI/5ATEdVabnEuXtr9ElbsX4Gy8jJ4uHhg1oBZmH3bbHi7edu6eWSninOKcXbrWV0hho3xyL+cX7HRCWh3czuVTic9RyG9QxhsE10HBkrNRX6+bvyQ8XgiGV9UXFx5X1dXoFs306BIxhO1YDc9EVF9pNn95/h/MHPLTKTl6kos397xdqwcvRIdWnawdfPIDl1NuGroNUralYTy0nLDNnc/d1WAQXqOpCCDT2sfm7aVqClhoNQUSYU547Q5uZ05o0urMyfzEEkgZBwUSZAk8xYREVG9Onb5GCbHTcbOpJ1qOTowGqvGrFKBEpGeplSD83vPG4KjzNOZJttbxrY0lO9uf1t7uLgz3Z2oITBQcmQS+CQmVgRD+sBI5iyyJCSk8ngiSaeTinRERNRgsouysXDXQqz+cTU0Wg08XT0x97a5eGbAM+pnovyMfCTEJajAKGFTgkqx05OKdBGDIgzjjYI6smIsUWNgoNRYNBo47dqFdrt3w8nHBxg6tHYFD0pKgJMnTYMiueXkVN5X8pGloIJxL5HcJFAiIqJGTbP7+OjHeGbrM7iUf0mtu6fzPWpOpMgWkbZuHtn42Lh09JKh1yhlfwpglPjhHeyN2HGxaqxRh1Ed4BnAgJqosTFQagzr1wNTp8I1JQU3yfLy5UBYGLBqFXDvvZX3l+DnyBHTIgvHj+uCJXPu7kCPHqZBkZTm9vNrjHdGRERWHLl4BBM3TsS+C/vUcmzLWKwZuwajY0bbumlkI1KuO/G7RENwlJNierFTii/oe43a9m0LZxdmfBDZEgOlxgiS7ruv8vig1FTd+nffBUJDTYOihATLzxUQYJo2J/cyiaubW6O8FSIiql5WYRae3/E83jj4Bsq15aqC3fxB8zG933R4uHL8Z3OTfT7bMOmrBEkyEayeq5crokdE66rUjYuFf5i/TdtKRKYYKDUkmYx16lTLRRT06x5/3PJjpcfJOCiSW0QES3ETEdkpCYo+PPwhZm+bjYyCDLXu/m73Y+nIpQgPCLd186iRlGvKkfpjquo1ktvlXy+bbA9oH6DrNbq9IyKHRMLNixc7iewVA6WGtGcPkJJS/X7t2wO33WY6nkgmciUiIodwMO0gJm2chB9Tf1TLXVp1UWl2w6OH27pp1AiKrhUhYXOCbm6juHgUZhYatjk5OyGsf5ihSl1wt2DObUTkIBgoNaR00xmyrXrtNeCBBxq6NUREVM8yCzIx77t5eOfQO9BCC193XywYvABTbpkCNxf2FDTlQgxSslvfaySlvLWaiuwRzxaeiBmjm9tI7r2DOIEwkSOyaaC0e/duLFmyBIcOHUJ6ejq+/PJL3H333Sb7nDx5Es8++yx27dqFsrIydO3aFf/973/RXnph7J2MParP/YiIyC5oyjV47+f3MPe7ubhaeFWt+1OPP2HxyMVo69fW1s2jBlBWXIbk3cm6QgzfxiPrXJbJ9uCuwapCnfQahd8arkp6E5Fjs2mglJ+fj169euHRRx/FvRaqv509exa33XYbHnvsMSxcuBD+/v44fvw4PD0dpETmwIG6sUZSuMHSOCXpepftsh8RETmE/Sn7VZrdofRDarlH6x5YO24tBkUMsnXTqJ7lXcxD/MZ4FRyd23oOJXkV1WdlklcZY6SvUhcYHWjTthJREwuUxo4dq27WzJs3D+PGjcPixYsN6zp06ACHIfMkSQlwqW4nQZFxsKTPT165snbzKRERkU1k5GeoQg1/P/x3tezv4Y+Xhr6Ep/o+BVdnZrI3BdpyLdJ/TjdUqUs7aDqBu2+Ir6HXSKrVufu626ytRNTw7Pabvby8HBs2bMCsWbMwevRo/PLLL4iKisKcOXMqpecZKy4uVje9nN8mZC0tLVW3RnfHHXD69FO4zJgBJ+lZ+o22XTtoli2D9o47pHGN3y5yCPpj1ibHLjkkHjP1r6y8DO/8/A4W7F6Aa0XX1LqHej6El4e8jDa+bdTYlFKN437ezf2YkV6ixO2JSNiYgIS4BORfzDfZHnpTKGLGxiBmfIya50iKM+g118+suR8z5NjHTG3a4KSVEYl2QCrAGI9RunjxIkJDQ+Ht7Y1FixZh6NCh2LRpE+bOnYsdO3Zg8ODBFp9nwYIFKk3P3CeffKKey2Y0GgSdOAHPrCwUBQYis2tX9iQREdm5E3kn8E7KO0gqSlLL0V7R+GvYX9HZp7Otm0bXofhiMXIO5qhb3rE8aMsqToWcPZ3h19sP/jf5w/9Gf7gFsigHUVNSUFCACRMmIDs7Ww3rcchAKS0tDe3atcMDDzygghy9O++8Ez4+Pvj3v/9d4x6l8PBwXLlypdoPozEi2K1bt2LkyJFw4ySxVAM8Zqi2eMzUj/S8dFWo4V/H/qWWAz0D8eLgF/F4n8fh4ty0LnI1h2NGU6pByg8pOLvxrBpzlHkq02R7i+gWiBkXoyZ9DR8YDlcPu024sQvN4Zih+mVPx4zEBq1atapRoGS33wTyBlxdXVWVO2NdunTB3r17rT7Ow8ND3czJL8XWvxh7bAs5Bh4zVFs8ZupGUujWHliLF3a+gNySXDjBCY/f8DheGf4KWnk37fntmtoxU5BZoFLp4jfEI2FTgprrSM/JxQkRAyMM442COgVxbqM6aGrHDDWPY8atFq9vt4GSu7s7+vbti9OnT5usP3PmDCIiImzWLiIiapp2Ju1U1eyOZxxXy33b9lXV7G5ud7Otm0Y1IAkyl49dVoGRVKmTHiQpzqDnFeSleowkOIoZHaPmOiIisttAKS8vDwkJCYblxMREHD58GC1btlTzJD3zzDP4wx/+gEGDBhnGKH3zzTfYuXOnLZtNRERNSGpOKp7e+jQ+PfapWg7yCsJrI17Do30ehbMT58KxZ6WFpUjakWSoUpd9Pttke5uebQzlu9vd0g7OLvx9EpGDBEoHDx5UAZDejBkz1P3DDz+MDz/8EPfccw/eeustvPrqq5gyZQo6deqkJpuVuZWIiIiuR4mmBCv3r8SLu15Efmm+CoqevPFJvDTsJbT0amnr5pEVOSk5usBoQzzObTuHssIywzZXT1dEDY9S6XTSexTQPsCmbSWiZhIoSXGFtm3rd7bxIUOGqK7yqshktHIjIiKqL1vPbsXkuMk4nalL7+4f1h/rxq1Dn9A+tm4amSnXlCPtpzSVTifB0cXDF022+4f563qNbu+IqKFRcPPmmBkiauRAqVu3bli3bp0qp0dEROSIzmefx4zNM/Dfk/9Vy619WmPxiMV4sNeDTLOzI0XZRTi75axKp4uPi0dBRkHFRicgrF+YrtdofKxKr2MhBiKyaaD08ssv44knnlAlvN9++201joiIiMgRFJcVY+n3S/HynpdRWFYIFycXTLp5EhYMWYAWni1s3TwCkHkmU/Uaye38nvMoLys3bPPw90DMmBjVcyT3PsE+Nm0rETUPNQ6UnnrqKYwdOxaPPfaYKtn97rvv4o477mjY1hEREV2njfEbMXXTVCRc1RUPGth+oKpm17NNT1s3rVnTlGiQvCdZl1L3bTyuJlw12S4lu6XXSG7hA8Lh4ta05q8ioiZWzCEqKgrfffcd1q5di3vvvVfNaSRzHRn7+eef67uNREREtXYu6xymb56Or09/rZZDfUOxdNRSPND9AaZq2Uj+5Xw14asER5JaV5JbYtjm7OaMyMGRhip1LWOYuUJEDlb1Ljk5GevXr0dgYCDuuuuuSoESERGRLRWWFuL1fa/jtb2voVhTDFdnV0y9ZSqeH/w8/D2qnoWd6pcUbJLiC/pCDKkHUgGjGk4+bXxUdTrpNYoeGQ0Pv8oTxhMR2UqtohxJt5s5cyZGjBiB48ePIzg4uOFaRkREVMuT8m/OfINpm6Yh8VqiWjcsahjWjF2DrsFdbd28ZqMkvwSJ2xMNwVFuWq7J9tAbQg1V6tre2BZOzuzdIyIHD5TGjBmDAwcOqLS7hx56qGFbRUREVAvxmfFqHFJcQpxaDvMPw/JRy3Ff1/uYZtcIriVdM0z6mrgjEZpijWGbm48bokdEG+Y28mvrZ9O2EhHVe6Ck0Whw9OhRhIWF1fjJiYiIGlJ+ST5e2fMKlv6wVE0g6+bshpn9Z2LeoHnwdfe1dfOaLKlIl7I/xVClLuN4hsn2FpEtDL1GMu5IJoIlInI0Nf7m2rp1a8O2hIiIqBZpdutPrlfFGi7kXFDrRncYjdVjV6NjUEdbN69JKrxaiITNCYa5jYqyigzbnFycEH5ruKFKXasurdiTR0QOj5d4iIjIoZy6cgqT4yZj27ltajkiIAIrx6zEXZ3u4sl5PQejGScy1Dgj6TW6sO8CtOUVlRg8Az0ROzZWN7fR6Bh4tfSyaXuJiOobAyUiInIIucW5eGn3S1ixfwXKysvg4eKBZwc8i2dvexbebt62bl6TUFZUhqSdSYbxRjL2yFjr7q0RO16XUhfWLwzOrs42aysRUUNjoERERHbfs/HpsU/x9NankZabptbd3vF2rBy9Eh1adrB18xyeVKXL3JqJL97/QlWrKy0oNWxz8XBB1LAoXXA0vqMae0RE1FwwUCIiIrt17PIxlWa3M2mnWo4OjMaqMatUoER1I+lzaQfTDL1G6T+nm2yXqnT6SV+jhkfB3cfdZm0lIrIlBkpERGR3souysXDXQqz+cTU0Wg08XT0x97a5eGbAM+pnqp3inGKc3XpWjTeK3xiP/Ev5FRudAO9Yb9w04SZ0vrMzQnqHcKwXEREDJSIisrc0u4+Pfoxntj6DS/mX1Lp7Ot+D5aOXI7JFpK2b51CuJlw1TPqatCsJ5aXlhm3ufu6qAIP0HEWOiMSug7tw27jb4ObmZtM2ExHZEwZKRERkFw5fPIxJGydh34V9alnKfK8esxqjY0bbumkOQVOqwfm95w1V6jJPZ5psbxnb0lC+u/1t7eHi7qLWl5ZWjEkiIqIKDJSIiMimsgqzMH/HfLx58E2Ua8tVBbv5g+Zjer/p8HD1sHXz7Fp+Rj4S4hJUcJSwKUGl2OlJRbqIQRGG8UZBHYNs2lYiIkfDQImIiGxCgqIPD3+I2dtmI6MgQ627v9v9WDpyKcIDwm3dPLtNTbx09JIhpS5lfwpQMbURvIO9ETsuVlWp6zCqAzwDOJ6LiKiuGCgREVGjO5h2UKXZ/Zj6o1ru0qoL1oxdg+HRw23dNLsj5boTv0s0BEc5KTkm26X4gr7XqG3ftnB24dxGRET1gYESERE1msyCTMz7bh7eOfQOtNDC190XCwYvwJRbpsDNhYUE9LLPZxvKd0uQJBPB6rl6uSJ6RLQaayS9R/5h/jZtKxFRU8VAiYiIGpymXIP3fn4Pc7+bi6uFV9W6P/X4E5aMXIJQv1A0d+WacqT+mGroNZL0OmMB7QN0vUa3d0TkkEi4eTGoJCJqaAyUiIioQe1P2a/S7A6lH1LLPVr3wNpxazEoYhCas6JrRUjYnKB6jeLj4lGYWWjY5uTshLD+YYYqdcHdgjm3ERFRI2OgREREDeJy/mXM2TYHfz/8d7Xs7+GPl4a+hKf6PgVXZ9dmWYhBSnZLr5HcpJS3VlNRicGzhSdixujmNpJ77yBvm7aXiKi5a37/UhERUYMqKy/DWwffUiW/rxVdU+se6f0IXhv+Gtr4tkFzUlZchuTdybqUum/jkXUuy2R7cNdgVaFOeo3Cbw1XJb2JiMg+MFAiIqJ6s/f8XpVmd+TSEbXcJ6SPSrO7NfxWNBd5F/MQv1E36eu5redQkldi2CaTvEYOjdQFR+M7IjA60KZtJSIi6xgoERHRdUvPTcesbbPw8dGP1XKgZyBeHvYy/nrjX+Hi7IKmTFuuRfrP6YYqdWkH00y2+4b4GnqNpFqdu6+7zdpKREQ1x0CJiIjqrFRTirUH1uKFnS8gtyQXTnDC4zc8jleGv4JW3q3QVEkv0blt5wxV6qQXyZjMZ6QPjkL7hKriDERE5FgYKBERUZ3sTNqp0uyOZxxXy33b9sW6cevQt11fNEUyvkjfa5S0MwmaEo1hm/QSdRjVQQVHMreR9CIREZFjY6BERES1kpqTiqe3Po1Pj32qloO8gvDaiNfwaJ9H4ezUdIoRlJeV48L3FwxV6q6cvGKyXcYX6ec2ihgUAVcP/pNKRNSU8FudiIhqpERTgpX7V+LFXS8ivzRfBUVP3vgkXhr2Elp6tURTUJBZgIRNurmN5F7mOtJzcnFCxMAIQ0pdUKcgzm1ERNSEMVAiIqJqbT27FZPjJuN05mm13D+sv0qz6xPaB44+t9HlY5fVOCPpNUr5IUUVZ9DzCvJSqXQSHMWMjlFzHRERUfPAQImIiKw6n30eMzbPwH9P/lctt/ZpjcUjFuPBXg86bJpdaWEpknYkGcYbZZ/PNtnepmcbXUrd+I5od0s7OLs45vskIqLrw0CJiIgqKS4rxtLvl+LlPS+jsKwQLk4umHTzJCwYsgAtPFvA0eSk5OgCow3xqlpdWWGZYZurpyuihkepdDrpPQpoH2DTthIRkX1goERERCY2xm/E1E1TkXA1QS0PihiENWPXoGebnnAU5ZpypP2UZijfffHwRZPt/mH+hkIMUUOj4ObtZrO2EhGRfWKgREREyrmsc5i2aRq+OfONWg71DcXSUUvxQPcHHKJoQVF2Ec5uOasCo/iN8SjIKKjY6ASE9QvT9RqNj1XpdY7wnoiIyHYYKBERNXOFpYV4fd/reG3vayjWFMPV2RXTbpmG+YPnw9/DH/Ys80ymodcoeXeyKumt5+HvgZgxMarnSO59gn1s2lYiInIsDJSIiJopqfj29emvMW3zNCRdS1LrhkUNU2l2XYO7wh7JJK/Je5INwdHV+Ksm26Vkt/QayS18QDhc3Fxs1lYiInJsDJSIiJqh+Mx4NQ4pLiFOLYf5h2H5qOW4r+t9dpeSln85X6XSSXAkqXUluSWGbc5uzogcHGmoUtcypmnM50RERLbHQImIqBnJL8nHK3tewdIflqoJZN2c3fD0rU9j3sB58HH3sZueLim+oO81Sj2QClRMbQSfNj6qOp30GkWPjIaHn4ctm0tERE0UAyUiomZAgg+ZC0nmRLqQc0GtG91hNFaPXY2OQR1t3TyU5JcgcXuiITjKTcs12R56Q6ihSl3bG9vCydm+er2IiKjpYaBERNTEncw4iSmbpmDbuW1qOSIgAivHrMRdne6yaZrdtaRrhklfE3ckQlOsMWxz83FD9Ihow9xGfm39bNZOIiKqO40G2LXLCbt3t4OPjxOGDgVcHGT4KAMlIqImKrc4Fy/tfgkr9q9AWXkZPFw88OyAZ/Hsbc/C28270dsjFelS9qeoXiO5ZRzPMNneIrKFoddIxh3JRLBEROS41q8Hpk4FUlLk+/wmLF8OhIUBq1YB994Lu8d/hYiImmCa3afHP8Xs72YjLTdNrbuj4x1YMXoFOrTs0KhtKbxaiITNCarXKGFTglrWc3JxQvsB7dW8RhIcterSyu4KSRARUd2DpPvuk3+TTNenpurWf/GF/QdLDJSIiJqQY5eP4bmE53D8yHG1HB0YjdVjVmN8x/GNFqRdOXnF0Gt04fsL0Goq/pX0DPRE7NhY3dxGo2Pg1dKrUdpFRESNm243dWrlIEnIOrkmNm0acNdd9p2Gx0CJiKgJyC7KxoKdC7DmwBpotBp4uXph7sC5qqKdp6tng752WVEZknYl6QoxfBuvxh4Za929taHXKKxfGJxdnRu0PURE1PC0WuDqVeDCBeD8+Yp7uR07Jul2VT9W9t+zBxgyBHaLgRIRkQOTHpx/Hv0nZm2dhUv5l9S6fgH98M//+ydiWsU02OtKVTr93Ebntp5DaUGpYZuLhwuihkXpgqPxHdXYIyIiciyFhbpgxlIgpP+5oOD6XiM9HXaNgRIRkYM6fPEwJm2chH0X9qllKfO9fORylJ0qU5Xt6pO2XIu0g2mGKnXpP5v+6yZV6fSTvkYNj4K7j3u9vj4REdVvatzFi9YDILnPMK23Y1Xr1kB4ONC+ve4mP+fmAgsXVv/Y0FDYNQZKREQOJqswC/N3zMebB99EubYcPm4+mD9oPqb3nw6ncidsPLWxXl6nOKcYZ7eeVfMaSe9R/qX8io1OQLub2+nKd4+PRUjvEBZiICKyA5LWlp1dOfgx/lkKKpSVVf9cPj4VwY9xIKT/WSrYeXpaDsTef1/3OpbGKck/F/LYgQNh1xgoERE5CAmKPvjlA8zePhtXCq6odfd3ux/LRi1DmH+YWi4tr0iBq4urCVcNk77KuKPy0nLDNnc/d1WAQXqOpCCDT2uf63xHRERUW0VFuvE/VaXE5eVV/zxSRKFdO+uBUHg4EBioC2pqS55bSoBLdTt5vHGwpH++lSvtu5CDYKBEROQADqYdxMSNE3Eg9YBa7hrcFWvGrsGwqGHX9byaUg3O7z2vAiMJkDJPZ5psbxnbUvUaya39be3h4m7n/6oRETmw8nLg0qXKaXDGgZBsr4lWrawHQHIvaW8NGajce6+uBLhuHqWK9dKTJEGSvZcGFwyUiIjsWGZBJuZun4t3f34XWmjh5+6HBUMWYPLNk+Hm4lan5yy4UoD4uHjd3EabE1CcXWzYJhXpIgZFGMYbBXUMqsd3Q0TUvOXkWB4PpF8nAUVpDRIDvLyq7gmSm3fjzyteiQRDUgJ8x44yxMUdxtixvTF0qKvd9yTpMVAiIrJDmnKNCo7mfTcPVwuvqnX/1/P/sHjEYoT6hda6Mt6lo5cMvUYp+1MAozQI72BvxI6LVWONOozqAM+Ahi0nTkTUFJWU6MbkVBUISaBUHWdnoG3bqgOhoKC6pcTZgosLMHiwFvn5qRg8uJfDBEmCgRIRkZ3Zn7JfVbM7lH5ILfdo3QPrxq3DwIiaj3qVct2JexINVepyUkz/dZbiC/peo7Z928LZhXMbERFZI2NsLl+2XiFO7qWKnKXCBeZk3I+lwgj6nyVIcuUZul3gr4GIyE5czr+M2dtm44PDH6jlAI8AvDT0Jfyt79/g6lz913X2+Wyc/Pokzn10Div+uEJNBKvn6uWK6BHRuip142LhH+bfoO+FiMiRSPEDa4UR9ClxxRVZylZ5eFgeD2ScEufr2xjviOoDAyUiIhsrKy/DWwffUiW/rxVdU+se6f0IXhv+Gtr4trH6uHJNOVJ/TDVUqZP0OmMB7QN0vUa3d0TkkEi4edVtTBMRkSOTMT9paVUHQtd0X71VklQ3KYBQVSAUHOw4KXFUPQZKREQ2tPf8XlXN7uilo2r5htAbsHbsWvQP729x/6JrRaoAg6TTSUGGwsxCwzYnZye069cOmg4ajJ8+Hm17t+XcRkTUpEmq25UrVZfKTk/XVZOrTkCA9Qpx+pQ4d86l3azYNFDavXs3lixZgkOHDiE9PR1ffvkl7r77bov7Pvnkk3j77bexYsUKTJs2rdHbSkRUn9Jz0zFr2yx8fPRjtRzoGYhXhr+Cv9zwF7g4u5gUYpCS3dJrJDcp5a3VVCTBe7bwRMwY3dxGcu/m74aNGzeidffWDJKIyOHl5+sCnqrGBsm8QtWRAEfKUlsbGyQ3f2Ykkz0FSvn5+ejVqxceffRR3FtFMXUJoPbv34+2EsoTETmwUk0p1hxYgwU7FyC3JBdOcMLjNzyugqRW3q3UPmXFZUjenWxIqcs6m2XyHMFdg1WFOkmpC781XJX0Njx/TerKEhHZgbIyXW+PtZ4guc80ndrNqpAQy4UR9D+3bq2rJkfkMIHS2LFj1a0qqampmDx5MjZv3ozx48dX+5zFxcXqppfzWx1GOXmw9QmE/vVt3Q5yHDxmmpZdybswdfNUnLhyQi33bdsXq0atwk1tb0LexTwc/NdBFRglbU9CSV6J4XEyyWvEkAh0GNsBMWNjEBgdaNim0WrUpLF6PGaotnjMUEMcM5ISd/WqvjfICSkpTr8FP/Kz7l7GDWk01fd8+/lpf+v1kXvdz2Fh2t+CIC3atdMVUaiKRqO7kW2U2tH3TG3a4KSVvA47ICki5ql35eXlGDFiBO666y5MnToVkZGRKu2uqtS7BQsWYOHChZXWf/LJJ/C2h5m3iKjZuVJyBR+lfYQ91/aoZT8XPzwU8hD6Z/dH3sE8ZB/MRmFCxVgj4RroCv8b/eF/kz/8evnBxcuBJp4goiavuNgZV654/XbzxpUrnsjI8EZGhhcyM73UfXFx9dfjXVzKERRUiODgQrRqpbtV/FygfvbxqajgSXS9CgoKMGHCBGRnZ8O/mnxLuy7m8Prrr8PV1RVTpkyp8WPmzJmDGTNmmPQohYeHY9SoUdV+GI0RwW7duhUjR46EmxurT1H1eMw4thJNCVYfWI2X976M/NJ8eJR44Ek8if4X+uPCugtIuJhgsn/oTaGqxyhmfIya50iKM9QWjxmqLR4zZE56XmROIOn1qegRknQ4J8O6K1dq9v3UurVW9f7oUuHkZ33PkO6+TRsJlqRCgtwCGvy9kW2U2tH3jD7brCbsNlCSAg+rVq3Czz//XKsByR4eHupmTn4ptv7F2GNbyDHwmHE8W89uxeS4ybgcfxnd4rvh5vM3o3V8a5SXlOMUTql93H3d0WFUBzXeSOY28g2pv8k1eMxQbfGYaR4kjyg723phBLmlpurGD1XHx0fS35ysjg2SoMjTU87hWFiG7Od7pjavb7eB0p49e3D58mW0l7+032g0GsycORMrV65EUlKSTdtHRGRJUmYSnl/zPC5uvYgRZ0Yg+EqwYVs5ytX4Iv3cRhGDIuDqYbdfw0TkgGSYtq73x3qRBJlctTouLlBjfywVRggNLcWpU1tx//0j4e7O4JqaLrv9F/rBBx9U45OMjR49Wq3/85//bLN2ERGZK8gswMkNJ7Hhow0o/L4QHYo6QP4TTi5OiBgYYahSF9QpiGW7iahOZC6gS5esT5oqP8v2mmjVyvqkqXIvE6tKsGSJjIVPTS3lxKrU5Nk0UMrLy0NCQkWOfmJiIg4fPoyWLVuqnqSgoKBKXWUhISHo1KmTDVpLRKQjNXAyjmcY5ja68MMF6S5SPOGJEt8SNadR3/v6ImZ0jJrriIioOjJ0wlovkNykp6gmBbu8vKxPmqqfM4j1rYjsPFA6ePAghg4daljWF2F4+OGH8eGHH9qwZUREpkoLS5G0M0k3t9G38cg+n22y/WKbi0jrnoY7H74TjzzwCFxcWaWOiCqUlOjG/lQ1NqgmY8xlLiCZVtJaT5Dcy3Vm9vYQOXigNGTIEHVltqY4LomIGlNOao6a10iCo3PbzqGssGJ0s9Zdi7ORZ3Eq9hTOdTqHR0c/io8Hfww/Dz+btpmIGp+cyly+bH3SVLmXKnI1OeUJDLQ+aarcS5DkarcDJ4iaFv6pERH9plxTjrSf0nBmg67X6OLhiybb/cP84TbADf/x/w9+DP4Rpe6lGB41HHvH7kWX4C42azcRNSwpfmAtJU5XPltXRKE6UpTXWoU4fUqcb/0VvySi68RAiYiataLsIpzdclb1HMVvjEdBRkHFRicgrF+YKsLgcZsHFpxfgLizcWpTmH8Ylo9ajvu63sfiDEQOTMb8pKVVPTbo2rXqn0e+BqQAQlVjg4KDmRJH5EgYKBFRs5N5JlM31mhDPJJ3J6O8rLziiq+/hyrEICW85V7mP3xlzytYunupmkDWzdkNT9/6NOYNnAcfdx+bvg8iqpqkul25Ynk8kP7n9HRdNbnqBARYHg+kXycpce4yZyoRNRkMlIioydOUaJC8J9kQHF2Nv2qyXUp2S6+R3MIHhMPFzUWNn/zvyf9ixsczcCHngtpvTMwYrBqzCh2DOtronRCRsfz8itQ3a2ODioqqfx4JcGRyVGuBkNz7+zfGOyIie8JAiYiapPzL+SqVTgKjhM0JKMktMWxzdnNG5OBI3cSv4zuiZUxLk8eezDiJKZumYNu5bWo5skUkVo5eiTs73ck0O6JGUlam6+2pamxQZmbNniskpOqxQa1b66rJEREZY6BERE2C9ABJ8QV9r1HqgVTAqMKUTxsfxI7TTfoaPTIaHn4elZ4jtzgXL+1+CSv2r0BZeRk8XDzw7IBnMfu22fBy82rcN0TUxFPirl6tOiVOxg1pNNU/l5+f9QpxcmvXTldEgYiothgoEZHDKskvQeL2RF2Vug3xyE3NNdkeekOortfo9o5oe2NbODk7WQ2yPj32KZ7e+jTSctPUujs63oEVo1egQ8sOjfJeiJqSwkLd5KiWCiPofy4wqptijZTBriolTm4ydoiIqCEwUCIih3It6ZohMEr8LhGa4opLzm4+bogeEa0CI+k98mtb/ZxGxy4fw6SNk7AreZda7hDYQY1DGt9xfIO+DyJHJb08MieQtUlT5eeMjJo9l6S8WZs0Ve7btAFcOHczEdkIAyUismtSkS5lf4ohpe7yscsm21tEtjD0Gsm4I1fPmn2tZRdlY8HOBVhzYA00Wg28XL0wd+BcVdHO09Wzgd4Nkf2nxGVnWy+MILfUVN34oer4+FhPiZN76SnyYkYrEdkxBkpEZHcKrxaqAgwy6WvCpgS1rOfk4oT2A9ojdrwuOGrVpVWtCixImt0/j/4Ts7bOwqX8S2rdvV3uVXMiRbSIaJD3Q2QvZFJU85S4pCQX/PJLP8yZ46qWZXLV6kgvj4z9qSoQCgzknEFE5NgYKBGRzUnwcuXkFdVrJLcL31+AVlNRicEz0BOxY2N1cxuNjoFXy7pdhj588bBKs9t3YZ9aljLfa8auwagOo+rtvRDZiswFdOmS9UlT5WfZXpmUe2tjsqZVK+uTpsq9TKzKlDgiauoYKBGRTZQVlSFpV5Iupe7beDX2yFjr7q0NvUZh/cLg7Fr32r1ZhVmYv2M+3jz4Jsq15fBx88H8QfMxvf90uLtwhkhyDDk51gsjyE16ikpLq38eSXczDnrattXg2rWjGD++B6KiXNV6b+/GeEdERPaNgRIRNZrctFw1t5EER+e2nkNpQcVZnYuHC6KGRemCo/Ed1dij6yVB0Qe/fIDZ22fjSsEVte4P3f6ApaOWIsw/7Lqfn6i+lJToxv5UNTZIAqXqyFxAbdtarxAnPwcFmabElZaWY+PG8xg+vDvc3Br0bRIRORQGSkTUYLTlWqQdSjP0GqX/nG6yXarS6Sd9jRoeBXef+uvdOZh2EBM3TsSB1ANquWtwV5VmNyxqWL29BlFNCyRcvmx90lS5lypysl91ZNyPtUlTdb1DupLaRER0/fh1SkT1qji3WPUWqeBoYzzyL+VXbHQC2t3cTle+e3wsQnqH1KoQQ01Iz9G87fPw7s/vQgst/Nz9sGDIAky+eTLcXHi5nOqfFD+wlhIn93KTIgrVkUlRrU2aKj/Lzde3Md4REREJBkpEdN2uJlzVzW30bbwad1ReWm7Y5u7nrgowSM+RFGTwae3TIG3QlGtUcDTvu3m4WnhVrfu/nv+HxSMWI9QvtEFek5o+GfOTllb12KBrpsPrLJLrAVIAoaqUuOBgVokjIrInDJSIqNY0pRqc33tezWskPUeZpzNNtreMbal6jeTW/rb2cHFv2PJY+1P2qzS7n9N/Vss92/TE2rFrMTBiYIO+Ljk2SXW7csX6pKlyn56uqyZXnYAA65Om6lPi3Fk3hIjIoTBQIqIaKbhSgPi4eN3cRpsTUJxdkUskFekiBkUYxhsFdQxqlDZdzr+M2dtm44PDH6jlAI8AvDT0Jfyt79/g6syvt+YuP78i9c1aIFRUVP3zSIAjk6NaC4Tk3t+/Md4RERE1Jp5JEJHVuY0uHb1k6DVK2Z8CGA029w72Ruw4Xfnu6JHR8AzwbLS2lZWX4c2f3lQlv7OLs9W6P/f+M14d/ira+JrOB0NNU1mZrrfHWoU4+TnTtKPTqpAQ65Omyn3r1rpqckRE1LwwUCIiAynXnfhdomG8UU6KaT1iKb6g7zVq27ctnF0a/+xxT/IeTIqbhKOXjqrlG0JvUGl2/cP7N3pbqOFS4rKyrE+aKvcybkijqf65/PysV4iTe+kpkiIKRERE5hgoETVz2ReyDb1GidsT1USweq5erogeEa2rUjcuFv5htssvSs9Nx6xts/Dx0Y/VcqBnIF4Z/gr+csNf4OLcsGOgqH4VFuomR60qECooqP55pAy2PiXOWrU4GTtERERUFwyUiJqZck05Un9MNfQaSXqdsYD2Abpeo9s7InJIJNy8bFtSu1RTijUH1mDBzgXILcmFE5xUcPTy8JfRyruVTdtGlUkvj8wJVFVKXEZGzZ5LUt6sVYiT+zZtABfGyERE1EAYKBE1A0XXilQBBuk5krmNCjMLDducnJ0Q1j/MUKUuuFtwvc9tVFc7EneoNLsTGSfU8s3tblZpdn3b9bV105ptSlx2tvVJU+WWmqobP1QdH5/qU+K8vBrjXREREVnGQImoiRZikJLdatLXDfFI3pMMraaiEoNnC0/EjNHNbST33kHesCcpOSl4esvT+M/x/6hl6Tl6bfhr+HOfP8PZiaPqG4pMimopJc44EJLJVasjvTzt2lUdCAUGcs4gIiKybwyUiJqIsuIyJO9ONgRHWWezTLYHdw1G7HhdSl34reGqpLe9KdGUYMUPK/DS7peQX5qvgqK/3fQ3vDj0RbT0amnr5jk0mQvo0iXrk6bKz7K9Jlq1qjolTiZWZUocERE5OgZKRA4s72KeSqWT4Ojc1nMoySsxbJNJXiOHRuqCo/EdERgdCHu25ewWTI6bjDOZZ9TyreG3qjS7PqF9bN00h5CTowt4EhOdsHlzBH74wVlVhtMHQtJTVFpa/fNIupu1SVPlZ7l521cHJBERUYNgoETkQLTlWqT/kq7rNfo2HmkH00y2+4b4GnqNpFqdu6877F3ytWTM2DID60+uV8ttfNpg8cjFeLDng3YzVsrWSkp0Y3+sVYiTmwRKFV/rvS0+j8wF1LZt1YFQUBBT4oiIiAQDJSI7pynU4PRXp3Fu0znVe5SXbjpIROYz0gdHoX1CVXEGR1BUVoSl3y/FK3teQWFZIVycXDD55slYMGQBAjwDmlWBhMuXLQdA+nupIif7VUfG/YSHa+HhcRE33tgakZEuJsGQBElSUpuIiIiqx38yiexQ1rksVb779DenkbQjCb+W/WrYJr1EHUZ1UMGRzG0kvUiOZsOZDZi6aSrOZp1Vy4MiBqk0ux5teqCpkeIH1nqC5F5uUkShOjIpqrW5gvQpcb6+kl5Xho0bD2DcuHFwc+NAISIiorpioERkB8rLynHh+wsqpU5uV05eMdneIrqFoXx3xKAIuHo45p/uuaxzmLZpGr45841aDvUNxbJRy/DH7n90yDQ7GfOjHwdkLRDKMq2pYZG8dSmAUFUgFBzMlDgiIqLG5JhnW0RNQEFmARI2JaixRnIvcx3pObk4IWJgBKLHRCPNNw33/OUeuLvb/3gjawpLC/Ha3tfw+r7XUawphquzK6b3m475g+bDz8MP9khS3TIzrVeIk/v0dF01ueoEBFivEKdPiXPgXy8REVGTxECJqBHnNso4nmHoNUr5IUUVZ9DzCvJSqXSSUhczOkbNdVRaWoqNGzc6ZG+L/j1/ffprTNs8DUnXktS64VHDsWbsGnQJ7mLTtuXnV6S+WQuEiipiV6skwJHJUS3NFaS/9/dvjHdERERE9YmBElEDKi0sRdLOJEOVuuzz2Sbb2/RsoyZ9lfLd7W5pB2cX+5vbqK7iM+MxZdMUbErYpJbD/cOxfPRy/K7L7xo88Csr0/X2WJs0VX6W3qKaCAmxPmmq3LdurasmR0RERE0LAyWiepaTmqMmfFVzG207h7LCMsM2V09XRA2PUmONpPcooH3Tq+6WX5KvKtkt/WGpmkDWzdkNT9/6NOYNnAcfd596SYmTcT9VpcTJuCGNpvrnkuIHERHWAyHpKZIiCkRERNT8MFAiuk7lmnKk/ZSmqtRJr9HFwxdNtvuH+et6jW7viKihUXDzdkNTJGl2/z35X8zYPAMXci6odWNixmDVmFXoGNSxxs9TWKibHLWqQKigoPrnkTLY+pQ4a4GQjB1y0KxGIiIiamAMlIjqoDinGGe3nNWl1G2MR0GG0Zm7ExDWL8xQpa51j9YOO8aopk5mnFRpdtvObVPLkS0isXL0StzZ6U6T9y69PDInkLVJU+XnjIyavaakvFmbNFXu27QBXFgdm4iIiOqIgRJRDWWeyTT0GiXvTlYlvfU8/D0QMyZG9RzJvU/w9aeYOYLc4ly8uOtFrPxxJcrKy+Dh4oE/x87GCK9nkbbDC3M/Mg2EUlN144eq4+NTdU+Q9BR5eTXGOyQiIqLmioESkRWaEg2S9yQbxhtdjb9qsj2oU5Ch1yh8QDhcmvjknjIpqj4lLjlZi43nP8WGsqdR4JKmtrsk3IHiDSvxVlY03qrieaSXp127qgOhwECmxBEREZFtMVAiMpJ/OV+l0klwlLA5ASW5JYZtzm7OiBwcaahS1zKmJZoKmQvo0iXrk6bKvWxXWh8Dxk0CIncBEhte7QDErYImfrzaHBRkfdJUuZeJVZkSR0RERPaOgRI1a1KAQIovqLFGG+KReiAVqJjaCD5tfFR1Ouk1ih4ZDQ8/xyyBlpNjvTCC3KSnqLS0mifxyIbLyBeguWEt4KyBS7kXBjnNxR96Po0Od3iqQEhu3t6N9KaIiIiIGhADJWp2SvJLkLg9UTfeaEM8clNzTbaH3hBqqFLX9sa2cHK27xywkhLd2B9rgZDcZ5tO32SRzAXUtq2F8UDh5Tjm/DHWnJqFjEJdt9K9Xe7F8lHLEdEiouHfIBEREZENMFCiZuFa0jVDYJT4XSI0xRWT7Lj5uCF6RLRhbiO/tn6wFzJn0LVrHjh0yEnNDWQpEJIqcrJfdWTcj7VJU/UpcW5mlcsPXzyMiRsn4vsL36vlTkGdsHrsaozqMKqB3jERERGRfWCgRE2SVKRL2Z9iSKm7fOyyyfYWkS0MvUYy7kgmgrWFvDzL44H0P1+44Iri4jHVPo9MimqtMIL+XiZXramswizM3zEfbx58E+Xacvi4+WD+oPmY3n863F3cr+9NExERETkABkrUZBRmFSJhU4KuEENcAgqvFhq2Obk4of2A9ogdrwuOWnVp1eBzG8mYH+kFqiolLiurumdxgpOTVvX2hIc7WQ2EgoPrp0qcBEUf/PIBZm+fjSsFV9S6P3T7A5aOWoow/7DrfwEiIiIiB8FAiRy6EMOVk1cMvUbn952HVlORg+YZ6KlS6SQ4ihkdA6+W9TfxjqS6ZWZanzRV7tPTddXkqhMQUFWFuFIcORKHu+4aCzfzvLh6djDtoEqzO5B6QC13De6KtWPXYmjU0AZ9XSIiIiJ7xECJHEpZURmSdiUZgqNriddMtrfu3trQaxTWLwzOrs51ep38fH3qm/VAqKio+udxd9dNjlrVnEH+/lX3Sp04UYMBSNdBeo7mbp+L935+D1po4efuhwVDFmDyzZPh5tKwwRkRERGRvWKgRHYvNy1XzW0kwdG5bedQml9Rx9rFwwVRw6J0wdH4jmrsUXXKynS9PVWNDZLeopoICal6bFDr1rpqcvZIU67Buz+/i3nfzcPVQt1kuv/X8/+weMRihPqF2rp5RERERDbFQInsjrZci7RDabpeo2/jkf5zusl2qUqnn/Q1angU3H3cTVLiZNyPtUlT5SbjhjQVRe+skuIHERHWAyHpKZIiCo7ohws/YFLcJPyc/rNa7tmmp0qzGxgx0NZNIyIiIrILDJTILhTnFuPc1nO64GhjPPIv5VdsdALa3dxOpdO1Hx6LkqAQXLjghO/PA/9ZVjkoKiio/vVcXatPiZOxQw1c76HRXc6/jNnbZuODwx+o5QCPALw09CX8re/f4OrMrwMiIiIiPZ4Zkc1cTbiqm9vo23g17qi8tKLygbOXO5xiY5DdJhZJrrH4+pIPLqwGMubX7Lkl5c3SXEH6n9u0AVxc0GyUlZfhzZ/eVCW/s4t1s8/+ufef8dqI19Dap7Wtm0dERERkdxgoUaOQlLirVzQ4/PUFxG84gyvfn4HmkulAoEy0xBl0VLfzhe2hOWo5kvHxsT5pqj4lzqv+Ctw5vD3Je1Sa3dFLR9XyDaE3YN24degX1s/WTSMiIiKyWwyUqF4UFwMpKRZKZJ8tgOZUPAIuxyOyLAGeKDY8RgNnJCMCZxCLeHREJoJUL0+7dkD/KgKhwMCmlxLXENJz0zFr2yx8fPRjtRzoGYhXhr+Cv9zwF7g4N6PuNCIiIqI6YKBE1ZK5gC5dsj5pqtzLdh0t2uDyb/1CZ3AjUmSIkUGBkzeuBMZC06Ej/HtHo3usJ8YZBUNSRU7GD1HdlWpKsebAGizYuQC5JbkyZa0Kjl4e/jJaebeydfOIiIiIHAJPSQk5OdbnCtLPJSTz+VjjhlLEIhFdXc6go1M8fMpyTLb7dAhBxKhY9Lm/I6IHtoWzi53Wy24CdiTuUGl2JzJOqOWb292s0uxuanuTrZtGRERE5FAYKDUSKUe9a5cTdu9uBx8fJwwd2jjFBEpKgNTUqgOhbN3Y/irJXEBt21b0/ES0yEarrHi4njuDvF8TUV5cJrl0iquXK6JHRKsqdbHjYuEfVsWMqlQvUnJSMHPLTHx2/DO1LD1Hrw1/DX/u82c4OzEwJSIiInKoQGn37t1YsmQJDh06hPT0dHz55Ze4++671bbS0lI899xz2LhxI86dO4eAgACMGDECr732GtrKGbsDWb8emDpVxvDIx30Tli/XFRxYtQq4997rK5Bw+bL1SVPl/uJF3X7VkXE/1iZNVVXiWpfj8s+phip1l45egnEV7oD2Abq5jW7viMghkXDzcqv7G6MaK9GUYMUPK/DS7peQX5qvgqK/3fQ3vDj0RbT0amnr5hERERE5LJsGSvn5+ejVqxceffRR3GsWMRQUFODnn3/G/Pnz1T5ZWVmYOnUq7rzzThw8eBCOFCTdd1/lYEV6eWT9F19YD5by8qxPmqpPiZMiCtWRSVGtzRWkv5fJVc0VXStCwuYEHHonXs1tVJhZaNjm5OyEsP5hKjCSW3C3YDixwkKj2nJ2CybHTcaZzDNq+dbwW1WaXe+Q3rZuGhEREZHDs2mgNHbsWHWzRHqQtm7darJu7dq1uPnmm3H+/Hm0lzN8B0i3k54kSz06sk7iir/9TTdBqr5inHFQlJVV/WvIc4SGVh0IBQfXrEqcVqtF5ulMQ69R8p5kaDUVjfds4YmYMTGq50juvYO8a/uRUD1IvpaMGVtmYP3J9Wq5jU8bLB65GA/2fJDBKhEREVFzHKOUnZ2tTgRbtGhhdZ/i4mJ108uRSgW/pfLJrTHJmCRdul3VqXMPPmj9OQICtCrgCQ+Xe93PYWHa3wIhrRo35O5edTvKyqrYVlyGC3suICEuAQkbE5B11jQ6a9WlFWLGxiBmfIzqQXJ2rRjv0tifZ3Ok/4zlvqisCMv3L8fr37+OwrJCuDi5YOJNEzF/4HwEeAagrKpfNDXLY4aoJnjMUG3xmCFHPmZq0wYnrXQj2AEJgIzHKJkrKirCgAED0LlzZ/zrX/+y+jwLFizAwoULK63/5JNP4O3duD0gUrhh+fLqq42FheUgJiYbwcEFaNWqUN2Cg3X33t71f/JbmlWKnEM5yDmYg9zDuSgvKjdsc3J1gm8PX/jf6A//m/zhEeJR769PtXcw+yDeS30PF0suquVuPt3wl7C/INIr0tZNIyIiInIYMrxnwoQJqgPG39/f8QMlifx+97vfISUlBTt37qzyTVnqUQoPD8eVK1eq/TAaokdp5MjqO+22bi3D4MEN92vQlmtx8fBFJGxIUD1H6QfTTbb7hPio6nQdxnZA1PAouPtW00VFjeZMxhn8+T9/xk85P6nltr5tVTW7P3T9A9PsyCL5vpS05ZEjR8LNjUVVqHo8Zqi2eMyQIx8zEhu0atWqRoGSqyN8sPfffz+Sk5Px3XffVfuGPDw81M2c/FIa+xcjJcClup0UbrAUjsp5rmwfOtS13kuFl+SV4Ny2czjz7RlViCEvPc9ke9u+bRE7XlelLrRPqCrOQPajsLQQr+19Da/vex3FmmK4Ortier/pmD9oPvw8/GzdPHIAtvjOI8fGY4Zqi8cMOeIxU5vXd3WEICk+Ph47duxAUFAQHIkEP1ICXKrbSVBkHCzpOwNWrqy/+ZSyzmUZCjEk7UyCpuS3iY0A1UvUYVQHFRxJ75FviIUyd2Rz0sH71emvMH3zdCRdS1Lrevn2wj8n/BM9QnvYunlEREREzYZNA6W8vDwkJCQYlhMTE3H48GG0bNkSoaGhuO+++1SJ8G+//RYajQYXZVIgQG13r66CgZ2Q0t9SAlw3j1LFeulJkiDpeuZRKi8rx4XvL6heI7ldOXnFZHtgdKBhbqOIQRFw9bDruLjZi8+Mx5RNU7ApYZNaDvcPx+Lhi+F5zhOdW3W2dfOIiIiImhWbnjnLfEhDJT/tNzNmzFD3Dz/8sCrK8PXXX6vl3r1N54WR3qUhQ4bAUUgwdNdd0u4yxMUdxtixveucbleQWYCETQmq10juZa4jPScXJ0QMjDCk1AV1CuI4FgeQX5KPl/e8jGU/LFMTyLq7uOPp/k9j7sC5cHdyx8bEjbZuIhEREVGzY9NASYKdqmpJ2EmdiXohQZEUbMjPT8Xgwb1qHCTJZ5BxPMPQa5TyQ4oqzqDnFeSlUukkOIoZHaPmOiLHIL/bL058oeZESsnRdTeOiRmD1WNWIzYo1m7KaBIRERE1R8zFaiTlmnIk70pG1u4sJPskI3poNJxdKuYkMlZWVIbEHYm6Qgwb4pGdnG2yvU3PNrqUuvEd0e6Wdlafh+zXyYyTmBw3GdsTt6vlyBaRWDl6Je7sdCd7AYmIiIjsAAOlRnBy/UlsmroJOSm6yW+TlyfDP8wfY1aNQZd7u6h1Oak5KiiS4ChxeyJKCyp6Elw9XVXZbkmnk96jgPYBNnsvdH1yi3Px4q4XsfLHlSgrL4OHiwdm3zYbzw54Fl5uXrZuHhERERH9hoFSIwRJn933GWCWRSiB0We/+wxd7uuCrIQsNc+RMQmk9IUYooZGwc2b5TcdPc3u38f+jae3PI30PN08VtJ7tGL0CkQHRtu6eURERERkhoFSA6fbSU+SeZCk/Lbu5BcndT/InEr9wlRgJLfWPVozBauJOHb5GCZtnIRdybvUcofADlg9djXGxY6zddOIiIiIyAoGSg3o/J7zhnS7qgyYMwD9p/eHT7BPo7SLGkd2UTZe2PkC1h5YC41WAy9XL8wbOA8zb50JT1cW3SAiIiKyZwyUGlBuem6N9mvTow2DpCakXFuOfx75J2Ztm4XL+ZfVut91+R2WjVqGiBYRtm4eEREREdUAA6UG5BfqV6/7kf07fPEwJm6ciO8vfK+WOwV1Uml2ozqMsnXTiIiIiKgWGCg1oPYD26uiDFK4weI4JSdd0QbZjxxbVmEWnvvuObx16C3Vo+Tj5oPnBz+Paf2mqQlkiYiIiMixcAKeBiTzG0kJcMW8LsNvy2NWjuE8SA5MgqL3fn4PHdd2xBsH31DLf+j2B5yadAqzBsxikERERETkoHiG3sBknqT7v7gf/u38TdZLT5Ks18+jRI7nYNpB9H+/P/7yzV9wpeAKugZ3xXcPfYdP7/sUYf5htm4eEREREV0Hpt41AgmGOt3VCed2nMPeuL24bextiB4azZ4kByVB0dztc1VPkhZa+Ln7YeGQhZh08yS4uXC+KyIiIqKmgIFSI5GgKGJwBI7nH1f3DJIcj6Zcg3cOvYN5381DVlGWWvdgzwfx+ojXEeoXauvmEREREVE9YqBEVAM/XPgBk+Im4ef0n9VyzzY9sW7cOtzW/jZbN42IiIiIGgADJaIqyDxIs7fNxgeHP1DLAR4BWDRsEZ686Um4OvPPh4iIiKip4pkekQVl5WV486c3MX/HfGQXZ6t1j/Z+FK+OeBWtfVrbunlERERE1MAYKBGZ2ZO8R6XZHb10VC3fEHqDSrPrF9bP1k0jIiIiokbCQInoN+m56Xhm6zP416//UsstvVrilWGv4PEbHoeLs4utm0dEREREjYiBEjV7pZpSrDmwBgt2LkBuSS6c4IS/3PAXvDL8FQR5B9m6eURERERkAwyUqFnbkbhDpdmdyDihlm9pdwvWjluLm9reZOumEREREZENMVCiZiklJwUzt8zEZ8c/U8utvFup+ZAe6f0InJ04xxURERFRc8dAiZqVEk0JVvywAi/tfgn5pfkqKPrbTX/DS0NfQqBXoK2bR0RERER2goESNRtbzm7B5LjJOJN5Ri0PCB+g0ux6h/S2ddOIiIiIyM4wUKImL/laMmZsmYH1J9er5TY+bbB45GI82PNBODk52bp5RERERGSHGChRk1VUVoSl3y/FK3teQWFZIVycXDD55slYMGQBAjwDbN08IiIiIrJjDJSoSdpwZgOmbpqKs1ln1fLgiMEqza576+62bhoREREROQAGStSknMs6pwKkb898q5bb+rXFslHL8Iduf2CaHRERERHVGAMlahIKSgvw+t7X8fq+11GsKYarsyum95uO+YPmw8/Dz9bNIyIiIiIHw0CJHJpWq8VXp7/CtE3TkJydrNaNiB6BNWPXoHOrzrZuHhERERE5KAZK5LCkzLek2W1K2KSWw/3DsWL0Ctzb5V6m2RERERHRdWGgRA4nvyQfL+95Gct+WKYmkHV3ccfT/Z/G3IFz4ePuY+vmEREREVETwECJHCrN7osTX6g5kVJyUtS6sTFjsWrMKsQGxdq6eURERETUhDBQIodwMuMkJsdNxvbE7Wo5skUkVo5eiTs73ck0OyIiIiKqdwyUyK7lFufixV0vYuWPK1FWXvb/7d0NUJTl3sfxHy8KSEhaoShqWoqlIeNjqScLMfD1cKrjmbJXT2adSho55msmZnmOk6YnFctx0kinKHvTJtM0NamkJNPGyrTUfERRsxJFxBT2met6BkdvX9cje+8u38/MznLfuwx/5T/L9dvruq9VRFiERnYZqRE3jlBUrSi3ywMAAECQIijBb5fZ5X2bp6FLh6q4tNieM7NHZrOGFvVauF0eAAAAghxBCX5nw54Nylycqfzt+fb4qnpXaVqvaerdsrfbpQEAAKCGICjBb5SUl2jsJ2OVsyZHFZ4KRYVHafRNo/XEn55QZHik2+UBAACgBiEowXWVnkrN+2aehn88XHsP7bXn+l7TV5O7T1azS5u5XR4AAABqIIISXLWueJ1dZrd6x2p7nHhZol1m1/2q7m6XBgAAgBqMoARX/Hb4N41ZMUYz1860M0rRtaKVnZKtrE5Z9gNkAQAAADcRlOBTJhTNWTdHo5aP0r6yffZcv7b9NCl9khLqJrhdHgAAAGARlOAzhTsLNejDQSrcVWiPr73iWuX0ylFq81S3SwMAAABOQlBCtTMzR08uf1Ivf/2yPPIopnaMxnUdp8wbMlUrrJbb5QEAAACnICih2lRUVmjW2lkavWK0fi//3Z67L+k+TUyfqIaXNHS7PAAAAOCMCEqoFgU7Cuxudl8Xf22PkxokaUbvGerStIvbpQEAAADnRFDCRWU+B2nExyOUuz7XHsdGxGp8t/F6pMMjCg+l3QAAABAYGLniojhWeUwvFr6o7JXZKjlSYs8NSB6gCWkTFBcd53Z5AAAAgFcISviv5W/PV+aHmdqwd4M9bh/f3i6z65TQye3SAAAAgAtCUMIFKz5YrGHLhum1Da/Z4/pR9fXvbv/WwPYDFRYa5nZ5AAAAwAUjKMFrRyuOatqX0/T0qqdV+kepQhSih//nYf2r2790WZ3L3C4PAAAA+K8RlOCVFdtW2GV2G/dttMcdG3dUTu8cdWjUwe3SAAAAgIuGoITzUnSgSE8sfULzv5tvjy+vc7meS3tOf0/+u0JDQt0uDwAAALioCEo4qz8q/tCUgil6Nv9ZlR0ts6HosQ6P6ZnUZ1Qvqp7b5QEAAADVgqCEM1q6ZakeX/y4Nv+62R7f2ORGu8wuuWGy26UBAAAA1YqghFNs379d//zon3rvh/fscYPoBpqUPkn3Jt2rkJAQt8sDAAAAqh1BCceVHyvXpM8nacJnE3T42GGFhYTp8Rse19Ndn1ZsZKzb5QEAAAA+Q1CCtWjzIg1eMlhbft9ij1Oapdhldm3j2rpdGgAAAOBzrm5Xlp+fr4yMDDVq1Mgu6VqwYMFJj3s8HmVnZys+Pl5RUVFKS0vTjz/+6Fq9wWjLb1uUkZehP+f92YakRjGNlNc3Tyv7ryQkAQAAoMZyNSgdOnRI7dq104wZM077+MSJEzVt2jTNnDlTX375paKjo9WjRw+Vl5f7vNZgY3awy16ZrTYvttEHmz9QeGi4hv9puH4Y9IP6te3HtUgAAACo0VxdeterVy97Ox0zm/TCCy/oqaee0q233mrPzZ07Vw0aNLAzT/369fNxtcHB/L8u3LRQWUuytL1kuz2X1iJN03tNV+vLW7tdHgAAAOAX/PYapW3btmn37t12uV2V2NhYdezYUQUFBWcMSkeOHLG3KgcOHLD3R48etTc3Vf18t+ow23w/sewJfbT1I3vcpG4TTUqbpNsTb7czSG7//8D/egaBh56Bt+gZeIueQSD3jDc1+G1QMiHJMDNIJzLHVY+dzoQJEzRu3LhTzi9dulR16tSRP1i2bJlPf155Rbne2vOWFv6yUMc8xxQeEq7b425X37i+itwaqcVbF/u0Hvh/zyDw0TPwFj0Db9EzCMSeKSsrC/ygdKFGjRqlIUOGnDSj1KRJE3Xv3l1169Z1PcGaBklPT1etWrV8sszunR/e0fCPh6voYJE91/OqnpqcPlkt67es9p+PwOsZBD56Bt6iZ+AtegaB3DNVq80COig1bNjQ3u/Zs8fuelfFHCcnJ5/x+yIiIuzNyfxS3P7F+LKWjb9s1OOLH9fybcvt8ZWXXqmpPacqo1UGGzUEIH/qXwQGegbeomfgLXoGgdgz3vx8V3e9O5vmzZvbsLR8+f8P9KsSoNn9rnPnzq7W5s8OHjmoYUuHKWlmkg1JEWERGpsyVt8/9r3+kvgXQhIAAADg7zNKpaWl+umnn07awGH9+vWqX7++mjZtqqysLI0fP14tW7a0wWnMmDH2M5duu+02N8v2S2aZXd63eRq6dKiKS4vtOROM/tPjP2pRr4Xb5QEAAAABxdWg9NVXXyk1NfX4cdW1Rf3791dubq6GDx9uP2vp4Ycf1v79+9WlSxctWbJEkZGRLlbtfzbs2aDMxZnK355vj6+uf7VdZte7ZW+3SwMAAAACkqtBqWvXrnYm5EzMMrFnnnnG3nCq/eX7NXblWM0onKEKT4WiwqP01M1PaUjnIYoMJ0wCAAAAF8pvN3PAmVV6KjXvm3l2N7u9h/bac32v6aspPaaoaWxTt8sDAAAAAh5BKcCsK15nl9mt3rHaHidelqjpvaYr/ap0t0sDAAAAggZBKUD8dvg3jVkxRjPXzrQzStG1opWdkq2sTlmqHVbb7fIAAACAoEJQ8nMmFM1ZN0ejlo/SvrJ99ly/tv30fPrzaly3sdvlAQAAAEGJoOTHCncWatCHg1S4q9Aet7mijXJ656jrlV3dLg0AAAAIagQlP2Rmjp5c/qRe/vpleeRRTO0Yjes6Tpk3ZKpWGJ+ADQAAAFQ3gpIfqais0Ky1szR6xWj9Xv67PXdf0n2amD5RDS9p6HZ5AAAAQI1BUPITBTsK7DK7dbvX2eN2DdrZZXZdmnZxuzQAAACgxiEo+XC2aNX2Vcr/PV/R26OV2iJVYaFh2lO6RyOXj1Tu+lz7vEsjL9X41PH6R4d/KDyUXw8AAADgBkbiPvDuxnc1eMlgFR0ossdTtk9RQkyCul/VXe9sfEclR0rs+QHJAzQhbYLiouNcrhgAAACo2QhKPghJf5v/N7spw4mKDhZpzvo59uv28e01o/cMdUro5FKVAAAAAE5EUKrm5XZmJskZkk5UL7KeCgYUqHY4HxoLAAAA+ItQtwsIZp/+76fHl9udidndbnXRap/VBAAAAODcCErVqPhg8UV9HgAAAADfIChVo/iY+Iv6PAAAAAC+QVCqRjc1vUkJdRMUopDTPm7ON6nbxD4PAAAAgP8gKFUj8zlJU3tOtV87w1LV8Qs9X7DPAwAAAOA/CErV7K/X/FVv3/G2GtdtfNJ5M9NkzpvHAQAAAPgXtgf3AROGbk28VSu3rtTizxarV5deSm2RykwSAAAA4KcISj5iQlFKsxQd+u6QvSckAQAAAP6LpXcAAAAA4EBQAgAAAAAHghIAAAAAOBCUAAAAAMCBoAQAAAAADgQlAAAAAHAgKAEAAACAA0EJAAAAABwISgAAAADgQFACAAAAAAeCEgAAAAA4EJQAAAAAwIGgBAAAAAAO4QpyHo/H3h84cMDtUnT06FGVlZXZWmrVquV2OQgA9Ay8Rc/AW/QMvEXPIJB7pioTVGWEGh2UDh48aO+bNGnidikAAAAA/CQjxMbGnvU5IZ7ziVMBrLKyUrt27VJMTIxCQkJcT7AmsO3YsUN169Z1tRYEBnoG3qJn4C16Bt6iZxDIPWOijwlJjRo1UmhoaM2eUTL/AQkJCfInpkHcbhIEFnoG3qJn4C16Bt6iZxCoPXOumaQqbOYAAAAAAA4EJQAAAABwICj5UEREhMaOHWvvgfNBz8Bb9Ay8Rc/AW/QMakrPBP1mDgAAAADgLWaUAAAAAMCBoAQAAAAADgQlAAAAAHAgKAEAAACAA0HpIsrPz1dGRob9pN+QkBAtWLDgnN/zySefqH379nYXkKuvvlq5ubk+qRWB2TPvvvuu0tPTdcUVV9gPbOvcubM++ugjn9WLwHydqfL5558rPDxcycnJ1VojArtfjhw5otGjR6tZs2b2b9OVV16pOXPm+KReBGbPvPbaa2rXrp3q1Kmj+Ph4DRgwQL/++qtP6oX7JkyYoOuvv14xMTGKi4vTbbfdpk2bNp3z+9566y21bt1akZGRuu666/Thhx/K3xCULqJDhw7ZF4oZM2ac1/O3bdumPn36KDU1VevXr1dWVpYGDhzIwLcG8bZnzB8wE5TMi8natWtt75g/aOvWrav2WhGYPVNl//79uv/++3XLLbdUW20Ijn654447tHz5cs2ePdsOdvLy8pSYmFitdSJwe8a8AWNeWx588EF99913dvC7Zs0aPfTQQ9VeK/zDqlWrNGjQIH3xxRdatmyZjh49qu7du9teOpPVq1frrrvusn1jxjAmXJnbt99+K3/C9uDVxLwL895779lf+pmMGDFCixYtOqkp+vXrZwc0S5Ys8VGlCKSeOZ02bdrozjvvVHZ2drXVhsDvGfPa0rJlS4WFhdl3iM2bM6hZzqdfzN8e0ytbt25V/fr1fVofArNnnn/+eb300kvasmXL8XPTp0/Xc889p6KiIh9VCn/yyy+/2JklE6Buvvnm0z7HjFtMkPrggw+On+vUqZNd8TBz5kz5C2aUXFRQUKC0tLSTzvXo0cOeB85HZWWlDh48yIAGZ/XKK6/Yga/5sD/gbN5//3116NBBEydOVOPGjdWqVSsNHTpUhw8fdrs0+CmzBHzHjh12pYN5733Pnj16++231bt3b7dLg0tKSkrs/dnGJoEyBg53u4CabPfu3WrQoMFJ58zxgQMH7B+lqKgo12pDYDDv5JWWltqlMsDp/Pjjjxo5cqQ+/fRTe30ScDYmUH/22Wf2mgEzk7Bv3z499thj9noTE7gBpxtvvNFeo2RmCMrLy3Xs2DG7JNzb5cEInjdws7KybF+0bdvW6zGwOe9PmFECAtTrr7+ucePGaf78+XaKG3CqqKjQ3XffbfvEzAwA5zPIMcutzMD3hhtusLMCU6ZM0auvvsqsEk7r+++/1+DBg+3yb3PtrFm++fPPP+uRRx5xuzS4YNCgQfaSkjfeeEPBgLcXXdSwYUM7RX0ic2x2M2M2CWdjXoDMxh/molnn1DVQxSzL/Oqrr+yFspmZmccHwmZ5jJldWrp0qbp16+Z2mfAjZscys+QuNjb2+LlrrrnG9oy53sRc5wY4dzwzswfDhg2zx0lJSYqOjtZNN92k8ePH255CzZCZmWmvOTIbTyUkJFzQGNic9yfMKLm8rtfsLHQis1uIOQ+cidmB6oEHHrD3ZtdE4EzMmy4bNmywGzdU3cy7vGYHM/N1x44d3S4RfsYMeHft2mWX9FbZvHmzQkNDzznwQc1UVlZm++NEZtMYg/3CagaPx2NDklmuu2LFCjVv3jxoxsDMKF1E5g/LTz/9dNL232YwYi5ma9q0qUaNGqWdO3dq7ty59nEzYMnJydHw4cPtZw6Y5jLLqMxOeKgZvO0Zs9yuf//+mjp1qh3kVq3lNTOQJ74DjODlTc+YwYtzjbhZpmmuPznb2nHU3NcYs1Tz2WeftW/GmCWb5holM1Ng/kax0qFm8LZnzPVIZitws/OduRi/uLjYXqNilm6az2JCzVhu9/rrr2vhwoX2s5SqxiZmXFL1umG2kDez1WYG0jDLNVNSUjR58mT7pq9ZKWNWQMyaNUt+xWwPjotj5cqV5q2TU279+/e3j5v7lJSUU74nOTnZU7t2bU+LFi08r7zyikvVIxB6xnx9tucj+F3I68yJxo4d62nXrp0PK0ag9cvGjRs9aWlpnqioKE9CQoJnyJAhnrKyMpf+BQiEnpk2bZrn2muvtT0THx/vueeeezxFRUUu/QvgazpNv5jbiWNa0zPOscr8+fM9rVq1smPgNm3aeBYtWuTxN3yOEgAAAAA4cI0SAAAAADgQlAAAAADAgaAEAAAAAA4EJQAAAABwICgBAAAAgANBCQAAAAAcCEoAAAAA4EBQAgAAAAAHghIAAAAAOBCUAABBr6CgQGFhYerTp4/bpQAAAkSIx+PxuF0EAADVaeDAgbrkkks0e/Zsbdq0SY0aNXK7JACAn2NGCQAQ1EpLS/Xmm2/q0UcftTNKubm5bpcEAAgABCUAQFCbP3++WrdurcTERN17772aM2eOWEwBADgXghIAIKiZ5XYmIBk9e/ZUSUmJVq1a5XZZAAA/xzVKAICgZa5Hatu2rXbu3Km4uDh7LjMz04alefPmuV0eAMCPhbtdAAAA1TmbdOzYsZM2bzDvD0ZERCgnJ0exsbGu1gcA8F8svQMABCUTkObOnavJkydr/fr1x2/ffPONDU55eXlulwgA8GMsvQMABKUFCxbozjvv1N69e0+ZORoxYoRWrFihwsJC1+oDAPg3ghIAIChlZGSosrJSixYtOuWxNWvWqGPHjnZ2KSkpyZX6AAD+jaAEAAAAAA5cowQAAAAADgQlAAAAAHAgKAEAAACAA0EJAAAAABwISgAAAADgQFACAAAAAAeCEgAAAAA4EJQAAAAAwIGgBAAAAAAOBCUAAAAAcCAoAQAAAIBO9n84xANLNiWkHwAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10, 6))\n", + "\n", + "# Уровни фактора B\n", + "B_levels = df['B'].unique()\n", + "\n", + "# Цвета для каждого уровня B\n", + "colors = ['blue', 'green', 'red', 'purple']\n", + "\n", + "for b, color in zip(B_levels, colors):\n", + " # Фильтруем данные для текущего уровня B\n", + " subset = grouped[grouped['B'] == b]\n", + " plt.plot(subset['A'], subset['Y'], \n", + " marker='o', \n", + " linestyle='-', \n", + " color=color, \n", + " label=f'B={b}')\n", + "\n", + "plt.xlabel('A')\n", + "plt.ylabel('Y')\n", + "plt.title('Зависимость Y от A при фиксированных уровнях B')\n", + "plt.legend(title='Уровень B')\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "9d69862e", + "metadata": {}, + "source": [ + "### Визуальная проверка аддитивности:\n", + "\n", + "- **Пересечение линий:** График зависимости $Y$ от $A$ при фиксированных $B$ показывает, что линии для разных уровней $B$ пересекаются, особенно при $B=4$. Это указывает на **наличие взаимодействия** между факторами.\n", + "- **Следствия:** Взаимодействие факторов может означать, что влияние одного фактора на зависимую переменную $Y$ зависит от другого фактора.\n" + ] + }, + { + "cell_type": "markdown", + "id": "2acc6fe6", + "metadata": {}, + "source": [ + "## Пункт c)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "382c3054", + "metadata": {}, + "outputs": [], + "source": [ + "from statsmodels.formula.api import ols\n", + "\n", + "# Аддитивная модель\n", + "model_additive = ols('Y ~ C(A) + C(B)', data=df).fit()\n", + "\n", + "# Остатки модели\n", + "residuals = model_additive.resid" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "c77e2e2e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/oAAAGJCAYAAAA6z0jnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAjQFJREFUeJzt3QV4FFcXBuAvnuDuLgVaXIu7Fy9OcW1psRYrLsVdCyVAW9zdKVJcChQKFCju8uPx7P+cO9nNRklCkln53ucZsnd2s3snOyR75p57roPBYDCAiIiIiIiIiGyCo94dICIiIiIiIqLYw0CfiIiIiIiIyIYw0CciIiIiIiKyIQz0iYiIiIiIiGwIA30iIiIiIiIiG8JAn4iIiIiIiMiGMNAnIiIiIiIisiEM9ImIiIiIiIhsCAN9IiIiIiIiIhvCQJ+IiIgoHn399deoXr26qX3gwAE4ODhg7dq1uvbLUs2fPx9ZsmSBj4+P3l0hIrIaDPSJiCjGlixZogKUiLZ79+7p3UUii3Lz5k388ssvGDx4MCxVYGAgJk6ciOzZs8Pd3R0FCxbEihUrovz9Z86cwRdffIF06dIhUaJE6vtnzpyJgIAA02OeP3+OSZMmoUKFCkidOjWSJUuGzz//HKtWrQrzfO3bt4evry9+/vnnWDtGIiJb56x3B4iIyPqNGjVKBQWhpUiRQpf+EFmqGTNmqP8rlStXhqX68ccfMX78eHTp0gUlSpTApk2b0KpVK3XxrkWLFh8M8suUKYPcuXNjwIABSJAgAXbs2IFevXrhxo0b6vjFsWPH1OvUqVMHQ4YMgbOzM9atW6ee/59//sHIkSNNzykXG9q1a4epU6fi22+/Vf0gIqLIORgMBsMHHkNERBThiH6HDh1w6tQpFC9eXO/uEFk0Pz8/ZMiQAd27d8fo0aNDpO5L4L9mzRp8+eWXuvbx/v376kJE165dMXv2bLVPPipWrFhRZSPcunULTk5OEX6/fN/SpUvx8OHDEBf65PvPnTuHV69eqbY8l6OjI7JmzWp6jLxOtWrVcOTIETXinzBhwhAXEOR3zL59+1ClSpU4OnoiItvB1H0iIoq3FH8JEszTgyWlV/bL/eauXLmCZs2aqZReDw8P5MmTR43+iREjRkQ6XUA2CZyMJHgqVqyYep5UqVKhTZs2KpgJnRoc3vPkypXL9Jhs2bKpdOTdu3ejcOHCapTx008/xfr160M814sXL/D999+jQIECKm05SZIkqF27Ns6fPx/iccZ52bJJAGRO+ifBVOh528Z+yuuHNm7cOHWfvKa5xYsXq8AoTZo0cHNzU32eN28eomr//v0oX768CrokvbpBgwa4fPlymMdJnzt16qQCWXkdCRZ79OihUq4/NMXD/By4cOGCOs4cOXKon7Gkf3fs2FEFfkbROQcqVaqkNnNjx45VQeby5ctD7I/JuZI8eXL1/IcPH/7gz/LPP//Es2fPVDAbHvk/IX3LlCmTOvaqVavi+vXriE8yei8XJKSOgJEcp7yXMhVHRuIj8/r1a9V3OVfMpU+fXv1cjeT8MA/yja/TsGFDNRf/v//+C3GfvC9y4UD6R0REH8bUfSIi0sVvv/2Gv//+O8x+CfQksHRxcVGjgxJgS8rvli1bVBDUuHHjEAF4nz59kC9fPvVYI2mbZxxI+rEEwo8fP1apwzJi+Ndff4UIRiQ4lbnT5hInThyife3aNTRv3lyNyEoqsQTRTZs2xc6dO03F1SRA2bhxo9ovwYy8pswtlhFNSUmWQNicBEXyPMaUZiEjoq6urvD29g7z85EU50uXLqn+FylSxLRfjlWeKzQJ6j/77DPUr19ffa/8HCWIk6Dym2++QWT27t2rLlJI0C3BtZeXF2bNmoWyZcvi7Nmz6r0RDx48QMmSJfHy5Uv1PuTNm1cFyHKR4v3792oetrzfRvI+CuPFGyHp3mLPnj3qZyjvmwT5cqwLFixQX48fP66CweicA6HJz1pSxadMmaLS0c1/flE9V+QiwLRp09RtCX7lcZKCfvfu3TABrrmjR4+q/pu/b+YkXV4uQMiFIhn5lnnyrVu3xokTJyJ9nyQwN46Uf4gEy/IaEZFjlYs6oX9+8v4a7y9XrlyE3y8XPWSefbdu3dC3b19T6r5cEJM5+R/y6NEj0884tKJFi6r3g4iIokBS94mIiGJi8eLFMv3LcOrUqSg97ubNm6rt7e1tyJIli6F27dpqv9xvVKFCBUPixIkNt2/fDvEcgYGB4T531qxZDe3atQuz39fX15AmTRpD/vz5DV5eXqb9W7duVa85bNgw0z75/oQJE0Z6DPI68n3r1q0z7Xv16pUhffr0hiJFipj2ybEFBASE+F45bjc3N8OoUaNM+/744w/1fC1btjSkTJnS4OPjY7ovd+7chlatWqn716xZE6af9erVM/Ts2dO0//DhwwYPDw9Dw4YNwxzH+/fvwxxLzZo1DTly5DB8SOHChdXP8Pnz56Z958+fNzg6Ohratm1r2ie3ZV9450F471vFihXVFp7w+rtixQr1szh06FC0zoHQr7Vt2zaDs7OzoV+/fh91rsjrmVuwYIF63MmTJw2RadOmjXqvQzOeC/ny5QtxHsyYMUPt//vvvyN9XuP3R2Uz/h+MSN26dcM9N969e6e+f+DAgZF+v7+/vzo3XVxcTK/p5ORkmDdvnuFD5DyT96F8+fLh3t+1a1d1nhMR0YcxdZ+IiOLdnDlzVCr28OHDQ+x/+vQpDh06pFK1ZTktc9EtwHX69Gk8efJEjV6bj3TXrVtXjThv27Yt2v2W0fhGjRqZ2pKW37ZtWzXKaRyJlMwA44ipVBmX45R0epl+IKPgodWrV08d2+bNm1VbUsBllFgyByIiPx9JOzcuNyaj1DLKnTRp0jCPNU+XllFfSR2X7AIZNY9sFFjmWMuUAklVN59rLdMtJHth+/btqi2ZAZLBIMcRXp2G6L5v5v2VjAbpr1RjF+H9/KLq5MmTajpIkyZNwowsR/dckWOWfskmP6Nff/1VpaZHlEVgJOeCpPpHRDIKJJPDSDJbROg09tAKFSqkMiGiskmWRGQka0PO4dCMPxe5PzIy5SRnzpyoWbOmykyR0X05N6SInpwnEZGfqWQvSFaIZI2ER3528vqSJUJERJFj6j4REcUrCS5/+uknldabNm3aEPcZA5r8+fN/9Ovcvn1bfZUAOzQJ3mS+dHRJunjowPWTTz5RX6X+gARRErBIKvfcuXNVwTHzJcVSpkwZ5jllioLMBff09FSF2OSrBKNyESEiEoBKGr7MV5bbq1evVkGUeXq8kaQ6ywUVmVsdOkCS9yK8iwMf+vlJQLtr1y68e/cOb9++VfOyY+M9M9Y4kIrrK1euVMF36P7GhEwjkJ+T9FeC7dDvYXTPFUnRl/oRRhLkS8X40PURwhNZDeTQF7eMFwX+97//Rfqc8riI5v1Hl1xoCW+9euM0EvMLMRFNP5DzX6a5GH8ecoFFig3KVBGpcyHnbmhyIUCmwMhFE7lwEdnPjlX3iYg+jCP6REQUryZMmKBGvH/44QfYIuNFDJmX/vvvv6uAWEZSZZ68XASIaIReivxdvXpVFYSTkd3IGC8OyEi+PF4uIIRXiVxqG0hBNxl5lqXJZGRa+iJz2kVE/dGTBIULFy5UdRBkXrf8XCQA/Jj+SkE7CaLlQojUHZCR5o8hF6iMI+RSh0Dm3NeqVSvcmhPm5H2KLGiPqJr9hxZIkoKHklESlc38wlN45KKFPC70a0qGhwhdYyI0ucAl52Loix5SI0JqOZgX5DSSCzvyfXKR4KuvvorwueVnJ3P+P3SxgYiIOKJPRETxSD7oy2ifFDuTQnfmldSFFH0TFy9e/OjXMlb0luA5dBAs+0JX/I5qwCgBkPmI4r///qu+GgvTSeAno5eLFi0K8b2SkhxegTEhFfolWDSuNCDff/DgwUj7IhcHZORTRpelMGB4o5xSeE9GZ2VagPlo8R9//BGtn19osiqCHIsUbZOgS7IPYuM9k0BOlk+TwG/YsGGm/TI6/DEkeJWpBhKgSxZEv379VPE846h8dM8VSWM3H0GXIFamN8hydFJ4MSKSHbBs2bJIMyliQor8yTkTFZJlYjxXwyMrOkhRSllZQVZoMDIWBAxvxQdzUsQwvIsJUjBQ+Pv7h5nGI4Uee/fujQEDBnyw7x+aHkFERBqO6BMRUbyRAE6CLRmtDY8EXjISLunrd+7cidaoZmgyX1yWlJs/f36IVGSpAC5BjKRyx+RCxYYNG0xtSVmXVGMJfoxzn2VUNnRfZdQ99DJt4QXuxqXlopKaLBkCsuSYVPKX74lshNi8PxJkSiZAVIJjOS4Z/ZaLFEYS0MsouwTKQrIzZEk0uaggc91Di877Fl5/xfTp0/ExZHqFcZqIzP+WzIBevXrF2rkiI+oSwIaX8m6udOnS6thkTfjYFJtz9GX5RMkYkRF2I+mz/GwyZsxoWh3BOMovF32MQbzxZy2vY34RTwJ/mV4iF/dk/r6RzN//7rvv1Nx8yTj5EKnRYP76REQUMY7oExFRvJEAUUY0zQuOhTZz5ky1fJcspSXLpckSdZLuK2nnodebj4wEKzJNQNLgpfhcy5YtTUumyYimMX09OiSIkbXiT506pQJHuSAhz2keOMsc5FGjRqnXlaBE0rnlmI3ZChHp0qWLWpIvOiO9ssa9BJfmxfLM1ahRQ/2spRiaLHcm8+klLV6CWmMqdmSkaJ0srycBqhy3cXk96aOMwppPV5D3Vn7O8p7JqKs8v1zgkPntkS05Z04yA+RCjywrJ8GjBJbyvDKSG1sk0JXj6ty5s5r+IBcsonuuyFx/mZZhvHAiUwJkDrt5ocbwyHkt6fsyfSC8qRYxFZtz9DNlyqRG1+VnJO+BLDco9R+kSKScx+bTCwYNGqQuBJlnCQwcOFD9XEuVKqXOBcn4WLFihbq4MWbMGPWzNhZHlEKW8vOQ6SXy3Obk/475/xn5fqnfIBciiIjowxjoExFRvJERYgmiPjQ6KeulDx06VK0BLwGUpE5LWnt0yUi3zOmVub+SFiyp5hKMSVAX1eDTXO7cuVWgK/UFJKVbLkLIqKRUGDcaPHiwCgSlKr7cJxcs5CKFBECRkQJlEaX2R0SOR7aISHE5mUog68bL2uwS5Pbo0UNlTkgGwYdI8Cjz46WYn6TSS5AmgbD8/OTYjSQgl9Ruec8kYJNMB9knFwnk5x8d8nOTwmyS0i0jyXKxQkbWPzQ3PDrkooW8jvwsLl26pOaTR+dckZoHxrnk8r1yAUiC/Q8FoXLRRUav5QKIXByxVPIzkIsHMg1hyZIl6ryXCxutWrX64PfK8cl5LNNz5GKBnAtyHkpGgFxsMpJMFMmEkJU2wjsX5eKZeaAvPzOZfhKbF0iIiGyZg6yxp3cniIiILJ2MWEpl+a1bt+rdFbJisrKEzNWXixcykk0fJlkr8v9PLpaZT7kgIqKIcY4+ERERUTyRUWrJKJBRc4oaGd2XbJKIansQEVFYHNEnIiKKAo7oExERkbXgiD4RERERERGRDeGIPhEREREREZENsYgRfamsKymR7u7uajkWWXIlIrIsUPny5VU1WONyMqEfL9cupDqwrAEsy7rIY65duxbiMbJEi1SGlaV8pJquzJeTZYeIiIiIiIiIrJnugb4sPdS3b1+1dM/Zs2fVskqyTNGTJ0/CffyBAwfU0kx//PEHjh07hsyZM6uld+7fv296jKy/K+swy1IustyPLJEjzylLNBlJkC9L6uzZs0fNtzx06JBa75WIiIiIiIjImumeui8j+CVKlMDs2bNVOzAwUAXvsobuh9YcFgEBAWpkX76/bdu2ajRf1trt16+fWjNYvHr1CmnTplVrwbZo0QKXL1/Gp59+ilOnTqF48eLqMbJOcJ06dXDv3r0ordUr/Xzw4AESJ04MBweHj/45EBEREREREUVG4t03b96omNXRMeJxe2foyNfXF2fOnMGgQYNM+6Szkmovo/VR8f79e/j5+SFFihSqffPmTTx69Eg9h1HSpEnVBQV5Tgn05auk6xuDfCGPl9eWDIBGjRqFu4arbEaSQSAXC4iIiIiIiIji0927d5EpUybLDPSfPXumRuRltN2ctK9cuRKl5xgwYIC6mmEM7CXINz5H6Oc03idf06RJE+J+Z2dndbHA+JjQxo0bh5EjR4bZ/8svvyBBggRR6isRERERERFRTMlAd+fOnVVmeWR0DfQ/1vjx47Fy5Uo1b18K+cUlyTqQWgJGr1+/VlMMGjZsqAr62TLJmJBaBtWrV4eLi4ve3SELw/ODIsJzgyLCc4MiwnODIsJzgyJib+fG69evVaD/oenjugb6qVKlgpOTEx4/fhxiv7TTpUsX6fdOnjxZBfp79+5FwYIFTfuN3yfPIVX3zZ+zcOHCpseELvbn7++vKvFH9Lpubm5qC01OJns4oeztWCn6eH5QRHhuUER4blBEeG5QRHhukL2fGy5RPEZdq+67urqiWLFi2LdvX4gid9IuXbp0hN8nVfVHjx6tCuiZz7MX2bNnV8G6+XPKVQ+Ze298Tvn68uVLVR/AaP/+/eq1ZS4/ERERERERkbXSPXVf0uHbtWunAvaSJUti+vTpePfuHTp06KDul0r6GTNmVHPkxYQJEzBs2DAsX74c2bJlM82pT5QokdokhaF3794YM2YMcufOrQL/oUOHqnn8kmYv8uXLh1q1aqFLly5qCT5J9+jZs6cq1BeVivtERERERERElkr3QL958+Z4+vSpCt4laJf0ehmpNxbTu3PnTohlA+bNm6eq9X/55Zchnmf48OEYMWKEut2/f391saBr165q5L5cuXLqOc3n8S9btkwF91WrVlXP36RJE8ycOTPejpuIiIiIiMgSlmuTacxSJN0ayaCtFFb39va22mMwJ1Pb5Xg+dgl33QN9IQG3bOGRQnvmbt269cHnkx/KqFGj1BYRqbAvWQFERERERET2SAZQHz58qCq5W/OFCpm6LcvNfWxwbClkVTepNydT3a060CciIiIiIqL4I/XJbt68qUaQZfqyBJXWGCjLcbx9+1ZN4zbPBLfWixZy8UUy3uW9kanoMT0mBvpERERERER2RgJKCZJlyXAZQbZWcgxyLDJN29oDfeHh4aEq69++fdt0XDFh/T8JIiIiIiIiihFbCI5tjWMsvCd8V4mIiIiIiIhsCAN9IiIiIiIiIhvCOfpERET0cfz8gLt3ZWmckNvNm9rX+/elwpDp4S4AGoR+joQJgWzZwm7Zs2tfU6SQZXXi+8iIiMjKffXVV8iXLx8GDx6sd1fw7NkzfPrppzh79iwyZcoUp6/FEX0iIiKKngcPAFmitmtXIE8eQAoF5cwJVK0KdOoEjB4N/PYb8OefwL17IYL8CL17B1y6BGzbBsyZA/zwA9C0KVC8OJAqFZA0KVClCiBL5x4+DPj4xMeREhGRhWnfvr1aHWD8+PEh9m/cuDHMqgHnz5/H9u3b8d1334WobD9s2DC1fJ0UvqtWrRquXbsWq33877//UL16dVSsWBH58+fHjh071P5UqVKhbdu2GD58OOIaR/SJiIjow4H9wYPAH38ABw4A0flAlDo1kDkzYLYWcKDBgJcvXyJZsmRwlA9lciHg5Utt9D+iAP7NG+31ZZMPSHJxoUwZoFIlbStZEnBzi4WDJSIiSyeV6CdMmIBu3bohqVwIjsCsWbPQtGlTtfSe0cSJEzFz5kwsXboU2bNnx9ChQ1GzZk38888/Ma5wH1qWLFmwe/dudeHh999/x5IlS1C7dm11X4cOHVCsWDFMmjQJKSRbLY4w0CciIqKwZHR96VJg0ybg338jfpyLC1CgAJAjR9iU+6xZtZT8UAL8/HB4+3bUqVMHjvL9RoGBwOPH4af/X7miTQ8w8vYG9u/XNuHhAZQvD7RqBTRpAph9qCMiItsio/DXr1/HuHHjwozsGwUEBGDt2rVYtmxZiNH86dOnY8iQIWjQQJtE9uuvvyJt2rQqI6BFixZR7sO0adPUhYQ7d+6o1zKSUfwDclEcUH38+eefsXjxYtP9n332GTJkyIANGzagk2TBxREG+kRERKR5/hxYsUIL8E+fDv8xEpiXKhU8kl66NBBb6y/LckLp02ubPG9oEvDLhyfZZGT/zp3g+7y8gN27te2bb4AvvwTatZNPXNrzEhHRh8l0qUeP4v9106WL+O9OOJycnPDTTz+hVatW6NmzJ5IkSRLmMRcuXMCrV69QXI4pyM2bN/Ho0SN1ocBIMgJKlSqFY8eORTnQ37NnD/r27asuNDRp0gQnT55U2QV169ZF586d1WO2bt2K2bNnY/ny5cgsmW1mSpYsicOHDzPQJyIiojgspCdzByW437JFa5tzdg4b2IczSh8vJFOgfXttMwb+xukE8tU44i/z/eV4ZJOsgrZttS1XLn36TURkLSTIlwKqVqBRo0YoXLgwRowYgalTp4a5//bt2+qCQJo0aUz7JMgXMoJvTtrG+6Ji/vz5qFWrFgYOHKjauXPnVhcWdu7cqebmS7G9+vXro0iRImrqgBQDNB/VlxH9v/76C3GJgT4REZE9kqB4+nStaN7Tp2HvL1pUGxFv2VKbZ2+JJPDv0EHbZJ7/sWNacL9qFfDqlfaY27e14oCylS0L9OgBNG+uXcAgIqKwI+tW9LoyT79KlSpqND00Ly8vuLm5hSnQFxskJf9LyRwzU7ZsWXXBwd/fH0WLFkWgTEeLgBQBfP/+PeIS/8oRERHZE5nzLvMZZWQh9Oi9jHC0aaMF+DLv3prIBzkpziebXMDYvBlYskRL5Td+2DpyRNtGjABkmSU5VvMaAURE9i4a6fOWoEKFCqhRowZGjRoVJg0+VapUKpj29fWFa1BB2HRBFxQeP36squ4bSVuyA6LKxcUlxLx8IW1HR0e1fciLFy+QOo4vonPSGhERkT24fh3o2FHyC4EFC4KDfPnwI8vYybJ2shTe5MnWF+SHJoX5ZNRepiRI5sLEiVL9KOzP4pNPtJ+Fr6+evSUioo8g8+QlZf748eMh9hcOCtylmr6RVNmXYH/fvn2mfa9fv8aJEydQOrzaMBGQgnpH5MKxGWl/8sknUQr0L168qNL64xIDfSIiIlsm1eq/+kpb715G8Y0jEIkTAz/+qM3FXL0aqFPHNtPZM2QAfvgB+PtvbS5/1arB98kcf0n3lLn7c+ZolfyJiMiqFChQQM2Dlwr45lKnTq1S6P/880/TPknj7927N8aMGYPNmzfj77//Vuvay5z5hg0bRvk1+/Xrhz/++AOjR4/Gv//+q5bqmzt3Lvr37//B75UsgzNnzqhMhLjEQJ+IiMgWXb4MSPXgTz8Ffv89OH09WTItdV3mro8ZI7mNsAuS2i8V+Pfu1dL3a9UKvk9G/Xv21JYIlLR/Hx89e0pERNE0ePDgcOfEd+7cOcTyekKC8W+//RZdu3ZFiRIl8PbtW5UR4O7ubnpMpUqV0N5Y+DUcBQsWxLp167Bq1Srkz58fw4YNUxcPvpIL6x+wadMmZMmSBeVlSdg4xECfiIjIlrx5o41gFyyoFaWTInUiZUpg7FgtwB8+HEieHHZL5vFLWv+JE0C9esH7Hz4E+vTRpi7I3H4iIrI4S5YsUWvem5PAWYrvGYx/84JIsH7//n21dJ75qL7M6Zcq+97e3ti7d69KuTcny/BJsB+ZBg0aqBR8qQEgFf5lub2omDFjhrowENcY6BMREdkC+XAjgX3evNo8e39/bb8sKyRz1CVNXQrQhbPWsN0qWVIr2nf2LNC4cfD+a9eAmjUBqahsXLKPiIisjoeHB3799Vc8e/Ysyt9z6dIlJE2aVKX0xzbpR+PGjdFSVrSJYwz0iYiIbGEefvXqWqr+gwfaPjc3LUVfquzLCH+iRHr30nJJQaR16wBZ07hcueD9sk8unEyYwIJ9RERWqlKlSqhnnr0VhUJ7Fy5ciFJRveiSlQBk6kBcLPkXGgN9IiIia/X2LTBwoJamb1ZBGHXrSplhLUU/QQI9e2hdpELzoUPA0qVaJoSQdY7D+xkTERFZMAb6RERE1pimv3YtkC+fNtpsXCovWzYtFX3rVq2wHEWfjLJIuubVq1qBPuOIjrSrVdOW7ZNlCImIiCwYA30iIiJr8uIF0KwZ0LRpcMDp6goMHSoTC0MWl6OYk9UJZKmm06cB87WVZSnC/PmBFSv07B0RUawJXcCObOM9YaBPRERkLfbv11LIZTTfSIrGXbwIjBrFNP24mr8vazB7egYvRfjqFdCqFdCmjXabiMgKubi4mNZ1J8tifE+M71FMOMdif4iIiCguyLruQ4YAU6YEL5cny+PNn6+N7MdDUR+7Jun7HTrIWkrAd98BxjWZ5atcBPjtNyCO10MmIoptTk5OSJYsGZ48eaLaCRIkiJcicbEtMDBQLXEnS+XFRQG9+B7JlyBf3hN5b+Q9iikG+kRERJbs8mVt9PjcueB9VapoBeMyZdKzZ/YnRQrg99+BOnWAHj2A16+B27elpDMwaJBW/PAjRl+IiOJbunTp1FdjsG+twbGXl5daSs8aL1SER4J843sTUwz0iYiILJGM3M+bB/TrB3h7a/skiBw3DujTJ7hIHMU/ufBStizw1VfA4cMynASMHQvs3q2N8ufOrXcPiYiiRALj9OnTI02aNPAzFna1MtLvQ4cOoUKFCh+V6m4p5Bg+ZiTfiIE+ERGRpXn8GF6tWsFD5uQH8cqeHbfGjoVXnjwhR/etkKRZWr2sWYE//tBWPZCRfH9/4NQpNaf/+dChuC0V+m1kZCm8daCzZMmidzeIKBZJYBkbwaUepN/+/v5wd3e3iUA/tuge6M+ZMweTJk3Co0ePUKhQIcyaNQslS5YM97GXLl3CsGHDcObMGdy+fRvTpk1D7969QzwmW7Zs6r7Qvv76a/VaolKlSjh48GCI+7t164b5MteRiIhIT0ePIqBhQ3g8fWraNQtA/5s34S0jyTZA0itXrFiBe/fuIXv27LBa8qF48GCgenWgdWvg2jXg3TukHDgQOwF0BhCUi2FT3N0T4OrVywz2iYgsmK6B/qpVq9C3b18VYJcqVQrTp09HzZo1cfXqVZU+EpoUJsiRIweaNm2KPpK2GI5Tp04hICDA1L548SKqV6+uvsdcly5dMEoqFAeR4hNERES6+uUXuTINp6D0ycdIgg4YjR0oB9tyWf37/Plz6w70jUqUAM6eBfr2BRYuVLtaA8iLvGiEybiL9LAdl+Ht3QbPnj1joE9EZMF0DfSnTp2qAu4OUskWUjx4PrZt2wZPT08MHDgwzONLlCihNhHe/SJ16tQh2uPHj0fOnDlRsWLFEPslsP/YAgdERESxwtdXm3c/d65p1x8AmmMdnqIabI+k7t+HTUmUCFiwAP/lyoU0AwYgEYBiuILT6IAvsRaHUUHvHhIRkR3RLdCXJRAkBX+QVKkNIsshVKtWDceOHYu11/j9999V1kDoCozLli1T90mwX69ePQwdOjTSUX0fHx+1Gb2WSrtBxR+stXBFVBmPz9aPk2KG5wdFhOdGFD15AqcWLeAoy7QFedy8ORps2gR/h2TwgO39/Dw8Ak1z9W3t/HhRpQqaublhtW8q5DDcRxo8xT5UxQ8uU7HAqZsNzNuX984jzt47/t6giPDcoIjY27nhF8XjdDDIegQ6ePDgATJmzIijR4+idOnSpv39+/dX8+dPnDgR6ffLXHyZnx96jr651atXo1WrVrhz5w4yZMhg2r9gwQJkzZpV7btw4QIGDBig6gKsX78+wucaMWIERo4cGWb/8uXLmfZPREQxkvT6dZQcPx4Jnj1T7QBnZ1zo0QN3qlbVu2v0kVzevEHxyZOR5vx5075b1avj765dEchiUUREFEMynV1i3FevXiFJkiSWW4wvLi1atAi1a9cOEeSLrl27mm4XKFBALSlRtWpV3LhxQ6X5h0cyDyQzwHxEP3PmzKhRo0akP2BbuWq0Z88eVeuAlSwpNJ4fFBGeG5FzWL4cTkOGwCFo6TxDhgwwrF6N/CVLIuD8ebVMEHAIQCHYGg+Pv+Dp+VD9/S1SpAhsyXmz987JcAyjnX9Eb/9p6r5se/bg0b43aOW6Co8crHXevly4qKCWspIiyrGNvzcoIjw3KCL2dm68Dsos/xBnPZdmkaUQHj9+HGK/tGNj7rxU3t+7d2+ko/RGUghQXL9+PcJA383NTW2hyclkDyeUvR0rRR/PD4oIz41QZBk2qTMzZUrwvtKl4bBuHZzTpzdNZfPy8pJb8hOE7XE0HaetnRsh3zsP9MFUnEIx/ILO8IA3Pg88jsPepdEY63ES2ucP6yLH5RXn7x1/b1BEeG6QvZ8bLlE8Ru0vrQ5cXV1RrFgx7Nu3z7RP5ntJ2zyVP6YWL16sKvfXrVv3g489F7QesYwsEBERxZn374HGjUMG+Z07a+ux82+QzVqO1iiHP3EHmVU7Ix7gICqiET48GEFERBQTugX6QlLhFy5ciKVLl+Ly5cvo0aMH3r17Z6rC37Zt2xDF+qS4ngTlssnt+/fvq9syEm9OLhhIoN+uXTs4O4dMWpD0/NGjR6tCgLdu3cLmzZvV60iaXcGCBePpyImIyO48fw7I3PstW7S2/H2aM0dVakc4GWNkW86iGIrjNA6hvGq7wwdr8SW6Y57eXSMiIhuk6xz95s2b4+nTpxg2bBgePXqEwoULY+fOnUibNq26X4roSWqYeQE/87l8kydPVpssnXfgwAHTfknZl+/t2LFjuJkEcv/06dPVRQWZZ9+kSRMMGTIkzo+XiIjs1O3bQM2awNWrWjtxYmDDBi3wJ7vxFGlQDXtVGn9b/AZHGDAPXyMDHmAYRknlBr27SERENkL3Ynw9e/ZUW3jMg3djpf2oLBIgBfIiepwE9lLVn4iIKF5I1fXatYGHD7W21KHZsQMoXFjvnpEO/OCKdliKB8iAgZig9g3FGBXsd8PPCND/oxkREdkAXVP3iYiIbJrMvZcK7MYg/5NPgGPHGOTbPQcMwnh8hxkIDBrF7wRPbERDJMA7vTtHREQ2gIE+ERFRXFi9GqhVS9bB0dqywsuRI5KepnfPyELMwndogZXwgatqf4Ft2IeqSIlneneNiIisHAN9IiKi2DZzJtCihVSR1dqyAoysMpMqld49IwuzBs1QE7vwCklU+3OcwBGURVbc0rtrRERkxRjoExERxRapDzNwINCrl3ZbSGHYjRuBhAn17h1ZqIOohPI4jAfQlljMg39xDKVREOf17hoREVkpBvpERESxQQL7774DJmgF1hRZ0eWXX7Sl9Igi8TcKojSO4QryqHZ6PMIfqIyiOKN314iIyAox0CciIvpYgYFAjx7A7Nla28EBmDsXGD1au00UBXeQFWVxBMfwuWqnwP/UnP2SOKF314iIyMow0CciIvoYAQFAly7Azz9rbUdHYMkSLfAniqYXSIka2I1DKK/ayfAKe1AdZXBE764REZEVYaBPRET0MUF+hw6Ap6fWdnICfvsNaNtW756RFXuLxKiNHdiPyqqdBG+wCzVRHof07hoREVkJBvpEREQx4e8PtGmjBfZC5uGvWAG0aqV3z8gGvEdCfIGt2IUaqp0I77ATtVAZ+/XuGhERWQEG+kRERNHl5we0bAmsXKm1XVyANWuApk317hnZEC8kQANswjbUUe0E8MI21EV17Na7a0REZOEY6BMREUWHry/QrBmwdq3WdnUF1q8HGjbUu2dkg3zgjsZYj02or9oe8MYW1ENtbNe7a0REZMEY6BMREUWVtzfQuDGwcaPWdnMDNm0CvvhC756RDfOFG5piDdahsWq7wRcb0RD1sUnvrhERkYVioE9ERBTVkfwvvwS2bdPaHh7A1q1ArVp694zsgB9c0QIrsRLNVdsVfliLL1EXW/XuGhERWSAG+kRERFEtvGcM8hMmBLZvB6pV07tnZEf84YI2+B2/o7Vqu8BfBftVsE/vrhERkYVhoE9ERBSZwECgSxet2J5wd9dG8itV0rtnZIcC4Ix2WIoVaKHa7vDBJjRAaRzVu2tERGRBGOgTERFFxGAAvvsOWLIkuLq+FN5jkE86CoQT2uJXU4E+WXpvO+qgCM7q3TUiIrIQDPSJiIgiCvIHDgTmzNHaTk7acnq1a+vdMyKVxt8cq7Ab1VU7GV5hN2rgU1zSu2tERGQBGOgTERGFZ+xYYOLE4PbixVrFfSILWnqvETbgMMqpdio8xx5URw7c0LtrRESkMwb6REREoU2fDgwdGtyeNw/46is9e0QUrvdIiC+wFadQXLUz4CH2oSoy4a7eXSMiIh0x0CciIjK3cCHQp09we/JkoHt3PXtEFKnXSIpa2Im/kV+1s+G2CvbT4pHeXSMiIp0w0CciIjJavhzo1i24PWIE0K+fnj0iipIXSInq2IN/kVu1P8E1lcafAs/17hoREemAgT4REZHYvh1o21Yrwie+/x4YNkzvXhFF2WOkQzXsxW1kUe0CuKiq8SfAO727RkRE8YyBPhER0YkTQNOmQECA1pZUfSnE5+Cgd8+IouUusqAq9uEB0qt2KZzEajSDM/z07hoREcUjBvpERGTfrl4F6tYF3r/X2s2aaUvqMcgnK3UDuVATu/ASSVW7LrZjAbrKmpF6d42IiOIJA30iIrJfDx4ANWsCz4PmMVeuDPz6K+DIP49k3S6iABpgE7zhptodsARj8aPe3SIionjCTzJERGSfXr0C6tQBbt/W2oUKARs2AG5aYERk7Q6hIlpjGQKhZacMxjj0xCy9u0VERPGAgT4REdkfHx+gYUPg/HmtnS0bsGMHkFRLdSayFevRBD0x29SegV74Emt07RMREcU953h4DSIiojhx584dPHv2LHrfFBiI7IMGIfmBA6rplywZ/p06FT4PHwKyWYDLly/DHly9ehWONjZNwhLfu3n4GunxEEMxBo4w4He0wTOkwgFUtrjjDAwMVF/Pnz+vy7mRKlUqZMmirVpARGTNdA/058yZg0mTJuHRo0coVKgQZs2ahZIlS4b72EuXLmHYsGE4c+YMbt++jWnTpqF3794hHjNixAiMHDkyxL48efLgypUrpra3tzf69euHlStXwsfHBzVr1sTcuXORNm3aODpKIiKKiyA/T5588PYOKqIXRTMAFA26LYuOVXn5EicbN46TPlJEHql/u3TpAi8vL707YxeGYRQy4AE6wRNu8MVGNEQFHMIFFIrmM8nFMEe0adMmTvrp4eGBFStWoEKFCrqcG+7uCXD16mUG+0Rk9XQN9FetWoW+ffti/vz5KFWqFKZPn66CbrnCnyZNmjCPf//+PXLkyIGmTZuiT58+ET7vZ599hr1795razs4hD1O+d9u2bVizZg2SJk2Knj17onHjxjhy5EgsHyEREcUVGcnXgvzfAeSL0vf0xxJ8FzRH2R9O+BLTcBJlYXm2AxgK2/UKQCIAC6P83lkPS33vHNANPyMNnqAetiIpXmMHaqMMjuI2skXjeV7KuHu0/t9Fjzz3fVVhIP5nmF6Gt3cb9buFgT4RWTtdA/2pU6eqq/kdOnRQbQn4JQD39PTEwIEDwzy+RIkSahPh3W8e2KdLly7c+169eoVFixZh+fLlqFKlitq3ePFi5MuXD8ePH8fnn38eS0dHRETxI5/ZGH3EvsKvmGBWiKwTFmEn2sEyWV76d9zIE6X3zrpY7nsXAGc0xyrsQ1WUxnFkwEPsQk0V7L9Ayjj5fxd9fkGBvmQauMTB8xMR2QfdAn1fX1+Vgj9o0CDTPpmLVa1aNRw7duyjnvvatWvIkCED3N3dUbp0aYwbN850ZVZe08/PT72OUd68edX98roRBfqS4i+b0evXr9VXeS7ZbJnx+Gz9OClmeH6QXueGzOWVNF9tBDDy16gY8AcW+XYytYc4j8Ual1bw+MD36Stqx2aN1Numvtrm8Vn2e+eCpoYN2OdTEXkM/yIP/sVmxwao67oTvg5uuh+fh4dfiK/xS47JQ/1u4d80y8PPGxQRezs3/KJ4nA4Gg8EAHTx48AAZM2bE0aNHVTBu1L9/fxw8eBAnTpyI9PuzZcum5ueHnqO/Y8cOvH37Vs3Lf/jwoZqvf//+fVy8eBGJEydWI/mSQWAetAupC1C5cmVMmDAh3NcLb+6/kOdLkCBBNI+eiIjiS6K7d1FhwAC4vNfm8v9Xpw7+7tIFcNCWHCOyRx5Pnqj/F+7/+59q361QAWdlWiT/XxARWTSZzt6qVSuVqZ4kSRLLLcYX22rXrm26XbBgQTX3P2vWrFi9ejU6dQoezYkuyTyQegLmI/qZM2dGjRo1Iv0B28pVoz179qB69epwcWEaHYXE84P0OjekKrcU7NLm8oZfUCyN4TEO+PSGi0EL8rc51kXz/WsR+IcTLNtqKVUX6bFZMw+P1fD0TISOHdPDy6sIbIv1vHdFAgtiN6ogId4j86FD+P1oOYx2GaHr8clIvqfnHnTsWB1eXvH9N0WW26yAQ4cOqQLRZFn4eYMiYm/nxuugzPIP0S3Ql+VLnJyc8Pjx4xD7pR3R/PqYSJYsGT755BNcv35dteW5ZdrAy5cv1X1RfV03Nze1hSYnkz2cUPZ2rBR9PD8ovs8Nme6lVeWWgl1hn98dXliJL5ENt1T7LIqgeeBKvPN2h3WI+NhshZeXvIe2eHzW8d4dRSm0wnJsQCO17N4g/59wxf8T/PrB2hVxf3xyXsT/uSHH5KV+t/DvmeXi5w2y93PDJYrHqNvita6urihWrBj27dtn2idzoqRtnsr/sSSN/8aNG0ifPr1qy2vKD8f8daXKvyzTFJuvS0RE+nFAIH5FW3wObRrYXWTCF9iKd6rSOxEZbUYD9MVUU3shuqAS/tC1T0RE9PF0Td2XVPh27dqhePHiao68LK/37t07UxX+tm3bqnn8UkxPyEj8P//8Y7otc+/PnTuHRIkSIVeuXGr/999/j3r16ql0fakDMHz4cJU50LJlS3W/LKcnKfzy2ilSpFBp999++60K8llxn4jINozDIDTFWnX7DRKpIP8hMujdLSKLNAO9kAvX0RNz4Ao/rEdjlMYxXEVevbtGRETWGOg3b94cT58+xbBhw/Do0SMULlwYO3fuRNq0adX9Msou6VNGErgXKRI8l2/y5Mlqq1ixIg4cOKD23bt3TwX1z58/R+rUqVGuXDm1bJ7cNpo2bZp63iZNmqiifDVr1sTcuXPj9diJiChudMECDMBEddsfTmiKNbhg4XOlifTlgN6Yrqa5fIFtSI6X2I46KIUTeIbgz09ERGQ9dC/G17NnT7WFxxi8m1fa/9AiAStXrvzga8qye3PmzFEbERHZjurYjbn42tT+FrOwC7V07RORNQiAM1pgJQ6jPIrgHHLgJjajPqpgP7zVcnpERGRNdJujT0REFJvy42+sxZdwRoBqT0Y/zEcPvbtFZDXeBU1zuYeMql0ax7EU7VTNCyIisi4M9ImIyOqlxSNsQ10kwRvVXo9G6B+Uvk9EUfcAGVWw/xYJVbsZ1mAsftS7W0REFE0M9ImIyKq5wQcb0RBZcFe1T6IE2uB3GPgnjihGzqMwmmMVAoL+Dw3CeHyFX/XuFhERRQM/BRERkVVbhFGmZfTuIDPqYzO8kEDvbhFZte2oi16YEWLZvdI4qmufiIgo6hjoExGR1RoEoDV2qtvvkEAF+Y+RTu9uEdmEOfgG89Bd3XaDLzagEbLgmd7dIiKiKGCgT0REVinp/v34yawt6fqSckxEscUB32Em9qGKaqXFE2zG1KDZ+0REZMkY6BMRkfU5dw7Zhg41NQdjLDaika5dIrJF/nBBU6zBNeRS7UK4g9/UJQBW4icismQM9ImIyLo8fgzUrw8nb2/VXIZaGKeS+IkoLvwPKVAPW/ASSVVbLqmNxjy9u0VERJFgoE9ERNZDgvtGjYC7WoV9KcHXGTKy76B3z4hs2lXkRQusREDQ/7Uf4YlWWKZ3t4iIKAIM9ImIyDoYDEDXrsCxY6rpmzYtGkrsD3e9e0ZkF3ahFvqitam9CJ1QMmjFCyIisiwM9ImIyDpMnAj8JrODAXh44MaUKXikd5+I7MxM1MSCoNvu8MEmNEAmaBk2RERkORjoExGR5du8GRhkNg//t9/glS+fnj0islMO6AngAIqpVjo8xmbURwK807tjRERkhoE+ERFZtkuXgNattdR9MWoU0KSJ3r0islt+AJpgIm4gh2oXwTksRgeZX6N314iIKAgDfSIislwvXgANGgBv32rt5s2BIUP07hWR3XuBZKoS/2skVu1mWINBGKd3t4iIKAgDfSIiskz+/kCLFsCNG1q7SBHA0xNwYIV9IktwGZ+iNZYhMKgS/xgMQV1s1btbRETEQJ+IiCzWwIHAnj3a7dSpgY0bgQQJ9O4VEZnZinoYitHqtiMMWI5WyIvLeneLiMjuMdAnIiLLI9X1p0zRbjs7A2vXAlmy6N0rIgrHTxiM1WiqbifBG1WJPyle6t0tIiK7xkCfiIgsy6lTQJcuwe1Zs4AKFfTsERFFygEdsBjnUVC1PsE1rEBLOCJA744REdktBvpERGQ5Hj0CGjUCfHy0dteuQPfueveKiD7gPRKiATbhGVKqdm3sxFj8qHe3iIjsFgN9IiKyDBLcy7J59+9r7bJltdF8IrIKt5ENTbEG/nBS7YGYgBZYoXe3iIjsEgN9IiLSn8EA9OwJHD2qtTNlAtatA1xd9e4ZEUXDAVRGb0w3tT3REUVwVtc+ERHZIwb6RESkv3nzgF9+0W67u2sV9tOm1btXRBQDc/ANFqGjuu0Bb2xEQ6TGE727RURkVxjoExGRvg4eBHr1Cm5LwF+smJ49IqKP4oCvMRfH8LlqZcFdrMWXcIGv3h0jIrIbDPSJiEg/d+8CTZsC/v5a+4cfgNat9e4VEX0kX7ihMdbjPjKodgUcxhT007tbRER2g4E+ERHpw8sLaNwYePpUa9eoAYwbp3eviCiWPEJ6NMIG+ECrtfEtZqMdlujdLSIiu8BAn4iI9Cm+16MHcPq01s6eHVixAnDSqnUTkW04hZLogXmm9nx0R3Gc0rVPRET2gIE+ERHFvzlzgKVLtdsJEmjF91Kk0LtXRBQHFqMj5qKHuu0OH6xHY6TBY727RURk05z17sCcOXMwadIkPHr0CIUKFcKsWbNQsmTJcB976dIlDBs2DGfOnMHt27cxbdo09O7dO8Rjxo0bh/Xr1+PKlSvw8PBAmTJlMGHCBOTJk8f0mEqVKuGgFH8y061bN8yfPz+OjpKISD937tzBs2fP4v11AwMD1dfz58/D0TH4unKis2eRu3dvOAS1bw4Zgv/JHP2z0VuC6/Lly7HaXyKKO7LkXkFcQDkcQWbcw2o0QzXshT9c9O4aEZFN0jXQX7VqFfr27asC7FKlSmH69OmoWbMmrl69ijRp0oR5/Pv375EjRw40bdoUffr0Cfc5JYD/5ptvUKJECfj7+2Pw4MGoUaMG/vnnHyRMmND0uC5dumDUqFGmdgIZUSIissEgP0+efPD2fh/vry0XW1esWIEKFSrAS+bjA8gEQJL1jUH+RAADBg8GZCMim+UHV3yJtTiDYsiIB6iIQ6o4Xy/M1LtrREQ2SddAf+rUqSrg7tChg2pLwL9t2zZ4enpi4MCBYR4vwbtsIrz7xc6dO0O0lyxZoi4aSBaAfNg0D+zTpUsXy0dERGRZZCRfC/J/B5Avnl9dRvTvAzikZoq5wQfr0AVpcUnduwelMFh9yI/pn6LtAIbGao+JKO48Rjo0wTocREW4wRffYZYK/H9FO727RkRkc3QL9H19fVXwPWjQINM+Se2sVq0ajh07Fmuv8+rVK/U1Rai5n8uWLcPvv/+ugv169eph6NChkY7q+/j4qM3o9evX6qufn5/abJnx+Gz9OClmeH5YNkmfl5F1QKYvFYjX1/bwkHPiPjw8PgUMzpjv1xUlA7Qg/5ZDNnRw2whXh5Qf8QqSuu8RdEHBFs8/2z02dUqqr7Z5fLb83n3s8V1AMfTxn4m5ft1V+2d0ww23PDjrWMzs90bw1/glx+Shfm/yb5rl4ecNioi9nRt+UTxOB4NBSh/HvwcPHiBjxow4evQoSpcubdrfv39/lX5/4sSJSL8/W7Zsan5+6Dn65uQXdf369fHy5Uv8+eefpv0LFixA1qxZkSFDBly4cAEDBgxQdQFkbn9ERowYgZEjR4bZv3z5cqb9ExF9QLbt21FowQJ129/VFYcnTMBrqbRPRHap4Lx5yL5rl7r9PlUqHJw8Gb7JkundLSIiiyfT2Vu1aqUGtJMkSWK5xfjikszVv3jxYoggX3Tt2tV0u0CBAkifPj2qVq2KGzduIGfOnOE+l2QeSD0B8xH9zJkzq/n/kf2AbeWq0Z49e1C9enW4uLBoDoXE88OySSE8bdqSpM8XitfXlhE5T889WPBVAmx842na38nwC9YMbhELr7BaKq7ocmxxz5aPTc6N1fD0TISOHdPDy6sIbIttv3exdXwuhmrY6VgdpQOPIcGzZ0jY0RPNXXfAJQHU742OHavDyyu+/6acB1ABhw4dUgWiybLw8wZFxN7OjddBmeUfolugnypVKjg5OeHx45DLq0g7NubO9+zZE1u3blW/rDNlkvJPEZNCgOL69esRBvpubm5qC01OJns4oeztWCn6eH5YJpkSpRXCk6r38f/+uD9/Ds833eACf9WejH741e+rWMxo1u/Y4p4tH5vGy0vOT1s8Plt/7z7++LzggsZYp+boZ8BDVAg8hFHegzHYYZJ2v5eLDueGHJOX+r3Jv2eWi583yN7PDZcoHmPwekcfQebaSwG9kydPRvl7XF1dUaxYMezbty9Eqr20zVP5o0tmIkiQv2HDBuzfvx/Zo5Aaeu7cOfVVRvaJiCh2uBp8UGLCBKQNWi97L6piIMbr3S0ishCPkF4V5/MNumDQGzPQwn+Z3t0iIrIJHx3oL168WM1vlyr4smZ9dNail1T4hQsXYunSpWo95B49euDdu3emKvxt27YNUaxPCvhJUC6b3L5//766LSPx5un6UmRP5s4nTpwYjx49UptxaSdJzx89erS6OHHr1i1s3rxZvY6kthYsWPBjfxxERBRkil8fpPj3X3X7FrKiBVYiwLZnjBFRNB1HaXyLWab2bL+vkeS//3TtExGRLfjoQH/GjBmYPHkynjx5oirZT5s2Lcrf27x5c/W9w4YNQ+HChVXQLsvjpU2b1rT+88OHD0MU8CtSpIjaZL98r9zu3Lmz6THz5s1ThQkqVaqkRuiN26pVq0yZBHv37lVz6/PmzYt+/fqhSZMm2LJly8f+KIiIKEgn/IJOAb+o215wR2Osx3Ok0rtbRGSBFqCr/MZQtxPACyXHj0dywwu9u0VEZNU+emhFgvE6deqo23Xr1lWj49EhafayhefAgQNhKu1/aJGAD90vBfSkqj8REcWNEjiJOfjG1P7WZQ7+8iuqa5+IyJI5oCdmoyAuoCROIeGTJ1ji+BVqYQcC4aR354iI7HNEX6ocyii5sTCAv79WcImIiOxPajzBOjSBG3xV+786dbDc+Su9u0VEFs4H7mq+/hOkVu3qgXswGkP17hYRkX2N6Ddu3Nh029vbG927d0fChAlVMT0iIrJPzvDDajRDZtxT7SOOZfG8Y0fgD717RkTW4B4yo43rCuz0rwHHwEAMxjicRnFsQPDnTiIiisMRfVk3PmnSpGpr06YNMmTIoG4nT5482qn7RERkGyaiPypBmxp1HxnUB3aDM4vvEVHU/elUAZfatze1l6Id8uEfXftERGSNYvQJbMmSJbHfEyIislotsRx9MF3dlqWyvsRaPHZIp3e3iMgK/VevHi4tfY8WASuRGG+xAY1QEifxGkn17hoRkW2P6FepUgUvX76M/d4QEZHVKYjz+AXBq5/IUlmyZBYRUYw4OOAbl/k4h0KqmQf/qpF9B3CKKBFRnAb6Ug1f1rEnIiL7lhwv1GibLIklZIksWSqLiOhjeDkkUMtyvkBy1W6ITRiMn/TuFhGR7Vfdd3BwiN2eEBGRVXFEAJajFXLgpmqfRAm1RJYslUVE9LFuIgdaYgUCg36njMIwteQeERF9WIyrJDVq1Mi0rF5o+/fvj+nTEhGRldA+dO9St2VJLFkaS5bIIiKKLbtREz9iLMZhMBxhUBcXS+AUbiCX3l0jIrLNQL906dJIlChR7PaGiIisQkNswI9BabT+cEIzrFZLYxERxbbxGKiC+8bYgOR4ifVojNI4hvdIqHfXiIhsK9CXtP0ffvgBadKkif0eERGRRcuLy/gVwUup/oBJOIhKuvaJiGyZA9pjCfLhMvLhCgribyxCJ5XWz6lCRESxOEffYDDE5NuIiMjKJcZrVXxPlrwSy9AK09Fb724RkY17gyRoiI14jcSq3QKr0BdT9e4WEZFtBfrDhw9n2j4RkZ2Rpa1kJD8vrqr2eRREFyzkiBoRxYt/kQdf4TdTeyL6ozJYF4qIKNYC/bZt2+L+/fth9l+7dg23bt2KyVMSEZGFk6WtZIkrIUteNcIGeCGB3t0iIjuyGQ0wGkPUbScEYhWaIzPu6N0tIiLbCPTbt2+Po0ePhtl/4sQJdR8REdkWWdJKquwLWeqqFZarpa+IiOLbCIzAdtRWt1PjmSrO5wZvvbtFRGT9gf5ff/2FsmXLhtn/+eef49y5c7HRLyIishA5cEMtaSVLW4khGINdqKV3t4jITgXCCa2xDNeRU7WL4wzm4mupIqV314iIrDvQl6r7b968CbP/1atXCAgIiI1+ERGRBUiAd6r4nixpJdajEcZhkN7dIiI79zJo+tC7oOlDHbEY3TFf724REVl3oF+hQgWMGzcuRFAvt2VfuXLlYrN/RESkGwN+QWe1lJW4jLxqiSsW3yMiS3ARBdAJi0ztGeiFMjiia5+IiCyFc0y+acKECSrYz5MnD8qXL6/2HT58GK9fv8b+/ax+SkRkC2TpqpZYqW7LklaytJUscUVEZClWoQWK4zS+xxS4wg9r8SWK4QweIoPeXSMisr4R/U8//RQXLlxAs2bN8OTJE5XGL5X4r1y5gvz588d+L4mIKF5VxV61dJWRLGklS1sREVmagRiPfaiibqfHIxXsu8JH724REVnfiL7IkCEDfvrpp9jtDRER6S4rbmElWqilq8RIDFNLWhERWaIAOKM5VuE0iiMbbqMMjmEmvkN3/Kx314iIrC/Qf/nyJRYtWoTLly+r9meffYaOHTsiadKksdk/IiKKRx54r4rvpcJz1d6CLzASw/XuFhFRpJ4jFRpjPY6gLDzgjW5YgDMohoXoqnfXiIisJ3X/9OnTyJkzJ6ZNm4YXL16oberUqWrf2bNnY7+XREQUDwxYiC4oAm2Z1H+RW6XsG2L2p4KIKF79haLogoWm9mz0xOc4pmufiIj0EqNPb3369EH9+vVx69YtrF+/Xm03b97EF198gd69e8d+L4mIKM71xnS0xnJ1+w0SqeJ7r5BM724REUXZMrTBNGifRaU43zo0QTo81LtbRETWM6I/YMAAODsHZ/7L7f79+6v7iIjIulTGfkzCD6Z2OyzFZXyqa5+IiGKiPybiD1RStzPgoSrO5wJfvbtFRGT5gX6SJElw586dMPvv3r2LxIkTx0a/iIgonmTBbaxCczgjQLXH4EdsQGO9u0VEFCP+cFHF+e4gs2qXxVHMQC+9u0VEZPmBfvPmzdGpUyesWrVKBfeyrVy5Ep07d0bLli1jv5dERBQn3OGliu+lxjPV3oY6GI6ReneLiOijPEUaNMIGeMNNtXtgPjrhF727RURk2VX3J0+eDAcHB7Rt2xb+/v5qn4uLC3r06IHx48fHdh+JiChOGLAAXVEUf6nWNeRCayxDIJz07hgR0Uc7i2LoigX4Fe1Uew6+wd8ogJMopXfXiIgsc0Tf1dUVM2bMwP/+9z+cO3dObVJ5X6rwu7lpV06jas6cOciWLRvc3d1RqlQpnDx5MsLHXrp0CU2aNFGPlwsN06dPj9Fzent745tvvkHKlCmRKFEi9ZyPHz+OVr+JiKxdL8zAV/hd3X6LhGr0i8X3iMiW/Ia2mIlv1W03+GI9GrM4HxHZhY9aMylBggQoUKCA2uR2dEnqf9++fTF8+HC1LF+hQoVQs2ZNPHnyJNzHv3//Hjly5FBZA+nSpYvxc8qqAVu2bMGaNWtw8OBBPHjwAI0bcz4qEdmPKtiHyfg+RPG9S8iva5+IiOJCP0zBQVRQtzPigarE7wofvbtFRGR5qfsfCoplub2omDp1Krp06YIOHTqo9vz587Ft2zZ4enpi4MCBYR5fokQJtYnw7o/Kc7569QqLFi3C8uXLUaVKFfWYxYsXI1++fDh+/Dg+//zzKPWdiMhaZcd/WI1mpuJ7YzEY69FE724REcVZcb6mWIPTKI4suIsyOIbZ6KnS+gEHvbtHRGQ5gX7SpElNtyVgrlevXrSr7fv6+uLMmTMYNGiQaZ+joyOqVauGY8eOxaRbUXpOud/Pz0/tM8qbNy+yZMmiHhNRoO/j46M2o9evX6uv8lyy2TLj8dn6cVLM8PywbIGBgfDw8JBb8i4hoeEtNvk0QErDC3X/Dsc6+Ml1GDwcYv/98/DwC/E1bgQfm+2x3WNTp6T6apvHZ8vvXVwfX1z93niL5GgZuAZ7fSrBA97ogl9wyaUgFjh3N3uUHJOH+r3Jv2mWh583KCL2dm74RfE4YxToywi40dq1azFx4kSVUh8dz549Q0BAANKmTRtiv7SvXLkSk25F6TkfPXqkagwkS5YszGPkvoiMGzcOI0eGrUS9e/fuGE1bsEZ79uzRuwtkwXh+WK4VK1YAuA8Y7qHExInIcOyi2v8mY0YETmyN5Ql3xunre3rG1bmRSI5OOza12RJbPjbj8cm5IXOlbW2+tD28d3F/fHH1e+PSwR4oPm2auj01sA++/PE1nuc3n7a0Avfv31cbWSZ+3iB7Pzfev38fd4G+PZIsAZn7bz6inzlzZtSoUQNJkiSBrV81kv841atXV6srEJnj+WHZzp8/jwoVZG7qIQzw24YG/lp20yskQYVnO3Gtc544e20ZkZMP6x07VoeXV1ycG6sBdFHHBhSCbbHlY5NzYzU8PROhY8f08PIqAtti2+9dXB9f3P/eqIOxzg7o4z8VjgEByDNkOsq5HcNdx6zyGxNABRw6dEjVeCLLws8bFBF7OzdeB2WWW2ygnypVKjg5OYWpdi/tiArtxcZzyldJ8X/58mWIUf0Pva6sJhDeigJyMtnDCWVvx0rRx/PDMsn0JS8vL3yBPzEcI9S+QDigFZbjgk/8FN+TD+tx84FdPXtQXVlbPPds+dg0Xl5yftri8dn6exf3xxeXvze+x0R8iouoid1IjWdY4dMM5fAnvNQxeanfm/x7Zrn4eYPs/dxwieIxxqjq/syZM02bv78/lixZEmJfVEj6fLFixbBv3z7TPpkTJe3SpUvHpFtRek65X3445o+5evUq7ty5E+PXJSKyZHkBLMMQU/tHjMV21NW1T0REegmEE1pgJa4hl2oXxV9YhE4ADHp3jYgo1sRoRH9a0NwmIaPgv/32m6kt69t/9913UXoeSYVv164dihcvjpIlS2L69Ol49+6dqWJ+27ZtkTFjRjU/XshI/D///GO6LfOnzp07h0SJEiFXrlxRek4pJNipUyf1uBQpUqi0+2+//VYF+ay4T0S2xunNG2wCkATvVHsVmmE8wl+1hIjIXrxEcjTERhzH50iMt2iJlfgLaTBJ744REekZ6N+8eTNWXrx58+Z4+vQphg0bpgrhFS5cGDt37jQV05NRdkmfMpL17osUCZ7LN3nyZLVVrFgRBw4ciNJzGi9UyPM2adJEVdKvWbMm5s6dGyvHRERkMQICkG3wYBjXSTmHQugITy4nRUQE4B98hjb4HZvQULXHYxb+1rtTRER6BvqjRo3C999/HyvV5nv27Km28BiDd6Ns2bLBYDB81HMKd3d3zJkzR21ERDbrxx+R9OhRdfMZkqrRq/dIqHeviIgsxmY0UPVLRmIEHGHQ1hO4fRsoWlTvrhERfZQYzdGXZebevn37ca9MRERxZ9kyYMIEddMfQFNMwG1k07tXREQWZzSGYkPQqL6Uac7Zpw/w8qXe3SIiiv9APyqj6kREpJOTJ4FOUlhKIwuDHkAJXbtERGSpDHBEW/yKi8ip2u4yot+iBeAvl0mJiKxTjJfXk7nxUgQvPDI/noiIdHD/PtCwIeDjo5rPGjbErI0b9e4VEZFFe4vEqI+pOIkGSCU7du0C+vcHpk7Vu2tERPEb6B85ckQtZxeaVN1noE9EpIP377Ug/+FDrV2+PO4OHAgw0Cci+qCbyIQvAfzh5ASHgACp3gzkzw907Kh314iI4i/Q37BhA9KkSRPTbyciotgkU6okXf/0aa2dLRuwbh0Md+/q3TMiIqtxEMDdAQOQ5aeftB3duwOffAKUK6d314iI4n6OPhERWRj5ULpypXZbplVt3gykTq13r4iIrM6zJk1kCSet4ecHNG4MyLx9IiJbD/Rl3frw0vaJiEgHGzYAQ4Zotx0cgN9/BwoU0LtXRETWS9L2q1bVbj99CjRoAHDFKSKy9UD/jz/+QLJkyUwV+FmFn4hIJxcuAF99FdweO1b7QEpERDHn7AysXg3kyqW1z58H2rYFAgP17hkRUdym7v/6668oUKAAPDw81FawYEH89ttvMX06IiKKridPgPr1gXfvtHarVoAU3yMioo+XIgWwZQuQJElw9tSIEXr3iogo7gL9qVOnokePHqhTpw5Wr16ttlq1aqF79+6YJqlOREQUt3x9AZlHapw3WqIE8MsvWuo+ERHFjrx5tfonjkEfmUePBlat0rtXRERxU3V/1qxZmDdvHtpKClOQ+vXr47PPPsOIESPQp0+fmDwtERFFhUyXkkrQf/6ptTNk0JbQ8/DQu2dERLandm1g0iSgXz+t3b49kCOHdoGViMiWRvQfPnyIMmXKhNkv++Q+IiKKQxMnAosXa7fd3bUgX4J9IiKKGzKI1aGDdtvbW5s2deeO3r0iIordQD9XrlwqXT+0VatWIXfu3DF5SiIiior160POw1+6lKNKRERxTaZFzZsHlC+vtR89AurVA9680btnRESxl7o/cuRING/eHIcOHULZsmXVviNHjmDfvn3hXgAgIqJYcPo00KZNcFvmijZrpmePiIjsh5ubdrH188+BGze0VU9atgQ2bQKcnPTuHRHRx4/oN2nSBCdOnECqVKmwceNGtcntkydPolGjRjF5SiIiiszdu9rokZeX1pYl9X78Ue9eERHZl1SpgG3bgKBlptVt49x9IiJrH9EXxYoVw++//x67vSEiorDevtWCfEkVFeXKAQsXssI+EZEe8uQB1q0DatYE/P2BGTO0fT166N0zIqKPC/QvSKpSJAoWLBiTpyUiotACArTU0PPntbZUepa1nCWFlIiI9FGlCjB/PtC5s9b+9lvt97ME/0RE1hroFy5cGA4ODjDIEk+hyP4A+WBKREQf74cfgK1btdtJk2ppopI6SkRE+urUCbh6VVt6Tz77Ss2Uo0eBzz7Tu2dERDFP3Zc5+qlTp47d3hARUbCffwamTdNuOztrqaJ58+rdKyIiMho/Hrh2TVvm9PVr4Isv5EMykCaN3j0jIjsX40A/S5YsSMNfYkREcWPPHuCbb4Lbc+cCVavq2SMiIgrN0RGQmlUVKgBnzwK3bgENGwL79wPu7nr3jojsWIyq7otdu3Zhx44daom969evh5vGT0REMXDpEtC0qZYKKqSic5cueveKiIjCkzAhsHkzkDGj1j52DOjQAQgM1LtnRGTHYjyi365duxDz8hMnTqz2TZ48GS4uLrHVPyIi+/LgAVC7NvDqldauXx+YMEHvXhERUWQkyN+yRVsV5f17YOVKIGtWLbWfiMhaRvQDAwPV5uPjg6dPn+LcuXOYMmUKVq1ahWHDhsV+L4mI7MGbN0DdusDdu1q7WDFg2TLAyUnvnhER0YcUKQKsWqWl8wu5SDtvnt69IiI7FePUfSEj9ylTpkSBAgXQqVMnLFiwAL/LPCUiIooePz8tXf/cOa2dLZtWbT9RIr17RkREUSXF+ObMCW737Bm8cgoRkaWm7r+WaqKRqFChAi5cuPCxfSIisi9S46RHDyl+orWTJwd27ADSpdO7Z0REFF3du2tF+WREX+bpN28OHDgAlCihd8+IyI5EK9BPliyZmo//IQHGAlJERPRhY8cCixZpt11dgU2buIweEZE1++kn4PZtba6+zNmXkf7jx4Hs2fXuGRHZiWgX41u7di1SpEgRN70hIrI3v/4KDB0asl2+vJ49IiKijyXz9JcsAR4+BA4eBJ480QqtHj0K8HM0EVlioF+2bFmkSZMmbnpDRGRP9u0DOnUKbk+cqKV4EhGR9XNzAzZskA/PwOXLwNWrQIMGwJ49gLu73r0jIhv3UcX4YsucOXOQLVs2uLu7o1SpUjh58mSkj1+zZg3y5s2rHi+FALdv3x7ifpleEN42adIk02Pk9ULfP55LoBBRfPn7b6BxY8DfX2t/8w3w/fd694qIiGKT1FyRz6lp02rtP/+UNaq1uftERJY0oh/bZEm+vn37Yv78+SrInz59OmrWrImrV6+Gmzlw9OhRtGzZEuPGjcMXX3yB5cuXo2HDhjh79izy58+vHvNQ0qTM7NixQ60K0KRJkxD7R40ahS5dupjaiRMnjrPjJCLLdefOHTx79izeXs/lyRPkad8erkEFTl9WqID/5IPfX3/F+mtdllEkIiLSj6yism0bULEi8O4dsHo1kCULYDYARUSka6BvHPmOTVOnTlXBdocOHVRbAv5t27bB09MTAwcODPP4GTNmoFatWvjhhx9Ue/To0dizZw9mz56tvlekC1WpetOmTahcuTJy5MgRYr8E9qEfS0T2F+TnyZMP3t7v4+X1kgI4JDX3gtqSv1T50CG8L1kyXl6fiIh0UKyYFuDXq6eN5k+eDGTKBPTqpXfPiMhGRSvQNxgMaN++PdxkzlEk1q9fH6Xn8/X1xZkzZzBo0CDTPkdHR1SrVg3Hjh0L93tkv2QAmJMMgI0bN4b7+MePH6sLB0uXLg1zn6Tqy4WCLFmyoFWrVujTpw+cncP/kfj4+Kgt9FKDfn5+arNlxuOz9eMk+zw/njx5AgcHAzw8fgeQJ05fy93gjS2+36Jg4DnVvumQAU3dFsPgkAIecfaquwGMASBpovH7Hnl4+IX4GkevosuxxQ/bPTaPoBPew8M2j8+W37u4Pr74+b0RETkmDwQGBsbN37Tq1eEwezacv/5aa/fuDf/kyWFo2TL2X8sGWfvnDYo79nZu+EXxOKMV6LeT1NJYJKmyshRfWuO8pSDSvnLlSrjf8+jRo3AfL/vDIwG+jNw3lrmwZr777jsULVpUrSAg0wHkYoOk/EuGQXhkqsDIkSPD7N+9ezcSJEgAeyCZE0S2eH6sWLEi6Nb9OHsNh4AAlJgwAelPakG+T9KkuDF+KGam94rT1wU+kyMMeo24fJ2IeXrG1bmRSPdjizu2fGzG45NzQ6bahZxuZ/3s4b2L++OLu98bH7IC9+/fV1ucyJABeZo3R95Vq1TTsWNHHP/vPzwtUiRuXs8GWfPnDYpb9nJuvJclO2M70F+8eDGsjUwBaN26tSrcZ848K6BgwYJwdXVFt27dVEAfXsaCXAgw/x4Z0c+cOTNq1KiBJEmSwNavGsl/nOrVq8PFxUXv7pCFsfbz4/z586hQoUJQQn2huHkRgwHz/LohfYBWaPQNEqGW9y781bco4t5qAF3i9vgiICNy8mG9Y8fq8PJysalji3u2fGxybqyGp2cidOyYHl5ethbg2PZ7F9fHF/e/NyJzHkAFHDp0CIUKxeF7V7s2ApIkgdPChXAMCEDpyZMRsGsXDJzCZdOfNyju2Nu58Toos9yii/GlSpUKTk5OKr3enLQjmjsv+6P6+MOHD6uiflLw70OkEKC/vz9u3bqFPHnCpu9K8B/eBQA5mezhhLK3YyX7OT9kupCXl1fQIiRx0/+fMAjtsETd9oErGmIjjvqUQvyJ2+P74Kt7ucThB3Z9jy1u2fKxaby85P+fLR6frb93cX98cft7IyJyTF7q70Kc/z2bNw948QJYtw4O797BWZbdk4r8efPG7evaAGv9vEFxz17ODZcoHqOuy+vJKHqxYsWwT9aSDiLzoqRdunTpcL9H9ps/XsgVnPAev2jRIvX8Ubkqe+7cOfWLPbxK/0REMdUL0zEI2tKdgXBAG/yO/aiqd7eIiEhPTk7A778DlSpp7efPgRo1gHv39O4ZEdkI3ZfXk3R4mftfvHhxlCxZUi2v9+7dO1MV/rZt2yJjxowqpV706tULFStWxJQpU1C3bl2sXLkSp0+fxoIFC8KkNKxZs0Y9LryCfidOnFCV+GX+vrSlEF+bNm2QXNY7JSKKBa2wDNPRx9TuidlYi6a69omIiCyETCvdtElbdu/cOeDuXakwLSmpQIoUeveOiKyc7oF+8+bN8fTpUwwbNkwV1CtcuDB27txpKrgnS1/JSLtRmTJlsHz5cgwZMgSDBw9G7ty5VcX9/Pnzh3heuQAgqwS0DKeSqaTgy/0jRoxQlfSzZ8+uAv3Q1fyJiGKqJnZiCdqb2iMxDPMQVGmZiIhISJ2nHTuAsmWB//4D/vlHW4JPiorZSbFnIrLRQF/07NlTbeE5cOBAmH1NmzZVW2S6du2qtvBItf3jx4/HsLdERJEriRNYhyZwgb9qz0c3jMAIvbtFRESWSOpM7d6tBftSh+roUaBZM2DDBpmMq3fviMhK6TpHn4jI1nyKS9iGukgIbemTtWiCbzBHFtjTu2tERGSpcubURvYTJ9ba27YBnTpJ8Sq9e0ZEVoqBPhFRLMmJ69iD6kiF56r9Byqp4nuBcNK7a0REZOmKFNHm7Lu6au3ffpO0V7VEKxFRdDHQJyKKBZlwF/tQFRnwULVPo5haRs8H7np3jYiIrEXlylJoSqvKb1yGb8AABvtEFG0M9ImIPlIaPMZeVENW3FHti/gMNbELr5FU764REZG1adQIWLIEcAia8jVpEjBmjN69IiIrw0CfiOgjJMcLla6fB/+q9jXkQnXswQuk1LtrRERkrdq00UbzjYYNA6ZN07NHRGRlGOgTEcVQYrzGTtRCQfyt2neQGdWwF4+QXu+uERGRtevWDZg8Obgty0AvXKhnj4jIijDQJyKKAQ+8xxbUQ0mcUu1HSIuq2Ic7yKp314iIyFb06weMGBEy+F++XM8eEZGVYKBPRBRNrvDBOjRBRRxS7edIoUbyryO33l0jIiJbI2n7EvALKcrXtq1WnZ+IKBIM9ImIosEJ/liBlqiNnar9GolV4b1LyK9314iIyBZJUT4pyNe9u9YOCACaNQP27NG7Z0RkwRjoExFFkSMCsATt0RgbVPs9PFAX23AGxfXuGhER2XqwP2eOVqRP+PoCDRoABw/q3TMislAM9ImIohjkL0U7tMEy1faBKxpiI/5Eeb27RkRE9sDREVi8WFt+T3h5AXXqMNgnonAx0CciimaQ7wsXNMUa7EENvbtGRET2xNkZWLECqFtXa79/z2CfiMLFQJ+IKAZB/hbU17trRERkj9zcgHXrtABfMNgnonAw0Cci+sCc/NBB/mY00LtrRERk78H++vVhg/1D2mowREQM9ImIIgnyv8Lvqs0gn4iILD7Yr12bwT4RKQz0iYjCCfIXo4MpyPeDM4N8IiKyPBzZJ6IIMNAnIgonyG+L30xB/pdYyyCfiIisY87+u3cM9omIgT4RUWRBPkfyiYjI4rm7M9gnohAY6BMRAXCBH5ajVZggfxMa6t01IiKimAX7tWoBe/bo3TMi0gEDfSKye+4A1uN7NMdq1WaQT0RENhHse3kBX3wBbNyod8+IKJ4x0Cciu+b4/j22AfgCf6q2F9zRAJsY5BMRkfUG+1Kgr3Fjre3rC3z5JbBMWyqWiOwDA30isl//+x9yff01qgQ13yARamMHdiBoJISIiMhaC/StWgV89ZXWDgjQbv/8s949I6J4wkCfiOzTkydA5cpI9Pffqvk/JEY17MVBVNK7Z0RERB/P2RlYsgTo0UNrGwxA9+7A5Ml694yI4gEDfSKyP/fuARUqAOfPq+ZjABWxECdRSu+eERERxR5HR2DOHKB//+B9P/wADB+uBf5EZLMY6BORfblxAyhfHrh6VTV906ZFBQB/I7fePSMiIop9Dg7A+PHAmDHB+0aNAvr1Y7BPZMMY6BOR/fjnHy3Iv3VLa+fMiX9/+QX/6t0vIiKiuA72f/wRmD49eN+0aUDXrtr8fSKyOQz0icg+HD0KlCsHPHyotT/7DDh8GL4ZMujdMyIiovjRqxewaJEW+ItffgGaNQO8vfXuGRHZYqA/Z84cZMuWDe7u7ihVqhROnjwZ6ePXrFmDvHnzqscXKFAA27dvD3F/+/bt4eDgEGKrVatWiMe8ePECrVu3RpIkSZAsWTJ06tQJb9++jZPjIyKdyfrBVauqKvtKsWLAgQNA+vR694yIiCh+dewIrFihFesTshRfjRrBfyOJyCboHuivWrUKffv2xfDhw3H27FkUKlQINWvWxBOpiB2Oo0ePomXLliow/+uvv9CwYUO1Xbx4McTjJLB/+PChaVshv9DMSJB/6dIl7NmzB1u3bsWhQ4fQVdKXiMi2zJ8PNGkSPFpRrRqwfz+QKpXePSMiItJH8+bAli1AwoRa+/BhLevt7l29e0ZEsSToUp5+pk6dii5duqBDhw6qPX/+fGzbtg2enp4YOHBgmMfPmDFDBfE/SMVQAKNHj1bB+uzZs9X3Grm5uSFdunThvubly5exc+dOnDp1CsWLF1f7Zs2ahTp16mDy5MnIwFReojDu3LmDZ8+ehdkfGBiovp4/fx6OUt3XUhgMSD9vHtJLimKQF7Vr4/bw4TBcvx7i9wEREZGt/11IlSoVsmTJErxDsl0PHgTq1NGWnJU6NqVLAzt2AAUKwFY+p9jke0dk6YG+r68vzpw5g0GDBpn2SaBQrVo1HDt2LNzvkf2SAWBOMgA2SmqumQMHDiBNmjRInjw5qlSpgjFjxiBlypSm55B0fWOQL+Q15bVPnDiBRo0ahXldHx8ftRm9fv1affXz81ObLTMen60fJ0Xs3r17KFasBLy934e5z8PDQ12Yk/+HXl5esATOBgNm+fmhqFmBoSnOzhj2xx8wSMp+OMcAyAULWz3H9Tk+Dw+/EF/j6FVs+L2z3WNT/+XUV9s8Plt+7+L6+OLn90ZEHgBIqAagbJG7ewKcOXMKmTJlCt5ZsKAK9p3r1YODXAS/fx+G8uURsG4dDLIMrZV8Ho3sc4rNvndkt7GKXxSP08Fg0G9djQcPHiBjxowqHb+0XEEM0r9/fxw8eFAF3aG5urpi6dKlKn3faO7cuRg5ciQeP5bVsIGVK1ciQYIEyJ49O27cuIHBgwcjUaJEKsB3cnLCTz/9pJ7jatDyWkZyYUCep0ePHmFed8SIEeq+0JYvX65ei4gsg5O3N4pPmoR0Z86otsHBARc7dcJ/X3yhd9eIiIgskuvLl/h87Fgkv3ZNtQOcnXG2Tx88KFtW764RUSjv379Hq1at8OrVK1VvzmJT9+NCixYtTLelWF/BggWRM2dONcpfVQpyxYBkHZhnEsiIfubMmVGjRo1If8C2ctVIpkdUr14dLi4ueneHdCBp+RXUlf1DAAqFuE9GXTw996Bjx+rw8tL3/EhleIr1Pg2QzqAF+T5wRSfnxVi/rCmwLKLvWg2gS7jHZhv0O764Pzds+b2z5WOTc2M1PD0ToWPH9PDyKgLbYtvvXVwfn75/U2z5vTsPoIKqSSX1sMLVoAECW7WC444dcPL3R/HJkxGYPj0Ce/aEpX8ejexzil28d3bO3mKV10GZ5R/irPd8ExlhN47EG0k7ovn1sj86jxc5cuRQr3X9+nUV6MtjQxf78/f3V5X4I3oemfMvW2hyMtnDCWVvx0ohybQWLS1f5uCHfw7IBzI9A/1cuIbtqIPc0Obfv0RSNMRGHPSrFIXs0siPzfrpe3xxe27Y8ntny8em8fKS3y22eHy2/t7F/fHp9zfFVt87OSYv9fc8ws9yyZIBmzYB3bsDnp6S9gunvn3h9OABMH484OQES/08GpXPKTb93pFdxSouUTxGXStnSRp+sWLFsG/fvhCFvaRtnspvTvabP17IFZyIHm+ct/P8+XOkD1pKSx778uVLVR/AaP/+/eq1ZXk/IrIulbEfJ1DKFOTfRwaUx2EcRCW9u0ZERGQ9JID45RdgyJDgfZMnA40bA1yGmsiq6F4iW9LhFy5cqObMS5VTmR//7t07UxX+tm3bhijW16tXL1Uxf8qUKbhy5YqaO3/69Gn0DEorevv2rarIf/z4cdy6dUtdFGjQoAFy5cqlioWJfPnyqcr9Umzl5MmTOHLkiPp+SflnxX0i69IFC7ALNZEC2vq/F/EZSuMYLsL6KgYTERHpzsFBlrXSlqc1juJv3qwtv3fnjt69IyJrCfSbN2+ulrQbNmwYChcujHPnzqlAPm3atKalMh4+fGh6fJkyZVQBvAULFqh5KmvXrlUV9/Pnz6/ul6kAFy5cQP369fHJJ5+gU6dOKmvg8OHDIVLvly1bhrx586pUfllWr1y5cuo5icg6OMEf09AbC9ANLvBX+7ahDsrgKO6CS9AQERF9lG7dtKX2kibV2ufPAyVLAseP690zIooCiyjGJ6PpxhH50KSAXmhNmzZVW3hkmaxdu3Z98DVTpEihLhgQkfVJgldYgZaogx2mfVPRBz9gEgJhGXMIiYiIrF716lpgLyvX3LghhbGASpXUHH60aqV374jIkkf0iYiiIzv+w1GUMQX5fnBW6fv9MJVBPhERUWzLmxeQJa8lwBc+PkDr1sCwYVJcS+/eEVEEGOgTkdUoh8Oq6N5n+Ee1nyMFqmMPflHLIREREVGcSJkSkIzZzp2D98k8/ubNZVFvPXtGRBFgoE9EVqEDPLEPVZEaz1T7MvKiFE6wsj4REVF8cHUFpJ7V1Kmynp22b+1aQNavv3dP794RUSgM9InIornCB/PQHZ7oBFf4qX27UENV1r+BXHp3j4iIyL4q8vfpo1XhT5xY2yfLVRctKmtV6907IjLDQJ+ILFYm3MVhlEd3/GzaNxvfoC624RWS6do3IiIiu1W3LnD0KJAtm9Z++lQr3DdxImAw6N07ImKgT0SWqgr24SyKoiROqbYX3NEei/EtZiPAMhYMISIisl+ytPXp00CtWlpbCvMNGAA0aQK8fq1374jsHgN9IrIwBgzAeOxGDdN8/P+QXaXqL0V7vTtHRERE5kX6tm4Fhg8P3rdhA1CiBHDpkp49I7J7DPSJyGIkwSusR2OMxyA4QVuyZxvqoBjO4DwK6909IiIiCs3JCRgxQgv4kwVNq/v3X6BUKWDVKr17R2S3GOgTkUX4DBdxCiXQCBtVOxAOGIaRqIcteInkenePiIiIPjRvXwrzFSqktd+9A1q00Ir3+WnFdIko/jDQJyKdGdAOS3ACpfAJrqk9L5BcFdwbjWEw8NcUERGRdciRQyvS17Zt8L7p04HKlYE7d/TsGZHd4SdoItI1VX8ZWmMJOiAh3qt9Z1FEpervRG29u0dERETRlSABsGQJMG8e4OKi7TtyRBvpX7dO794R2Q0G+kSki1I4jr9QBK2wwrRvITqjLI7gFrLr2jciIiL6CA4OQPfuwOHDQNas2r6XL4EvvwS6dQPeaxf3iSjuMNAnonjliAAMxDj8iXLIgZtq30skRTOsQlcshDc89O4iERERxQYpyHfuHNCsWfC+BQuA4sWBCxf07BmRzWOgT0TxJj0eqGXzxmEwnBGg9h1FaRTGOayB2YcAIiIisg1SiX/lSmDRIi2tX1y+DJQsCcyeDRgMeveQyCYx0CeiePEFtuACCqIq9puq6o/CUFTAIdxGNr27R0RERHGZyt+xo1aVv3DQcrk+PsC33wINGgDPnundQyKbw0CfiOJUArzDLPTEFtRHKjxX++4hI6pgP4ZjFALgrHcXiYiIKD7kzQscPw707h28b8sWrVDf7t169ozI5jDQJ6I4Ux6HcB6F0BNzTPs2oCEK4TwOopKufSMiIiIduLkB06YB27YBqVNr+x48AGrWBLp2BV6/1ruHRDaBgT4RxToPvMc09MYBVEIu3FD73sMDX2MOGmM9XiCl3l0kIiIiPdWpA5w/D9SoEbxv4UKgQAFg7149e0ZkExjoE1GsKos/1Sh+b8yAI7QCO3+irBrFn4evZaKe3l0kIiIiS5A+PbBzJzB/PpAokbbvzh2genVteb43b/TuIZHVYqBPRLHC3eCFyeiHQ6iA3Liu9nnBHX0xBRVxENeRW+8uEhERkSUW6uvWDfj7b6BKleD9P/+sje7v14r4ElH0MNAnoo+W/MoVHPcpjn6YahrFP4bP1bJ509AXgXDSu4tERERkybJlA/bsAebMARIm1Pbdvg1UrQp88w3w9q3ePSSyKgz0iSjGkuAVJvv2QfnBg/GJ4Zra5w03fI9JKIc/8S/y6N1FIiIishaOjsDXXwMXLgAVKwbvnzsXzkWKIO3p03r2jsiqMNAnohgwoClW4zLy4euAOXAIDFR7T6AkiuAvTMH3HMUnIiKimMmRQ0vZnzULSJBA7XK4fRufjxkDp2bNgHv39O4hkcVjoE9E0ZIT17ETtbAazZEBD9U+f1dX/Oj8E8riCK4gn95dJCIiIlsY3e/ZU6vMbzZ333HjRiBfPmDqVMDfX9cuElkyBvpEFCWuAIZiAS4iP2pit2n/Nse62D9rFqa5fI8AOOvaRyIiIrIxuXKp5fb8lyyBd9Kk2j6Zr9+vH1C8OHDsmN49JLJI/FRORB+U+ORJXACQBz+b9t1BZnyLWdjjVgcr0m7XtX9ERERkwxwcYGjVCvudnVHz8GE4LVgAGAzaaH+ZMsjcuDGSA/if3v0ksiAc0SeiiMlatq1aIXePHqayev5wwkT8gE/xDzajgc4dJCIiInvhlygRAmXe/vHjQJEipv2p16/HFQCdsAGOCNC1j0SWwiIC/Tlz5iBbtmxwd3dHqVKlcPLkyUgfv2bNGuTNm1c9vkCBAti+PXg00c/PDwMGDFD7EyZMiAwZMqBt27Z48OBBiOeQ13NwcAixjR8/Ps6OkciqvHkDDBkC5MkDrFhh2n0EhVSxvQGYiHdIpGsXiYiIyE6VLAlIvDB9OpA4sdqVBsAvGIOzKIoq2Kd3D4l0p3ugv2rVKvTt2xfDhw/H2bNnUahQIdSsWRNPnjwJ9/FHjx5Fy5Yt0alTJ/z1119o2LCh2i5evKjuf//+vXqeoUOHqq/r16/H1atXUb9+/TDPNWrUKDx8+NC0ffvtt3F+vEQWLSAAWLQI+OQTYOxYwNtb7fZPmhSdAJTHL7iIAnr3koiIiOydszPQqxdw+TL+V726aXchXMA+VMNm1EMeNc5PZJ90D/SnTp2KLl26oEOHDvj0008xf/58JEiQAJ6enuE+fsaMGahVqxZ++OEH5MuXD6NHj0bRokUxe/ZsdX/SpEmxZ88eNGvWDHny5MHnn3+u7jtz5gzuSBqymcSJEyNdunSmTTIAiOyWLGNTrBjQuTPw6JG2z8VFFbu5tGkT5H+kQf9fGURERETBMmbEzfHjUR7AKXxq2l0PW/E3CmAGvkMKPNe1i0R2V4zP19dXBeCDBg0y7XN0dES1atVwLIIKmrJfMgDMSQbARllqIwKvXr1SqfnJkiULsV9S9eVCQZYsWdCqVSv06dMHznJ1MBw+Pj5qM3r9+rVpqoBstsx4fLZ+nB/r3r17eP7c+v6QuN26hcwzZyLZ4cMh9r+oUgX3v/0WPpkyqawYDw8PAIFyJoR4nIeHX4iv1in8Y7Md+hxf/Jwbtvze2e6xqV8n6qttHp8tv3dxfXz6/02x1fdOjskDly9fRmCg3LY+xn5LRq/EC+bkc8oZDw9UMixGi4BLGOU3FBlxHy7wx3eYha/wG8a5/IifnXrAz0HWEbK+906On5/Fw2dvsYpfFI/TwWCQkpX6kHnzGTNmVOn4pUuXNu3v378/Dh48iBMnToT5HldXVyxdulSl7xvNnTsXI0eOxOPHj8M83tvbG2XLllVz+pctWxYik0AyAVKkSKFeXy42SFaB7A/PiBEj1GuEtnz5cpWBQGRt3J8+xSdr1yLr3r1wlJT9IC9z5sTFjh3x/LPPdO0fERERUUw4+fgg58aNyL1+PZzNBurepU2LKy1a4F6FCoCTk659JIopmaoug9QymJ0kSRL7XF5PrnZICr9cy5g3b16I+8yzAgoWLKguIHTr1g3jxo2Dm5tbmOeSCwHm3yMj+pkzZ0aNGjUi/QHbys9RpkNUr14dLpLKTWGcP38eFeSPBhaqRegsWTrDM3zvtwSdAtbDzWzE4gFSY5jLN1hxvzYMY0Kn6O8GMAbAITX7zZyMunh67kHHjtXh5WWN58dqAF3CPTbboN/xxf25YcvvnS0fm5wbq+HpmQgdO6aHl1dw5WzbYNvvXVwfn75/U2z5vTMem+V/TomIZAB5ej4M+r0Rlc8pjZDeYRxGOA1D64Df4AgDEj5+jGIzZiDhzJ0Y6zwU652+hMHB0qclngdQAYcOHVK1zCgse4tVXgdlln+IroF+qlSp4OTkFGYkXtoyZz48sj8qjzcG+bdv38b+/fs/GIxLtX9/f3/cunVLze0PTYL/8C4AyMlkDyeUvR1rdEkKmZeXF4B8AIrCEqXEM/THRPTEbCSA9FXzGokxGd9jCvrhvV/CCLIVrwLqe+SPYfjngHwgs85AHx88Nuun7/HF7blhy++dLR+bRj6sW+/vDXt+7+L++PT7m2LL751lf075MPmA8lBdHAx7boT/OeU/ZEVbLMU09MJE9Ee1oGr8eQ1X8ZtfG3zvNxHDMAqbIUW7HWCZ5Ji81GdNfg6PnL3EKi5RPEZdL2HJKHqxYsWwb1/wEhgy/0Ta5qn85mS/+eOFXMExf7wxyL927Rr27t2LlClTfrAv586dU/+B0qSRxTmIbEcy/A+jMQQ3kR39MckU5L9DAozDQGTHTYzGMLwHi1ESERGR7fkLRVEde1ERB3BIle0LrtC/CQ1xEiVRCztU2WEiW6F76r6kw7dr1w7FixdHyZIlMX36dLx7907Nlxdt27ZV8/glpV706tULFStWxJQpU1C3bl2sXLkSp0+fxoIFC0xB/pdffqmW1tu6dSsCAgLwKKiCuMzHl4sLUtBP5v9XrlxZVd6XthTia9OmDZInT67jT4Mo9iTHCzV63xdTkQyvTPu94Ya5+BoTMABPkFbXPhIRERHFl0OoiIo4iOrYg9EYilI4qfaXwGnsQB0cQRm1fxdqWvAIP5GVBPrNmzfH06dPMWzYMBWQFy5cGDt37kTatFoAIkvimVfWLFOmjCqAN2TIEAwePBi5c+dWFffz58+v7r9//z42b96sbstzmfvjjz9QqVIllYIvFwikwJ5U0s+ePbsK9ENX8yeyRplwVwX3XbAQifDOtN8XLliILvgJg/EAGXXtIxEREZE+HLAHNbAH1fEFtmIUhqEIzql7yuIodqI2zqGQGhBZg6YI0D9cIooRizhze/bsqbbwHDhwIMy+pk2bqi082bJlU8X3IiPV9o8fPx7D3hJZpnz4R83Bb41lajkZI384YSnaqSvUt5FN1z4SERERWQYHbEU9bENdNMIGFfB/hn/UPYVxHivQCmPxo6phtBgd4AWuskXWxdLLTBLRB5TBEWxCffyDz9AeS01BvhfcMRvfIDeuoTMWMcgnIiIiCsUAR6xHExTEBTTGOpxASdN9OXATc9ATt5ANP2KMmhZJZC0Y6BNZISf4oxHWq4IyR1AO9bHFdN8LJMcoDEUW3MG3mI1byK5rX4mIiIgsXSCcsAGN8TmOozL2Y6eap69Jg6cYg6G4gyyYij7Iieu69pUoKhjoE1mR1HiCwRirKujL1efy+NN0311kQh9MVQH+cIzCM6TWta9ERERE1scBB1AZtbEThfEXlqMlAoJCJql91AfT8S8+wTbUQW1shwMC9e4wUbgY6BNZPANK4Th+xVe4i8wYiyHIjHume/9BPrTDEuTEDUxHH7xDIl17S0RERGQLzqMwWmO5mgY5B1+raZHCEQbUwQ5sR11cQ270xRSm9ZPFYaBPZKHc4YX2WIxTKIHjKI2v8Dvc4KvuC4QDNqMeamAX8uMifkU7+MFV7y4TERER2ZybyIGemIPMuIv+mIBbyGq6Lyf+wxR8j3vIhIXorLIAiCwBA30ii2JAMZxWRfTuIyMWoyOK44zp3udIgQnor0bvG2CzWh5GisgQERERUdx6jlSYFPQ5rD42YRdqmO5LAC9V/PgvFFUF/XpgLpLhf7r2l+wbIwQiC5AGj1Xa1wUUxGmUwDeYixRmfxzOoKga3c+EexioriSzwB4RERGRXoX7tqA+amEX8uAKZuA7vEIS0/0lcQpz8Q0eIj1WoIXKwHREgK59JvvDQJ9IJy7wRQNsxEY0UOlekvZVABdN97+HB35DG3yOYyiO01iK9vCGh659JiIiIqJg/yIPemMGMuI+umMezqKI6T53+KAFVmEXauE2smIsBiM3/tW1v2Q/GOgTxSOpzFoehzALPVVwvxGNVAq+C/xNjzmCMuiMhUiPh2iL33ACn6vvJCIiIiLLJMWQf0Z3FMNZFMI5TEcvPEUq0/2ZcB+DMU5dGPgTZdETs5AOD3XtM9k2BvpE8RDcl8ZRTENvVTX/ECqqgi6yJqvRfWTAOAxU6V/lcASL0BmvkVTXfhMRERFR9F1AIbUMn4zyN8J6VUDZH06m+8viKGbhO1WP6Q9UUpkAsoQyUWxyjtVnI6IgBpTAKTTDarVlwd0wj/CGGzajPhajA3ajhprvRURERES2QVZEkuxN2dLiEVpjGTpgMfLjkmmZvko4qLbZ6Ik/UFl9clyPxqrwH9HHYKBPFEtcAFTEcRW618MWZMPtMI/xhQt2opb6JS5B/huzwi1EREREZJseIx2mop/aPsNFNRDUHKuQJ2jOvhMCUQ371DYXX+MgKmKL+kSZHf/p3XmySgz0iT7Gs2fA9u3I/uuveAYgCb4J8xA/OGMPqqvgfiMa4hWS6dJVIiIiItLfJeTHcLWNRCGcNwX9OYNCemcEoCr2q226ejyQcuZMoEsX4PPPASdmgdKHMdAnig6DAfj7b2DnTmDLFuDoUSAwEMnDGbk/gEoquN+ARniBlDp1mIiIiIgskwPOo7DafsRYFMMZFfR/ibXIgZumR30m/yxdqm2pUgF16gBffAFUrQqkSKHnAZAFY6BP9CH37gF79gB792rbk/CLpTwHsB11sBnt1Zx7FtMjIiIioqhxwBkUV9sATMCn+Ecl7tfDSpTG+eAK6pJN+uuv2ubgABQrBlSvDlSrBpQtC7i56XsYZDEY6BOF9uoVcPCgFtzLdvVqxI/NmxeoVw9X8+TBZ507IwCjARSNz94SERERkU1xwD/4TG0TUAOpUAynRoxAtgsXgN27gbdvgzNNT5/WtnHjAA8PoHz54MC/YEHAkYus2SsG+kQPHwJ//gkcPqx9PX9epeOHK1EioHJl7ZenpE3lyqV2vzt7FgHx22siIiIisgNSB+pFvXrINnw44OMDHDigBfySaSrBv5GXl7ZfNpE8uTbKX66cdgFARv854m83GOiTfZErn//+GzKwv3Ej4sdLsRMpeiKBvVwdLVkScJH6+kRERERE8UwC9Zo1tU08fgzs26cF/ZKJKlNOjf73P2DrVm0T7u7aZ1lj4F+6NJCUU01tFQN9sm0PHgCnTmnbyZNaapP80ouIzHWSNKcKFbTAvmJFIAmXwCMiIiIiC5Q2LdCqlbYZB7Qk4JfgXwa0ZE6/kbc3cOiQthk/9+bJA5QoEbwVLqxdECCrx0CfbIdc0ZS0e2NgL5sE+h+6Khr6ymYyLn9HRERERFbGGLjL1rOnFvhLrSnzTNb/tCX8FLn/yhVt++03bZ+zszboZQz8ixYFPv2UKf9WiIE+WR9fX+0XkgT1Mi9JvsoWQTX8MFc95ZeWzFeSwL54cf7iIiIiIiLbDPylcLRsnTtr++7fB44c0QL/48e1z9B+fsHf4+8PnD2rbT//HDyVVZ6jUCFtkwsB8jVdOu01yCIx0CfLJcVGrl8HLl/WAnv5eukS8M8/IX8hRURS7iWQN16RlJH7TJn4C4mIiIiI7FPGjECzZtpm/LwtA2fmU13lM7eM9hsFBGifwWVbvjx4f+rUWtCfL5+2ycUA+coLABaBgT7pS36JSNV7KYgnQb0xfUh+wUhqkfxiiYpUqYKvMBYpogX1uXNzSREiIiIioohIZqtxUMzozRttRF9qWxkzZ+WzeeiBtqdPtVoAspmTAn/GoF82+UwuK1XlyAEkTBg/x0UM9CkeSOGPO3eAW7e0YF6CevNNlgKJKvPUIWPakHxNn55XDomIiIiIPlbixFpBatnCmzprPn02vKmzr14BJ05oW2gy2p8zpxb4y1fjljUrkCYNB+liEQN9+jiy3rxczZP5PhLMy3b7dvBX2aIydz60BAm0QiLmaUCyyS8FzqknIiIiIoo/rq7a4JpsX30VvF/iAGM2rvl0W4kBwvPokbZJnYDQ5DN+5sxa0J8lS8ivMv1Wph0wIyDKGOhT+CQ1R5bjePwYDg8eIPP+/XD8+2+tsr0E9VLNXjZJu5eiHTH9hZE9e8grep98ogX08p+cV/SIiIiIiCyXzNOXTYpcm3v3TlvqT4L+0Bm9EuhHVp9LtshqcGXIoAX98jVDBjimS4f0Dx/CQe6T/VJ8O0kSu8/2ZaBvL/Pg37/XAvfnz7XN/LZsEsDLyLvxq+wzO0mKxuR15T+X/Ac0vxpnnqoj/xElFZ+IiIiIiGyHjLxL3SzZQnv7VqvFZQz85bZ5RrDUCIjI69faJpkDQSSaKCk3Jk4MmR2QJo22SeAvX+WChNT1SpkyeDO2U6TQlha0IbZ1NBTSypVAv35a0C5XyGKb/IcxXlGTOfISzBsDetlkv4zaExERERERiUSJgqcBhDdAKXP8jVOAjcG/eUax3JZBzMj4+AB372pbVEkRQYlfZHUBG2ARgf6cOXMwadIkPHr0CIUKFcKsWbNQUqqmR2DNmjUYOnQobt26hdy5c2PChAmoU6eO6X6DwYDhw4dj4cKFePnyJcqWLYt58+apxxq9ePEC3377LbZs2QJHR0c0adIEM2bMQCI58WyJ/GeI7tx441Uv+Zo2LQJSpsSlZ8/wafXqcJZAXoJ7KaTBIJ6IiIiIiGKLZAQnS6ZtUnQ7PHIxQEb1g4J+/zt38O+BA8iTIgWcpGaAeZby06daTbGokAsMNlQDQPdAf9WqVejbty/mz5+PUqVKYfr06ahZsyauXr2KNBJshnL06FG0bNkS48aNwxdffIHly5ejYcOGOHv2LPLnz68eM3HiRMycORNLly5F9uzZ1UUBec5//vkH7u7u6jGtW7fGw4cPsWfPHvj5+aFDhw7o2rWrej6bIYG6jLSbp6hEdNsY2Idzcgf6+eHm9u3IJxdTXFx0ORQiIiIiIiJ1MUBG32XLlw8GPz9cS5kSuevUgVPoWCUgQEZ4tcBfpi5HNJXZeFtiJxuhe6A/depUdOnSRQXaQgL+bdu2wdPTEwMHDgzzeBl1r1WrFn744QfVHj16tArWZ8+erb5XRvPlYsGQIUPQoEED9Zhff/0VadOmxcaNG9GiRQtcvnwZO3fuxKlTp1C8eHH1GMkikKyAyZMnI4OMWNuCypWjP6JPRERERERkC5ycggsG2hldA31fX1+cOXMGgwYNMu2TNPpq1arh2LFj4X6P7JcMAHMyWi9BvLh586aaAiDPYZQ0aVKVLSDfK4G+fE2WLJkpyBfyeHntEydOoFGjRmFe18fHR21GryS1I2gKgGQE2DI5vvfv3+P58+dw4Yh+uF6/fh2ULXJGWrA9VwGEf3zu7oHq/HB3PwyDwdGmjs026Hd8cX9u2PJ7Z8vHJufGNbx/nwfu7n/BYHgL22Lb711cH5++f1Ns+b2z/mOL/Nyw/uOL2DV1bBIzyedNWyQDsuFlckeVvcUqb4KKFcoAt8UG+s+ePUNAQIB6c81J+4pZJUVzEsSH93jZb7zfuC+yx4Q+mZydnZEiRQrTY0KTqQIjR44Ms1+mBhAF6wp7Oz5vb6BVK9gA+3vv4lr8nRu2/N7Z5rHZzu8N+3vv4vr4LOPcsOX3znqPLWrnhvUe34fIFGOi0AG/DGhbbOq+tZCsA/NMgsDAQDWanzJlSjjY+BqNcvUwc+bMuHv3LpLImpREZnh+UER4blBEeG5QRHhuUER4blBE7O3cMBgMKsj/0HRzXQP9VKlSwcnJCY+lOIIZaaeTqu7hkP2RPd74VfalNyumIO3ChQubHvNEqjCa8ff3V4F7RK/r5uamNnOS/m9P5D+OPfznoZjh+UER4blBEeG5QRHhuUER4blBEbGncyNpJCP5RrpOqHV1dUWxYsWwb9++ECPl0i5dunS43yP7zR8vpBif8fGSSi/Buvlj5CqPzL03Pka+yrJ7MtfFaP/+/eq1ZS4/ERERERERkbXSPXVf0uHbtWunCuOVLFlSVcx/9+6dqQp/27ZtkTFjRjVHXvTq1QsVK1bElClTULduXaxcuRKnT5/GggUL1P2SRt+7d2+MGTMGuXPnNi2vJ6kNsgyfyJcvn6rcL9X+pVK/FHDo2bOnKtRnMxX3iYiIiIiIyC7pHug3b94cT58+xbBhw1QhPEmvl6XvjMX07ty5o6rhG5UpU0atdS/L5w0ePFgF81JxP3/+/KbH9O/fX10skKIVMnJfrlw59ZxaVXTNsmXLVHBftWpV9fxNmjTBzJkz4/norYNMWRg+fHiYqQtEgucHRYTnBkWE5wZFhOcGRYTnBkWE50b4HAwfqstPRERERERERFbDGhe9JiIiIiIiIqIIMNAnIiIiIiIisiEM9ImIiIiIiIhsCAN9IiIiIiIiIhvCQJ9iZNu2bShVqhQ8PDyQPHly09KFRMLHx0etoCHLXZ47d07v7pDObt26hU6dOqnlTuV3Rs6cOVV1XF9fX727RjqYM2cOsmXLplbCkb8jJ0+e1LtLZAFkGeUSJUogceLESJMmjfpccfXqVb27RRZm/PjxpqW0icT9+/fRpk0bpEyZUn3GKFCggFp6nRjoUwysW7cOX331FTp06IDz58/jyJEjaNWqld7dIgsiS1xmyJBB726Qhbhy5QoCAwPx888/49KlS5g2bRrmz5+vlkgl+7Jq1Sr07dtXXeg5e/YsChUqhJo1a+LJkyd6d410dvDgQXzzzTc4fvw49uzZAz8/P9SoUUMtl0wkTp06pf6OFCxYUO+ukIX43//+h7Jly8LFxQU7duzAP//8gylTpqhBSOLyehRN/v7+aiRm5MiRaoSOKDT5RSsf5OWC0GeffYa//vpLje4TmZs0aRLmzZuH//77T++uUDySEXwZtZ09e7ZqywWgzJkz49tvv8XAgQP17h5ZkKdPn6qRfbkAUKFCBb27Qzp7+/YtihYtirlz52LMmDHqc8X06dP17hbpTP5uyIDj4cOH9e6KReKIPkWLjMBIioyjoyOKFCmC9OnTo3bt2rh48aLeXSML8PjxY3Tp0gW//fYbEiRIoHd3yIK9evUKKVKk0LsbFI9kqsaZM2dQrVo10z75WyLtY8eO6do3sszfEYK/J0hItkfdunVD/P4g2rx5M4oXL46mTZuqC4MSmyxcuFDvblkMBvoULcbRtxEjRmDIkCHYunWrSo+pVKkSXrx4oXf3SEeSHNS+fXt0795d/dIlisj169cxa9YsdOvWTe+uUDx69uwZAgICkDZt2hD7pf3o0SPd+kWWRzI9ZA62pOTmz59f7+6QzlauXKkGmqSOA1HouESyA3Pnzo1du3ahR48e+O6777B06VK9u2YRGOiTKfVFiptEthnn2Yoff/wRTZo0QbFixbB48WJ1/5o1a/Q+DNLx3JDA7c2bNxg0aJDeXSYLOzfMSUZQrVq11NV3yf4gIgpv9FYyBSXAI/t29+5d9OrVC8uWLVMFPInMSVwiUzp++uknNZrftWtX9dlC6gAR4Kx3B8gy9OvXT43GRiZHjhx4+PChuv3pp5+a9ru5uan77ty5E+f9JMs9N/bv36/Sb+V8MCej+61bt+bVVTs+N4wePHiAypUro0yZMliwYEE89JAsSapUqeDk5KSm+JiTdrp06XTrF1mWnj17qmzBQ4cOIVOmTHp3h3Qm032kWKcEc0aSGSTnh9T6kFV+5PcK2SeZQmwek4h8+fKpOlHEQJ+CpE6dWm0fIiP4EsjJkjflypVT+6QyriyflTVr1njoKVnquTFz5kxVIMc8qJNq2lJlWwpwkf2eG8aRfAnyjVlAMjeb7Iurq6t6//ft22daklVGY6QtwR3ZN5n+JUUZN2zYgAMHDqjlOImqVq2Kv//+O8Q+WfUpb968GDBgAIN8OyfTe0Ivw/nvv/8yJgnCQJ+iJUmSJGoOtiyNJJWS5T+SVM8WkopL9itLliwh2okSJVJfZc10jsrYNwnypY6H/L6YPHmyqqZtxJFc+yIrcrRr105l+pQsWVJVzZbl0+SDO9k3Sddfvnw5Nm3ahMSJE5vqNiRNmlStjU32Sc6F0HUaEiZMqNZMZ/0G6tOnj8oSlNT9Zs2a4eTJkypjkFmDGgb6FG0S2Ds7O+Orr76Cl5eXGq2VtG2uWUlE4ZE1saUAn2yhL/pwhVf70rx5c3WhZ9iwYSqQkyWydu7cGaZAH9kfKagl5KKgOckA+tAUISKyT7Jcq2QBSX2oUaNGqUwguYAsU0YJcDDwUxYRERERERGRzeAkSSIiIiIiIiIbwkCfiIiIiIiIyIYw0CciIiIiIiKyIQz0iYiIiIiIiGwIA30iIiIiIiIiG8JAn4iIiIiIiMiGMNAnIiIiIiIisiEM9ImIiIiIiIhsCAN9IiIiIiIiIhvCQJ+IiIhw9+5ddOzYERkyZICrqyuyZs2KXr164fnz53p3jYiIiKKJgT4REZGd+++//1C8eHFcu3YNK1aswPXr1zF//nzs27cPpUuXxosXL/TuIhEREUUDA30iIiI7980336hR/N27d6NixYrIkiULateujb179+L+/fv48ccf1eN8fHwwYMAAZM6cGW5ubsiVKxcWLVqEW7duwcHBIcJN7g8ICECnTp2QPXt2eHh4IE+ePJgxY4apDyNGjIjw+ytVqqQe0759ezRs2ND0PTt27ECiRInUV2Hsx7lz50yPGTp0qNo3ffr0ePyJEhER6ctZ59cnIiIiHclo/a5duzB27FgVgJtLly4dWrdujVWrVmHu3Llo27Ytjh07hpkzZ6JQoUK4efMmnj17pgL/hw8fmqYAlCxZEidPnlT7RerUqREYGIhMmTJhzZo1SJkyJY4ePYquXbsiffr0aNasGb7//nt0795dPX7y5Mnq/vXr16u2XIQI7fDhw+r75EKDXJQIz71791SAH/q4iIiIbB0DfSIiIjsm6foGgwH58uUL937Z/7///Q+nTp3C6tWrsWfPHlSrVk3dlyNHjhAXBYS3t7cpuDfuE05OThg5cqSpLSP7ctFAnlMCdhmZl03IVwnuzb/f3NmzZ1GvXj1MmTIFzZs3j/DYJBNB7pfMBCIiInvCQJ+IiIhUsB8ZSYuXYF1S+2Nqzpw58PT0xJ07d+Dl5QVfX18ULlw4Ws8hWQQ1a9ZUFxSMKf0RXQzYsGEDrl69ykCfiIjsDufoExER2TGZZy9z2C9fvhzu/bI/efLkH53+vnLlSpWeL/P0pRaAzKPv0KGDCvaj48KFC+jcubOaUiCrBMiUgPD069dPvZ5MDSAiIrI3DPSJiIjsmMyXr169upqDL6Ps5h49eoRly5ap9PcCBQqooPrgwYMxep0jR46gTJky+Prrr1GkSBF1geHGjRvRfp4KFSpg3LhxmDp1Km7fvh2ioJ/R5s2b8e+//6pAn4iIyB4x0CciIrJzs2fPVhX1JSX+0KFDqqDezp071QWAjBkzqkJ92bJlQ7t27dQo+saNG1UK/YEDB9Qc+6jInTs3Tp8+rQr/SRAu1fBl3n90SXaBSJo0KRYsWIAhQ4aoOgPmJk6ciDFjxiBBggTRfn4iIiJbwECfiIjIzhmDcCmuJ4XxcubMqSriV65cWRXMS5EihXrcvHnz8OWXX6pR+bx586JLly549+5dlF6jW7duaNy4scoOKFWqFJ4/f66e52NItf0WLVqESeGXbAG5KEFERGSvHAwfqr5DRERERERERFaDI/pERERERERENoSBPhEREREREZENYaBPREREREREZEMY6BMRERERERHZEAb6RERERERERDaEgT4RERERERGRDWGgT0RERERERGRDGOgTERERERER2RAG+kREREREREQ2hIE+ERERERERkQ1hoE9EREREREQE2/F/ys/jFg/v2NYAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Определение границ бинов\n", + "min_res = np.floor(residuals.min() / h) * h\n", + "max_res = np.ceil(residuals.max() / h) * h\n", + "bin_edges = np.arange(min_res, max_res + h, h)\n", + "\n", + "# Гистограмма\n", + "plt.figure(figsize=(12, 4))\n", + "plt.hist(residuals, bins=bin_edges, density=True, color='blue', edgecolor='black')\n", + "plt.xlabel('Остатки')\n", + "plt.ylabel('Плотность')\n", + "plt.title('Гистограмма остатков (h = 0.82)')\n", + "plt.grid(True)\n", + "\n", + "# Наложение нормального распределения\n", + "mu = 0 # Остатки центрированы вокруг 0\n", + "sigma = np.std(residuals)\n", + "x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100)\n", + "plt.plot(x, 1/(sigma * np.sqrt(2 * np.pi)) * np.exp(-(x - mu)**2 / (2 * sigma**2)), \n", + " color='red', linewidth=2, label='N(0, σ²)')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "78ffd74b", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYMFJREFUeJzt3Qd4jdcfB/BvEkkIkiCImkFL7V1U7T1bbdWsTVXsFqW1WlTtvWq3VkttilKj9t4UsQVBEhLZ9//8ztub/82SITd3fT/Pc5/kfe/IyX2r95tzfuccO51OpwMRERGRhbM3dQOIiIiIUgNDDREREVkFhhoiIiKyCgw1REREZBUYaoiIiMgqMNQQERGRVWCoISIiIqvAUENERERWgaGGiIiIrAJDDREREVkFhhqiNHDx4kW0b98euXPnhrOzM9566y11fOnSJbN4PVPx8/ODnZ0dRo0aZeqmEJEVYKghMrL169ejXLly+Ouvv9C5c2fMmTMHXbt2xZ49e9T5jRs3mvT1iIishR03tCQynhs3bqBUqVLIly8f9u/fj+zZs8fopfjggw9w7949nDt3Dl5eXmn+eqYmbZbfYeTIkeytIaI3xp4aIiOaOHEigoODsWDBghgBRHh4eGD+/Pl4+fKlelxavt7ff/+thn3iux08eFA9RkKGHF+5cgWtWrWCq6srsmXLhn79+iEkJCTG6y1ZsgS1a9dGjhw51HBYsWLFMHfu3Dg/V9ouvUsZM2ZUjzl58qQ6Hx4ers67uLigdOnSOHHiRIzn1axZU90MHT9+PLrNhmIPZ0VERKBx48bImjVrkobnfvvtN5QvXx4ZMmRQ76kM692/fz/O4/Tvi1wHeWyRIkUwfPjwGO/d625yDcSBAwfw6aefqqAq713evHkxYMAAvHr1KvpnderUKdHXu3XrlnpsgQIF1OMN9ejRA+nTp4/+mXrSy1e8ePHoIczevXvD398/zntv+HPkPWnSpAkuXLiQ6HtJlNbSpflPJLIhmzdvVh8y0oMSn+rVq6v75XHyAZPWr9e3b19UrFgxxjn5cDYkH9zymuPHj8eRI0cwY8YMPH/+HMuXL49+jAQY+XBs3rw50qVLp37+l19+iaioKPVBqScf1suWLYO3tzfy5MmjHiMkpEko+uGHHzB9+nQ0atQIN2/eRObMmRNs+5AhQ5AU3bp1Ux/mu3btUkHqdZYuXarClbwn8vs+evRIteeff/7B6dOn4e7urh4nPWFyDRwdHVVgkPdHetHk9x47dixatmyJwoULx/i93333XfVYPTnWhygJe7169VKh8dixY5g5c6bqcZP7RM+ePVG3bt3o53bo0AEfffSR+jl6sUOunvSCLVq0CGvWrIkRDCV4jR49Wr2u/OyrV6+q6yhhUX5f+d30ihYtqgKbdOzL7zllyhQVFO/cuZOka0CUZmT4iYhSn7+/vwzt6lq0aPHaxzVv3lw9LjAwMM1eb+/eveoxv/32W4KPGTlypHqMvJ6hL7/8Up0/e/Zs9Lng4OA4z2/QoIGuYMGC0ce+vr46Jycn3TfffBN9bsuWLeq1GjdurIuKilLnLl++rLOzs9NNnTo1+nE1atRQN71t27ap5zVs2FB9NSTH0nYhP8vBwUG3YcMGXWLCwsJ0OXLk0JUoUUL36tWrOG0cMWJE9Lnq1avrMmfOrLt9+3aM19D/DrHlz59f17Fjx3jvi++9Gz9+vHoPYr9+fL/j637W/Pnz1WNnzpwZ4zGPHz9W16J+/fq6yMjI6POzZs1Sj1+8eHGC770YNmyYepy8DpE54fATkZG8ePFCfX1db4Ph/frHp9XrJZVhT4vo06eP+rpt27boczL8ohcQEKBqZWrUqKF6W+RYP8wSFhYWo3fhvffeU1+lZ0Q/jCS9AtKjIoXQ8ZHP9G+++QYff/xx9PPjM2vWLNXbIj1LLVq0SPT3lCGvx48fq94jGarRk6EWadPWrVvV8ZMnT1Q9U5cuXdSQkaHYQ2FJYfjeBQUFqfeuatWq6veU3qGUkoJx+V2+/vpr1TNmaPfu3epa9O/fH/b2//8Y6N69uxpm1P+uejI8KO2S3/3w4cP4448/VG2XDEURmRMOPxEZSXLCir5WQTx79kx94Bh+6Lm5uaX49d7U22+/HeO4UKFC6oNQX8MhZLhChjnkA0+GUgxJqJH23717Vx3LNPTEyGP0j4/t119/VVPa165di5UrV8b7mO3bt0fX5cj7mRS3b9+Od/hNSKjR1xpJUBMlSpRAapAhnBEjRmDTpk1qWM+QPhAm15kzZ9T7ExkZGe/vn9Dv6uTkhIIFC0bfr3fo0KEYw1vy38SGDRtSFOKIjIk9NURGIh/kUnwp9RevI/dLfYl8oAjpyciVK1f0TQpz3+T1UlvsDzKpsahTp476S15qLeSvfKlfkToSIXU1InZxcWIMC2X1JOx99913agr7O++8k+BzpS5FHiM9EVKnI/Ui5khCR7169dR7JjVCEhTkvZPaHsP3LrnOnj2r6mcmTZqExYsXxykQTi7plZF2yU2CpNT+yOv7+vq+0esSpTb21BAZUbNmzdSMJPkrv1q1anHulyEZ6fEYOHBg9LnJkyfH+ItdgsybvN6b+vfff2NMD79+/br6sJXiWCHFsaGhoaqnwXA4Zu/evTFeRwKaePDgQfT3CZHZRoa/t54UP8sQUWLTvyUoSNGrBCkJClKgq5/xlZD8+fOrrxKApGjZkJzT3y89GSI1Zv+cP38e165dU8XTn3/+efR5CQ9vomTJkqrIWHr55Kv8/hJ29cNqhr+r/vfRh0YfH58YRckiS5YsMc5JoJHrI7PeZCiQyFywp4bIiL766is1TVlmrzx9+jTGfTIs8MUXX6gaBsOaB5lOLB8g+pvhjJ2UvN6bmj17doxjmZkjZIaScHBwUF8Nl7ySYRP5wIs9M0tIPYbe0aNH1VeZcaMnH/Iy9Vr/eMNhNZlZJD1Anp6er22z1KRIu2Tq+Lx581QNzMKFC1/7nAoVKqgp6fJ4CWmGQ1mXL19WtTVChmGkbdIDEnv2T3KX/YrvvZPvZcbVm5BFGOV3l2HCn3/+WQXdMWPGRN8v/11JT57UGxn+bJklJddO/7sm1otm+D4RmQP21BAZkUzrlanPbdq0UX89y5CI9HrIh4x8gEiPzOrVq5O8UF5qv15SyF/uMlW7YcOGqmbml19+Qdu2bdV6MqJ+/frqA1J6kSRsyTo5EiAkIDx8+DD6daRHoHXr1qp4Vx4jdTMylVtI/YvcJ4W/8oEuQ20yzdjQqVOnVJ3Q4MGDk9X+Bg0aqLVm5HnSxoR6iWQK84QJE9SUbilylvdYP6VbeqX0w2lCwoD0lEl4kF4Q/TWQYSSpZ0kqqdWRGiUJq9I7JYF03bp1cWpr3oTU/sjQ1o8//qjeYxlKkmAmPSwypVuuq1xf6bWRnjAp2pb3y5C8D3LdhQwzSm+hTN1v2rRpqrWTKFWYevoVkS04f/68rm3btjpPT0+dvb29mg6bPn163cWLF03yesmZ0n3p0iXdJ598oqYwZ8mSReft7R1jyrPYtGmTrlSpUqoNBQoU0E2YMEFNC5bn+/j4RD/uxYsXuvbt2+tcXFx0RYsW1f3555/qMTJFuFOnTroMGTKoKdWHDh2K8foypVgeZzjN27CNiU139vPz02XPnl330UcfJfrerFmzRle2bFmds7OzLmvWrLp27drp7t27F+dxFy5cUK/n7u6ufu8iRYrovvvuu2RP6Zb3t27durpMmTLpPDw8dN27d1fT5eX3WLJkyRtN6dYLCQlR73fFihV1ERERMaZwy3lHR0ddzpw5db169dI9f/483vdef5Pf9/3331fT6onMDbdJIDIB6W2RVV/lL2LDRezM5fUMF2eTabzGmrrLbRKIKDVx+InIBKQoVIZmhg4dqmYqjRs3zqxej4jIEjHUEJmI1Dkkdal/U7weEZGl4ewnIiIisgqsqSEiIiKrwJ4aIiIisgoMNURERGQVbKpQWJZ2lyXaZWNAbsRGRERkGaRSRlYVl+05DHeWt+lQI4Emb968pm4GERERpcDdu3fVshUJsalQIz00+jdFliO3BOHh4di5c6dail6WcSfzwWtjvnhtzBevjfkKN6dr8/gx0L078N8O84GffIK8v/8e/TmeEJsKNfohJwk0lhRqZANDaa/J/yOjGHhtzBevjfnitTFf4eZybfbsAdq2lU3HABcXYM4c4KOPgN9/T7R0hIXCREREZHqRkcDIkbKNvBZoSpQAjh8HOnZM8kvYVE8NERERmaEHD4B27aKHm9CtGzB9utZTkwwMNURERGQ6O3cC7dsDT54AmTIB8+drw08pwOEnIiIiSnsREcCwYUCDBlqgKV0aOHkyxYFGsKeGiIiI0ta9e0CbNsDBg9pxr17AlClA+vRv9LIMNURERJR2tm0DPv8cePpUpiMDCxcCrVqlyktz+ImIiIiMLzwcGDwYaNJECzTlywOnTqVaoBHsqSEiIiLjun0baN0aOHJEO+7bF/jpJ8DZOVV/DEMNERERGc/GjUCnToC/P+DuDixerC2mZwQMNURERBRHZJQOx3ye4fGLEOTInB6VvLLCwT4Zm0GHhWnDTbLejKhUCVizBihQAMbCUENEREQx7LjwEKM3X8LDgJDoc7nc0mNks2JoWCIXEnXzJvDZZ8CJE9rxoEHAuHGAkxOMiYXCREREFO3Pi4/Q65dTMQKN8A0IUecl8LzW778DZctqgSZrVmDTJmDSJKMHGsFQQ0REREqUDvhh2xXoEJf+nPTgyNBUHCEhQO/ewKefAoGBQNWqwJkzQLNmSCsMNURERKTcCLSDb2AoEiJRRnpwpNYmhn//1UKM7Kgthg7V9nHKmxdpiTU1REREpASGI0mkeDja6tVA9+7Ay5eAhwewYgXQsCFMgT01REREpLg6IklkNhRevQJ69tS2O5BAU726NtxkokAjGGqIiIhIKeSqg6erMxKauG333yyoSqGPgffeAxYsAOzsgO++A/76C8idG6bEUENERESKLEPzbeOi6vvYwUZ/PF93EQ4VKwDnzwM5cwI7dwJjxgDpTF/RwlBDRERE0RoUz4m57cvB0y3mjtkFMuhw4MpylBreDwgOBmrX1oab6taFuTB9rCIiIiKz0rBELtQr5hm9onD+h7dQ+qsesLt0CbC3B0aNAoYNAxwcYE4YaoiIiKx1q4I3ID+nSsGswJIlgLe3VhicKxewciVQsybMEUMNERGRNW5V8KZkRtMXXwC//qod16+vTdfOkQPmymJqasaPH4+KFSsic+bMyJEjBz788ENcvXrV1M0iIiJKdRJo3mirgjd19ixQvrwWaGSIafx4YPt2sw40FhVq9u3bh969e+PIkSPYtWsXwsPDUb9+fQQFBZm6aURERKk65CQ9NCnaquBN6XSwX7hQm6597RqQJ4+2MrCsECy1NGbOYoafduzYEeN46dKlqsfm5MmTqC4L/hAREVkBqaGJ3UOT0FYFVQplS70fHBiI8pMnw+HgQe24SRNg2TIgWyr+DCOzmFATW0BAgPqaVXYATUBoaKi66QXKBluA6uWRmyXQt9NS2mtLeG3MF6+N+eK1SdxD/6AkPy483DV1fujp03Bo0wZ5bt6ELl06RI0di6h+/bTeGTO4Vkn978VOp9MZof/KuKKiotC8eXP4+/vjoD5RxmPUqFEYPXp0nPMrV66Ei4uLkVtJRESUfP8G2GHWpcSnSnsXi8Tbbm/4Ea7TwWvbNhRfsgQOEREIzp4dJ776Cs+LFIE5CQ4ORtu2bVWHhqurq3WFml69emH79u0q0OSR8b5k9NTkzZsXfn5+r31TzImkU6khqlevHhwdk7gpB6UJXhvzxWtjvnhtEie1MjUn78ejwNB462pkQrenmzP2Dqz+ZtO7/f3h0KMH7DdsUIcRzZph52efoeZHH5ndtZHPbw8Pj0RDjcUNP3l7e2PLli3Yv3//awONcHZ2VrfY5GKZ2wVLjCW22Vbw2pgvXhvzxWuTMHlXRjUvrmY5SWQxDDb6CDOyWXGkd3ZK+Q85dgz47DPg1i25GMCkSdB98QXCt283y2uT1PaYfynzf6RDSQLNH3/8gT179sDLy8vUTSIiIjIKWYcmvq0K5FjOp3idGp0OmDoVqFZNCzQFCwKHDgF9+2obU1o4i+mpkencUguzceNGtVaNr6+vOu/m5oYMGTKYunlERERG3argjVcUfvYM6NQJ2LxZO/7kE+Dnn+WDFNbCYkLN3Llz1deasZZmXrJkCTrJRSIiIrIyaquC1Ji2fegQ0Lo1cPeu1GZovTWyWrAV9M5YZKixwHpmIiIi04qKUvUyavPJyEjg7beBtWuBMmVgjSwm1BAREVEyPHkCdOyobW8g2rQB5s8HMmeGtWKoISIisjYHDmjDTQ8eAOnTAzNnAl27Wt1wk8XOfiIiIqIkDDeNHSsFqFqgKVpUm77drZvVBxrBnhoiIiJr8OgR0KEDsGuXdvz558Ds2UCmTLAVDDVERESWbs8eoF07QJY7kW2AJMzY4MxgDj8RERFZKpnRNGoUULeuFmiKFweOH7fJQCPYU0NERGSJHj4E2rYF/v5bO+7aFZgxQ+upsVEMNURERKm0EWWqrf6bmJ07gfbttWnbGTNqU7XbtYOtY6ghIiJ6QzsuPMTozZfwMCAk+lwut/QY2axYyvdpik9EBDByJDB+vLaPU+nS2mJ677yTej/DgrGmhoiI6A0DjeyobRhohG9AiDov96eKe/eA2rWBceO0QCPbHBw+zEBjgKGGiIjoDYacpIcmvo189OfkfnncG9m2TdvaQBbVkxWB16yRTREBbugcA0MNERFRCkkNTeweGkMSZeR+eVyKhIcDgwcDTZoAT58C5coBp04BrVqlvNFWjDU1REREKSRFwan5uBju3NG2OpAhJtGnDzBxorbLNsWLoYaIiCiFZJZTaj4u2qZN2lozz58Dbm7A4sVAy5Ypa6QN4fATERFRCsm0bZnllNDEbTkv98vjkiQsDBgwAGjRQgs0lSoBp08z0CQRQw0REVEKyTo0Mm1bxA42+mO5P0nr1fj4ANWqAdOmaccDB2qFwV5eqdxq68VQQ0RE9AZkHZq57cvB0y3mEJMcy/kkrVOzbh1Qtqy2xUGWLNrw0+TJgJOT8RpuhVhTQ0RE9IYkuNQr5pn8FYVDQoCvvtI2oBRVqwKrVgH58qVJu60NQw0REVEqkABTpVC2pD/h+nVtarbUzIghQ4DvvwccHY3WRmvHUENERJTWVq8GevQAXrwAPDyA5cuBRo1M3SqLx5oaIiKitPLqFdCzJ9CmjRZoPvgAOHOGgSaVMNQQERGlhatXgcqVgQULADs74NtvgT17gNy5Td0yq8HhJyIiImP75RdtA8qgICBHDuDXX4G6dU3dKqvDnhoiIiJjkRDTpQvQoYP2veyyLcNNDDRGwVBDRERkDBcvaisCL1kC2NsDo0cDO3cCuZKwbg2lCIefiIiIUpNOByxdCvTurRUGS4hZuRKoWdPULbN6DDVERESp5eVLoFcvrYZG1K8PrFih1dGQ0THUEBER/ScySpf8VYH1zp3TFtOTWU4ODtpCerKgngw9UZpgqCEiIgKw48JDjN58CQ8DQqLPyQ7bsiHla/dvkuGmhQuBvn2B0FBtirYsriebU1KaYnwkIiKbJ4Gm1y+nYgQa4RsQos7L/fEKDATattUW1JNA07ixNruJgcYkGGqIiAi2PuQkPTS6eO7Tn5P75XExyJ5N5ctrvTLp0gETJwKbN2vbHpBJMNQQEZFNkxqa2D00hiTKyP3yOO2ETttVW1YHlk0pZUft/fu13bZZP2NSrKkhIiKbJkXBSX6cvz/QrRuwbp12skULYPFiIGtW4zaSkoSRkoiIbJrMckoKL59LQLlyWqBxdASmTQP++IOBxoywp4aIiGyaTNuWWU5SFBxfXY2dTod+F7eh5JSfgfBwwMsLWLMGqFjRBK2l12FPDRER2TRZh0ambYvYK9K4v3qBBet/QP+tc2Engebjj4FTpxhozBRDDRER2TxZh2Zu+3LwdPv/UFS5+5exfXk/1Lt+FHBy0oqDf/sNcHc3aVspYRx+IiIi+i/Y1CvmiWM3/OA6ZzreXT0B9hERQOHCwNq1QNmypm4iJYKhhoiI6D8Oz56iSv9OwLZt2onWrYH58wFXV1M3jZKAoYaIiEgcOAC0aQPcvw+kTw/MmKFN37ZL4t5PZHKsqSEiItsWFQWMGwfUqqUFmiJFgKNHge7dGWgsDHtqiIjIdj1+DLRvD+zapR136ADMmQNkymTqllEKMNQQEZFt2rtX24zS1xfIkEGb3dSpE3tnLBiHn4iIyLZERgKjRwN162qBpnhx4MQJoHNnBhoLx54aIiKyHQ8fAu3aab00oksXYOZMwMXF1C2jVMBQQ0REtkHqZqR+RupoMmYE5s3TjslqcPiJiIismyyg9+23QIMGWqApVQo4eZKBxgqxp4aIiKzXvXtaMbCsQSN69gSmTtUKg8nqMNQQEZF12r5dm6L99CmQOTOwcCHw2WembhUZEYefiIjIushu2kOGAI0ba4GmXDltZ20GGqvHnhoiIrIed+5o+zUdPqwOH3bohhPe38DDzg2VonRwsOeUbWvGUENERNZh0yZt8bznzxGe2RUjmvXHqrcqAesvq7tzuaXHyGbF1G7cZJ04/ERERJYtLAwYOBBo0UIFGv8SZVC77RSsylspxsN8A0LQ65dT2HHhocmaSsbFnhoiIrJcPj7acNOxY+owqn9/NMvaAHeDIuM8VAdABp9Gb76EesU8ORRlhdhTQ0REFiMySofDN55i45n7uDpnGXRly2qBJksWYONGHPX+Nt5AYxhsHgaE4JjPszRtN6UN9tQQEZFFkGEj6WV5+vQFhu1dhCKntqjzz0uXR5ZN64F8+fD4zP0kvdbjFyFGbi2ZAntqiIjIIgKN1MM43bqJdb98hU7/BZp5732MSvW+w45AR3WcI3P6JL1eUh9HloU9NUREZPZDTtJD0+TyfozfMROZw17hWQZXDGwyAH8XqhijTqaSV1Y1y0mKgmWoKTZ5rKdbevU4sj7sqSEiIrN24vJ9eK+dhFmbflKB5mie4mjcaYYKNLHrZKT4V6Zti9hlwPpjuZ9FwtaJoYaIiMyqAFi+yrFy9SqKflQf7c7sQBTsMLPKZ2jbZhx8XT0SrJORdWjmti+nemQMybGc5zo11ovDT0REZBYFwNLboidDSPNwGaXHDoVbUBCeuLhjQNNBOOhVNkl1MhJcZDhKem8k7Mh9MuTEHhrrxlBDRERGJb0u+nCRzSUd9J0whgXAhvUv6cND0H/VdJQ+v0sd62rVQuf3vsBFXcZ4Xz+hOhkJMFUKZTPOL0VmiaGGiIjStBfG3ckBjgUeoVGp3Oo+w0BT2O8OZm/8EUX87qjhpkV1OqDL9kXwvvpEhR8JMIaPZ50MGWKoISIio4ivF0b4hwF9Vp9Ff7/g/4cdnQ6fnt+NMbvmIUNEKB5nzIJ+zb7G4fylUOJOQHSdTOyAJD003M+J9BhqiIjIaNOw45tWre9fWfLPLfXVJewVvt85Bx9f3KuO9xcoq+pnnmZ0j1MAzDoZsprZT/v370ezZs3w1ltvwc7ODhs2bDB1k4iIKB4SPAx7VGKTsOP/KhxFH/tg07IBKtBE2tnjp+qfo2Or0dGBJnYBsL5OpkWZ3OorAw1ZbKgJCgpC6dKlMXv2bFM3hYiI3mQbAp0Obc7swIYVg1D42T08zJQNrduMw5wqraCz0z6a7P6bBcWF8sgqh58aNWqkbkREZN5etw1BptBgjPtzFppf3q+O9xYsj0FNBuKZi1v0Y1gATFbfU0NERJZBv11B7DhS/NENbF7WTwWaCHt7RE2YgNA/NsI5V84Yj+NCeWT1PTXJFRoaqm56gYGB6mt4eLi6WQJ9Oy2lvbaE18Z88dqYh+GNiqhZTmoatk6H9qe34bs9C+EcGYH7rtnhM2Mh3mvbGHUA1CySHSduP8fjF6HIkdkZFfJnUT00vIZpJ9yM/90ktU12OvkvzQJJofAff/yBDz/8MMHHjBo1CqNHj45zfuXKlXBxcTFyC4mI6OxTO+y88grfbJqJJlf/Uef2vvMejvfugyL5M5m6eWQhgoOD0bZtWwQEBMDV1dU2Q018PTV58+aFn5/fa98Uc0unu3btQr169eDo6Gjq5pABXhvzxWtjPuxOnIB927awv3ULUekccXPQcJx/rzQaNKjPa2Nmws343418fnt4eCQaaqx6+MnZ2VndYpOLZW4XLDGW2GZbwWtjvnhtTEj+Xp4xA/j6a/m0BAoUgP3atchfpgwubtvGa2PGHM3w2iS1PRYVal6+fInr169HH/v4+ODMmTPImjUr8uXLZ9K2ERHZKsO9ndSCeG6AQ7euwMaN2gNatgQWLQLc3bWAQ2QkFhVqTpw4gVq1akUfDxw4UH3t2LEjli5dasKWERHZpth7O5W9fwVztvyEXP6PAScnYMoU4MsvpWbA1E0lG2BRoaZmzZqqgp6IiMxrbyc7XRS6H/sDX+9fDseoSNxyz4UH85egaqsGpm4m2RCLCjVERGR+eztlCQ7ApG3TUOfGcXXf5qIfYFjDPsh0Ix0ORum4eB6lGYYaIiJK8d5OFe5dxMyNPyHXy6cIdXDEqLo9sap0AzXc9CIgRD1O9mgiSgsMNUREFLfY12D36/juexwQjC8Pr8XAA78gnS4KN7LmQe8WQ3Alh1fy9oAiSkUMNURENi52sa+QLQ5k3yUR+75iDq8w98/paHHyoDpeX7wWvq3/JYKdMiRrDyii1MZQQ0RkwwyLfQ35BoTgi19OxXl85TvnMH3zJOR8+QyvHJ0xou4X+K1k3Tizm+z+27+JO2xTWmKoISKyEbGHkcrnzxJd7Btb7HP2UZHwPrwW/f5ZBQddFK5ly4dvWg/HqUy5tb2dDB7LHbbJVBhqiIhsdIgpa0ZHPAtKfDG87C+fY9qWiXj/9jl1vLZkXYys+wVeOaXHgLrvYPXxOzFeV3poJNBwh21Kaww1REQ2OsSUlEDz/q0zmLZ5ErIH+yPIMb2qnfmjRO3o+wt4uODgkNoJFhkTpSWGGiIiG1lPJjkcoiLR/+BK9D68FvbQ4XL2AvBuMQQ3suWN8TgJMRJgOG2bzAFDDRGRFU/B9nsRGmNoKClyvvDDjM2T8N7dC+r41zINMaZ2d4Q6/n+DYBYCkzliqCEisvIp2MlR4+ZJTNkyGdleBeKFUwYMa+CNLcVqsBCYLAJDDRGRFU/BTqoc6e3Recdi9Dr6uzq++lZhPFqwFE3yF8SJWCGJhcBkrhhqiIisoD4mpVv9Sj9LaV0A1u+cDfujh9Q53/ZdUXj+TBRx0RbTq1fMk4XAZJ2h5tSpU3B0dETJkiXV8caNG7FkyRIUK1YMo0aNgpNsNU9EREbbbym1SCypc/0o5uyeBfuA54CbG7BoETw//jjG41gITJbCPrlP6NmzJ65du6a+v3nzJlq3bg0XFxf89ttvGDx4sDHaSEREqbyPkmNkOMb+sxQ/r/seThJoKlaUv1qBWIGGyKp7aiTQlClTRn0vQaZ69epYuXIl/vnnHxVwpk2bZox2EhHZpNgzmd7Ud03eRb7AR6g83BuZz/5Xg9O/PzBhAsCedrK1UKPT6RAVFaW+3717N5o2baq+z5s3L/z8/FK/hURENiq+WU5SyhKVggIa/RTsTo/PwKFrFyAgAHB3B5YuBVq0SN2GE1lKqKlQoQJ++OEH1K1bF/v27cPcuXPVeR8fH+TMmdMYbSQisjkJzXJKKNAY7r8U315MThHhWH1hPRyGLdZOVq4MrF4N5M9vlPYTWURNjQwvSbGwt7c3hg8fjsKFC6vzv//+O6pWrWqMNhIR2ZSkrAIce/KR9MLMa19O3eR7QxUinuLYthHIv/K/QCP1j/v3M9CQ1Ul2T02pUqVw/vz5OOcnTpwIBweH1GoXEZHNSsosJ+mxkfoYj8zOcaZZG07Bfnf/Drz97QDYvXgBZMsGLF8ONG6cRr8JkQWsU+Pv7696Zm7cuIGvv/4aWbNmxaVLl9TwU+7cuVO/lURENiSps5wk0LQoE/f/uWoK9lsuwMBvgXnztJPVqgGrVgF58qR2c4ksN9ScO3cOderUgbu7O27duoXu3burULN+/XrcuXMHy+WvACIiSjHpeXmjx129CrRqJf/DBuzsgG++AUaPBtJxvVWybsmuqRk4cCA6d+6Mf//9F+nT//8fVOPGjbFfxmiJiOiNyFCS7OWU0Jq9cj5XQptJ/vorUL68FmiyZwd27ADGjmWgIZuQ7FBz/PhxtQBfbDLs5Ovrm1rtIiKyueLgwzeeYuOZ+6oe5rsm2uaUsYNNgptJBgcD3boB7dsDQUFAzZrA2bNA/fpp90sQmViyo7uzszMCAwPjXZQvu/xVQEREqbLrdo/qXth09mHim0leuqQNN128qA03jRgBfPcdwMkbZGOSHWqaN2+OMWPGYO3aterYzs5O1dIMGTIEH3N5bSKiVNt1e8F+H8xuWxZZMjonvJmkLJ7Xu7fWU+PpqQ0/1a6d1r8GkWUOP02ePBkvX75Ejhw58OrVK9SoUUOtVZM5c2aMlXFbIiJKtV23v996WQUZmeUkm0pGB5qXL4GOHYHOnbVAU7cucOYMAw3ZtGT31Li5uWHXrl04ePCgmgklAadcuXJqhWEiIkq99Wgk2Mj98rgYu2TLWmEy3HTlCmBvD4wZo81wku+JbFiKy+GrVaumbkRElLJNKrdfeJi8dWt0OuDnn4G+fYGQEOCtt7S1Z6pXN26Diawp1MyYMSPJL9hX/rEREVGSi4KTtB6NrAgsM08lxIhGjYBly7Rp20SU9FAzderUpDxMFQ0z1BARJa8oOLGdtSv53wYafgZcv67NaBo3DvjqKw43EaUk1MgO3EREZNxNKg2pcmCdDj8HHYPD+6OB0FAgb15tZ21uHkwULy4xSURkJptUGirkHIFfDv8Mz11btBPNmmnTt7PGs4owESU91MjWCN9//z0yZsyovn+dKVOmJOUliYhsSlI3qfy8Sn58ovNFyUF9YXfzJuDoCEyYAPTvry2sR0RvFmpOnz6N8PDw6O+JiMgIm1TqdOh8YhO8JowC5P+5BQoAa9YAlSqlRROJbCPU7N27N97viYgo8anb0kvjkdEZnq7p8SgwJN66GreQl5ixaya8Lv2jnWjZEli0CHB3T+tmE9lOTU2XLl0wffp0tYKwoaCgIPTp0weLFy9OzfYREVnN1G13F0cVaGQQyTDYlH1wFTM3TkCewMeAk5Ms3a5tfcDhJqJkSfZ8wGXLlqntEWKTc8uXL0/uyxERWe3U7diFwQHB2jC+m4uj+mqni0K3Y+vx26+DtUBTqBBw6BDg7c1AQ2TMnhrZmVun06nbixcvkD79/8eHIyMjsW3bNrUfFBGRLUtsPyeJKunT2WPNx28j/6Av4XngL+1O2fZg4ULA1TWtm0xke6HG3d1dLa4nt3feeSfO/XJ+9OjRqd0+IiKr288pz6VTKDOzI5x9HwDOzsD06UCPHuydIUqrUCMFwtJLU7t2baxbtw5ZDdZKcHJyQv78+fGW7ENCRGTDXjd1W4abeh35HQMP/IJ0uihA/kBcuxYoXTpN20gEWw81NWrUiF5dOG/evLDn8txEREmeup0tyB9Ttk5BDZ9T6vhJi0+R/ZfFQKZMadxCIuuV7NlP0iPj7++PY8eO4fHjx4iKiopx/+eff56a7SMisiiVvLIil1t6+Ab8f+r2e3fOY8bmicj58hlepXPGlObeGLr2J8CBfxwSmTTUbN68Ge3atcPLly/h6uqqamn05HuGGiKyZQ72dhjZrJia/eQQFYneh9ei3z+r4KCLwr/Z8qJ3i6EYOOAjODDQEJk+1AwaNEitVTNu3Di4uLikfouIiCxcwxK5sKhhHmTu1hkVb2irsK8tWRdzP+6HIR+XV/cTkRmEmvv376Nv374MNERECfnrL9Ru1w549AiRGVxwZtg45G3THru9sqqeHCIyk1DToEEDnDhxAgULFjROi4iILFVEBDBmDPDDD2ofJ5QsCYe1a1G+aFFTt4zIJiQ71DRp0gRff/01Ll26hJIlS8JRdpA10Lx589RsHxGRZbh/H2jbFti/Xzvu3l1bfyZDBlO3jMhmJDvUdJd/qJA/RsbEuU8KhWV1YSIim7JjB9ChA+Dnp03RXrAAaNPG1K0isjnJDjWxp3ATEdms8HBgxAjgxx+14zJltMX03n7b1C0jsknJDjVERATg7l2gdWttA0ohu2pPmgQY7ItHRBYQaoKCgrBv3z7cuXMHYWFhMe6TmVFERFZtyxagY0fg2TO1AWXkwp9xrHxtPL7yVK0oLAvwcZYTkQWEmtOnT6Nx48YIDg5W4Ub2gPLz81NTvGWXboYaIrJaYWGIGjoU9lOnqsOXJcvg+I9zMexsEB6eOhL9MFlRWBbg43o0RGkr2UtaDhgwAM2aNcPz58+RIUMGHDlyBLdv30b58uUxSbpeiYisRGSUDodvPMXGM/dxat9pPK9QJTrQLKrQAuXqj0Tn/U/j7MotWyTIisI7Ljw0UcuJbFOye2rOnDmD+fPnqw0tHRwcEBoaqtas+emnn9CxY0e0bNnSOC0lIkpDEkhGb76kAkv9a4cxcds0uIUGIcA5I75qMgC73q6c4HNlzycZfJLn1yvmyaEoInPtqZF1afQ7dMtwk9TVCDc3N9yVwjkiIisINNLT8vTpC4zcPR8L/hirAs2pt4qgceeZrw00hsFGAtExn2dp0mYiSkFPTdmyZXH8+HG8/fbbqFGjBkaMGKFqalasWIESJUoYp5VERGk45CQ9LHmfP8SsTRNQyve6Oj+/UktMrP45IhyS97/Nxy9iDk0RkRn11MhGlrlyacVvY8eORZYsWdCrVy88efIEC2TBKSIiCyY9K2WP7saWpf1UoHmWwRWdPxmJ8bW6JDvQCJkNRURpI9n/QitUqBD9vQw/7ZCVNImIrEFICDy/GYg5G5erw+O5i6FP88HwdfVI9ktJFY2nmza9m4jSBhffIyKbG16S3hgZFtKvKSPO7TmGgr27wOvaJXU8u/KnmPJBe0TaOyT7Z+jLgmVaN4uEicw41Hh5eak9nhJy8+bNN20TEZHRZzTpubs4otG5PRi+eQYyhb2Cn4sbBjUdiH1e5VP8c6SHhuvUEFlAqOnfv3+M4/DwcLUgnwxDye7dRETm1Ctz4sZT1Stzyy8Y03ZfU7OS9NKHh2DIuhloc26nOj6cryT6Nf0KjzNnS/LPkIX2vmvyLrJkdI7R+8MeGiILCDX9+vWL9/zs2bNx4sSJ1GgTEdEbO/vUDuMn74dvYGi89xfyu4vZG39EUb/biIIdZlZtjenvt0aUwXCT5JIogxTEAENkIzU1jRo1wjfffIMlS5ak1ksSEaXInxcfYfE1mdwZf6D5+Pxf+H7XHLiEh+JJRnf0bfY1DucvHedxEmgkxHhkdmaAIbKlUPP777+rfaCIiEw95PTDtivx3pchLATf75qLTy78pY4P5C+DAc0GwS9jlgRfTwJNizK5jdZeIjLx4nuGhcI6nQ6+vr5qnZo5c+akYtOIiJJPZjZpQ04xe1TeeXILczb8iMLP7iHSzh5Tq7XFnMqfxhhuig/XmSGy4lDz4YcfxjiWLROyZ8+OmjVromjRojA2qd2ZOHGiClKlS5fGzJkzUalSJaP/XCKyDHFW8NXp8Nm5nRi9ez7SR4TBN1NW9Gv2NY7mK/na1+E6M0Q2EGpGjhwJU1mzZg0GDhyIefPm4b333sO0adPQoEEDXL16VS0ESERk2LOSMTQYY3fOxoeX9qnjv73KY2DTgXjm4vba1+A6M0Q2Emru37+PdevW4dq1a3ByckKRIkXQqlUrtV2CsU2ZMgXdu3dH586d1bGEm61bt2Lx4sUYOnSo0X8+EZk/6VnxdHVG1n8vYdbGCSj4/AEi7OwxqfrnmP9eS+jsYu4OI+vUCP/g8OhzXGeGyAZCjdTMSE9JWFgYXF1d1bnAwEB17ueff0abNm1Ujc2ZM2dU7U1qkp958uRJNcPKcOirbt26OHz4cLzPCQ0NVTc9aat+bR25WQJ9Oy2lvbaE18bM1qO5/RyPX4QiRyYnzAs8gndXjIFzZDgeZPZQWx2czFMsugemb61CKODhghyZnVEhv/YHWfTz/zsnPTS8tqmP/27MV7gZX5uktinJoUZ6RPr27asW3xs0aFD0ppYPHz5UNS4dO3ZE3rx5VfCR2prUDjWyE3hkZCRy5swZ47wcX7kS/0yH8ePHY/To0XHO79y5Ey4uLrAku3btMnUTKAG8NqZfj2b9LXv4h9khc2gQxm+fiWpXD6r79r1dEf0aDYB/Bu2PMDcnHVoWiEKhkKvAPeCpTP++/P/XkpLh2OfIOPjvxnztMsNrExwcnLqhRoKLDPH88MMPMc5LuJFhIQkJ9erVg6enpwoT5kB6daQXybCnRoJX/fr1o3uazJ2kU/kPTN5bR0etm5zMA6+NeaxHs+TwWbVKcMmH/2LWpgnI7++LcHsH/FijE0pMGI5Zbi5xemDIdPjvxnyFm/G10Y+0pFqoOXXqFObPn5/g/R06dMC4ceOwb98+5MuXD6nNw8MDDg4OePToUYzzcixBKj7Ozs7qFptcLHO7YImxxDbbCl4b0w05jd1+VQ15dzq5GcP2LoZTVATuueaAd4shOPPWO8i1+wYODqnDIGOG+O/GfDma4bVJantiVsy9hgz9vO5F5b4MGTIYJdAIKUouX748/vpLWzRLREVFqeMqVaoY5WcSkXmvRxP0yA/zNozDqL8WqECz450qaNx5Bs68VUTNYXoYEKoeR0S2Icmhpnjx4ti4cWOC92/YsEE9xphkKGnhwoVYtmwZLl++jF69eiEoKCh6NhQR2Y7wQ4ewbUlfNLx2GKEO6TCybk988eEwBKbP9Pp1a4jIaiV5+Kl3794qRMhwTo8ePZAunfbUiIgINSz17bffGn1F4c8++0ytXDxixAi1+F6ZMmXU7uCxi4eJyHqGmKSnxXDzSFlM7+63P+D9id/DITICt9090bvFUFzwLBzva3BFYCLbkeRQI7Obzp8/D29vb1WAW6hQITWWffPmTbx8+VLNjOrUqZNxWwuony83IrJuOy48xOjNl/Aw4P89LfnxCmP+mIQa146q4y1FP8A3Db3xwjljPK+gU7tqc0VgItuRrHVqJk2ahE8++QSrVq3Cv//+q85Vr15drU9TuXJlY7WRiGww0PT65ZSa1aRX/t4lzNg0EblfPEGogyPG1OmOX8s0Agz2otOTM/Lc4Y2KskiYyIYke0VhCS8MMERkzCEn6aHRBxo7XRS+OLoOg/avQDpdFG5meQveLYbiUs6CCb6Gp5szGuUMRoPiHJomsiXJDjVERMYkNTT6IaeswQGYsmUKavqcVMcbitXA8Pq9EeQc/+KZ3rUK4/3CHiibJzP+3LE9TdtNRKbHUENEZkU/W+m9O+cxffNEeL58hpB0ThhR9wusLVUv3uEmvbdzZkKVQtnMcpl3IjI+hhoiMquZTtcf+KPPP6vQ/59VcNBF4d9sedG7xRBcy14g0dfgTCci28ZQQ0RmM9Mp4v5DTN0yCdVun1XnfytRFyPqfYFXTq8PK3b/7azNmU5Eti1FoUbWpvn7779x48YNtG3bFpkzZ8aDBw/UfkqZMsVc+IqIKCkznarcOoPpWyYhe5A/gh2d8W39L7G+RJ1En68fjBrZrBhnOhHZuGSHmtu3b6Nhw4a4c+cOQkND1cZXEmomTJigjufNm2eclhKRVQ45fb/xPPof+BV9Dq2GPXS44pFfLaZ3wyNvnMe7u2hbtfgH/79mRnpoJNA0LJErTdtORFYQavr164cKFSrg7NmzyJYtW/T5jz76CN27d0/t9hGRta0I/N8MJzkX7HMHk+cPQuW7F9T5laUbYHSdHgh1dI53VlPs5+tfkz00RJSiUHPgwAEcOnRIbTBpqECBArh//z7fVSJKcEVgw56W6jdPYsrWKfAIDsBLpwwY1qA3NhWr+dpZTXqG3xMRpTjUyM7YsmN3bPfu3VPDUERke2L3yDwPCkPvlTFXBNaHGYeoSAw+sAJfHvldnbuUw0sNN/lkzZ3g63NWExEZJdTUr18f06ZNw4IFC9SxnZ2d2vtp5MiRaNy4cXJfjoissEdGRoNiBxqRK/CJ2uqg4v1L6nh52SYYW7srQtPF7PnV46wmIjJqqJk8eTIaNGiAYsWKISQkRM1+kn2gPDw81J5QRGTbezSJqHgSTa0bx9XqwFlCXiDQyQVDG/XFtqLVEnxtzmoiIqOHmjx58qgi4dWrV+PcuXOql6Zr165o164dMmTIkOwGEJF17NGUkHSRERi8bxl6HP9DHZ/zLAzv5kNwJ8vrZytxVhMRpck6NenSpUP79u1T8lQissI9mhKSJ+ARZm78CWUfXlXHi8s3x481OyMsnVYwHNt3Td6FR2ZnzmoiIuOFmk2bNiX5BZs3b56ylhCRRe7RlJD61w5j4rZpcAsNQoBzRnzduD92vlPltbUznd73YpAhIuOGmg8//DBJLyZFw/HNjCIi65PQjCSniHAM/XsJupzU/hg6nasI+rQYjHtuOeN9PGtniChNQ41M4yYiMiTDQ7nc0sM3ICS6riavvy9mb/wRpXyvq+OFlT7CT9U/R7iDNtzEFYGJyJi4oSURpYj0qkgYkdlP0r/S8MpBTNg+A65hwXiePjO+ajIAH4/oieUZnRNcUZi1M0Rk8lDz119/YerUqbh8+bI6fvfdd9G/f3/UrVs3VRtHROZNelfmf1oML3r3x8dHteGm47mL4Yd236JXh5oJ9r5wRWAiMotQM2fOHLX/0yeffKK+iiNHjqiF9yTo9O7d2xjtJCIzXD0439P7qPdVT9idOaPuu9bFG5FfD8f6d3Ky94WIzD/UjBs3ToUXb2/v6HN9+/bF+++/r+5jqCGyjdWDm1/ah3F/zoJd2CuEZckKp1Ur8U6DBqZuIhHZMPvkPsHf3x8NGzaMd/uEgICA1GoXEZnp6sHP/AIwfvsMzNg8EZnCXuFI3hL4oM1U7MhdytRNJCIbl+xQI+vQ/PGHtjKooY0bN6Jp06ap1S4iMsPVgwv63cXG5QPR5txORMEO06u2RrvWY/E4czZ1vzyOiMhihp9kz6exY8fi77//RpUqVaJrav755x8MGjQIM2bMiDEsRUSWXzvj9yIUVf7Zih92zoFLeCieZHRH/6Zf4Z8CZaIfL0NS8ngWARORxYSaRYsWIUuWLLh06ZK66bm7u6v7DBfiY6ghsvzamQxhIRizax6mXNit7juYvzQGNP0KTzJlSfYqw0REZhVqfHx8jNMSIjK7nbffeXILszdOwNtP7yLSzh7T3m+D2VVaIcreIVmrDBMRpQUuvkdk4wyHmTwyOmPUpkvQ6XRodW4XRu+ejwwRofDNlBX9mn2No/lKvnbvJv3iekREFhFq5H92v//+O/bu3YvHjx/H2UJh/fr1qdk+IkqjYSa9jKHBmLpzDj669Lc63udVDgOaDsIzF7d4X4N7NxGRxYYaWTl4/vz5qFWrFnLmzKlqZ4jIsoeZ9N59fBOzNk5AoWf3EWFnj8nVO2Deex9DZ5fwREnu3UREFhtqVqxYoXpjZAVhIrLsKdrRgUanQ7sz2zHir4VwjgzHg8we6NN8ME7mKRbv879r8i48Mjtz7yYisuxQ4+bmhoIFCxqnNUSUJqSGRj/klDk0CON3zELTKwfU8e5CFdVmlP4ZXBOsnen0vheDDBFZ/uJ7o0aNwujRo/Hq1SvjtIiIjE4/9bqE73VsXtpfBZpwewf8UKsLun08IsFAI1g7Q0RW01PTqlUrrFq1Cjly5ECBAgXg6OgY4/5Tp06lZvuIyBiL6QWGoOPJzRi2dxGcIyNwzzWHGm46nbtogs9n7QwRWV2o6dixI06ePIn27duzUJjIAmc5uYa8xE/bp6PrtcPqvj/froyvG/dHYPpM0Y+Xf9U5XZ0xuVUZ+L0MZe0MEVlnqNm6dSv+/PNPVKtWzTgtIiKjzXIq/eAqZm36CXkDHiHMPh3G1eqCpeWbyRLg0Y/XfzeqeXG8X9jDZO0mIjJ6qMmbNy9cXeOOtxOReS+m1/X4BgzdtxSOUZG47e4J7+ZDcD7X25DOF8N9KDnMREQ2E2omT56MwYMHY968eaqmhojMezE9t1cvsHDbVNS7fkwdbylSDd806oMXzhnVsQQaTtEmIpsMNVJLExwcjEKFCsHFxSVOofCzZ89Ss31E9AaL6ZW7dxkzN/2E3C+eINTBEd/X6Y5fyjSKMdwkJNC0KJM7zdtMRGTSUDNt2rRUbQARpf5iena6KPQ8uh5f7V+OdLoo3MzyFrxbDMWlnPGvMcWNKInIZmc/EZH5LqaXNTgAk7dOQa2bJ9XxhmI1MLx+bwQ5u8R5HjeiJCJr8ka7dIeEhCAsLCzGORYRE5luMb1Kdy9gxqaf4PnyGULSOWFk3Z5YU6p+nOEmwcX0iAi2HmqCgoIwZMgQrF27Fk+fPo1zf2RkZGq1jYiSKIeLI7wPrcaAgyvhoIvC9ax50PvDobiaPeFifs5yIiLYeqiRmU979+7F3Llz0aFDB8yePRv3799XO3f/+OOPxmklESXs0SNU/rI9qhzYrQ5/L1EH39XrhVdO/6+T4WJ6RGQLkh1qNm/ejOXLl6NmzZro3LkzPvjgAxQuXBj58+fHr7/+inbt2hmnpUQU1549QNu2sHv0CBEZMmBIrS+wvmSdGDOguJgeEdmKZG9oKVO29bt0S/2Mfgq3rDC8f//+1G8hEcURGR6Bu32+hq5uXdVToytRAulOnEC9CV+rYSVDcjy3fTkOMxGR1Ut2T40EGh8fH+TLlw9FixZVtTWVKlVSPTju7u7GaSURRdu75zRcu3VGeZ+z6nhVqfqY37IvhkZlUcGlXjHP6BWFOcxERLYk2aFGhpzOnj2LGjVqYOjQoWjWrBlmzZqF8PBwTJkyxTitJCLl+IJVKDmgFzyCA/DSKQOGNeiNTcVqwu4V1MJ7+h6ZKoWymbqpRETmH2oGDBgQ/X3dunVx+fJlnDp1StXVlCpVKrXbR0QiIgJR332Hiv8V41/K4YXeLYbCJ6u2CrDU0EhfjCzAJz017JkhIlv0RuvUCNn/iXtAERnRvXtAmzawP3hQHa4o2xg/1O6G0HROMR4mwUYW4JOhJ/bUEJEtSnKh8OHDh7Fly5YY52QWlJeXF3LkyIEePXogNDTUGG0ksl1btwJlygAHDyI8Yyb0bj4E39X/Mk6giW8hPiIiW5PkUDNmzBhcvHgx+vj8+fPo2rWrGoKS2hopFB4/fryx2klkW8LDga+/Bpo2BWSRy/LlcX7TXmx994NEn8p9nIjIViU51Jw5cwZ16tSJPl69ejXee+89LFy4EAMHDsSMGTPUTCgiekO3bwPVqwOTJmnHffoA//yD0jXLI5db+uh1Z2KT83I/93EiIluV5FDz/Plz5MyZM/p43759aNSoUfRxxYoVcffu3dRvIZEt2bhRG246cgQ6d3dcnbMMG7sMweF7L9Xdsq2BiB1suI8TEVEyQo0EGlmfRsgmljLjqXLlytH3v3jxAo6OjsZpJZGViozS4fCNp9h03AcPO38BfPgh4O8P/5Jl0bL7LDS4nQ39Vp9Bm4VHUG3CHvUcmbbNBfaIiN5g9lPjxo1V7cyECROwYcMGuLi4qC0S9M6dO4dChQol9eWIbN6OCw/VFOx0t29h1sYJyOX7rzp/9KNO6FCoBcLsY/6R4BsQEr0WzcEhtbnAHhFRSkPN999/j5YtW6pF9zJlyoRly5bByen/MzAWL16M+vXrJ/XliGDrgUYCSsMrBzFh+wy4hgXjefrM+KpJf/xV+L14nxN7LRpO2yYiSmGo8fDwUHs7BQQEqFDj4OAQ4/7ffvtNnSeixIecxq8/g9E75+Lz01vVuRO530Wf5oPx0DX7a5/LtWiIiFJx8T03N7d4z2fNyhkXRElxbu9xzJ7TByUe3VDHcyp/ginV2iPCIen/HLkWDRGREVYUJqJkWL0aJbt2Q7rgIDzN4IqBTQdhX8HyyX4ZrkVDRBQXQw2RkYeaZKjI78lzVJr+PXKuXq7+0R3NWwJ9m32FR5k9kvV6dv/NdOJaNEREcTHUEBl5dpPLzX/V7KacT24hys4ON7r1xaB8jfH4ZXiiAUYX61hwLRoiojdcp4aIkj+7qco/W7F5WX+8++QWnmR0x+etvkf9rPXQpFyeBBfRk1vP6l5ci4aIKJnYU0NkhCGnCetO4qet0/Hphd3q3D/5S6F/06/xJFMWFVo2nX2I2W3L4futl9RsJsPgIj0xElwGN3yXa9EQESUDQw1RKjv/5yHMn9kb7zy9g0g7e0x/vw1mVWmFKHuHGNOys2R0eu0ievKV07aJiJKOoYYoteh0wJIlKNG7N9KFhOBRpqzo1+wrHMlXKt6HS5BhcCEissGamrFjx6Jq1apqewZ3d3dTN4coppcvgQ4dgK5dVaDZX6AsGneakWCgEZyWTURkoz01sonmp59+iipVqmDRokWmbg7R/509C7RrB1y7Bjg4IOr77zE0qgKevQiL9+Gclk1EZOOhZvTo0err0qVLTd0UIo1Oh/x//ol0ixcDoaFAnjzAqlWwr1YNI/6b/cRp2UREacdiQk1KhIaGqpteYGCg+hoeHq5ulkDfTktpr80IDITdF1+gzO+/q8Ooxo0R+fPPskmaXCzUKeKBma1L44dtV+Ab+P//Bj3dnDG8UVF1P6+p8fDfjfnitTFf4WZ8bZLaJjudTqobLYf01PTv3x/+/v6JPnbUqFHRPTyGVq5cqWpziFLC7cYNVJg4EZl8fRHl4IBLHTrgRvPmgH3cErUoHXAj0A6B4YCrI1DIVQd20BARJU9wcDDatm2rNtV2dXU1z1AzdOhQTJgw4bWPuXz5MooWLZqiUBNfT03evHnh5+f32jfF3NLprl27UK9ePTg6Opq6ObZNp4P93LmwHzwYdmFhiMqXDwd790YFb29eGzPDfzfmi9fGfIWb8bWRz28PD49EQ41Jh58GDRqETp06vfYxBQsWTPHrOzs7q1tscrHM7YIlxhLbbFUkRHftCqxfrx23aIHIBQvw/PBhXhszxmtjvnhtzJejGV6bpLbHpKEme/bs6kZk1o4dAz77DLh1S/5lARMnAn37AhERpm4ZERFZYqHwnTt38OzZM/U1MjISZ86cUecLFy6MTJkymbp5ZI1kZHbaNGDIEFX8Cy8vYM0aoGJFU7eMiIgsOdSMGDECy5Ytiz4uW7as+rp3717UrFnThC0jq/TsGSBDo5s3a8effALI7CY3N1O3jIiILH1FYSkQlprm2DcGGkp1hw4BZcpogUZqsubMAdauZaAhIjJzFtNTQ2R0UVHApEnAsGFAZCTw9ttamJGAk9BTdMBRn2d4GhzBnbSJiEyMoYZIPHkCdOwIbN+uHbdpg8i583DMLxyPz9yPN7D8efERRp9ygP+RE9HncrmlV6sFNyyRyxS/BRGRTWOoITpwAGjdGnjwAEifHpgxAzsqN8HoOcfxMCAk3sCy48JD9Fl9NsYWCMI3IERtjzC3fTkGGyKiNGYxNTVERhluGjsWkLosCTSyyOOxY9hRpSl6/Xo6RqAxDCzbzj3A6M2X/gs0MYea9CFH7o+UsSkiIkozDDVkmx49Aho2BL79Vgs3n38OHD+OyOIlDAJLTPpz3268ECfwxH6c3H/M55nRmk9ERHFx+Ilsz549QLt2gK8vIHuAzZ6tTd+WdfZuPE00sDwLStrGao9fJPw6RESU+thTQ7ZDZjSNGgXUrasFmuLFVe+MPtCkdhCR4mIiIko77Kkh2/DwIdC2LfD339qx7OM0Y4bWU5OCIJI1oxOeB4XFO0wlVTaebtpsKSIiSjvsqSHrt3MnULq0FmgyZgR++UVbHThWoBESRGSWU0Irzch5uf+HFiX+OxMz1uifJ7OkuF4NEVHaYqgh6yUbTg4frhUEyzo0pUoBJ09q9TQJkCAigUTEjiSGgaVxqVyY2bo03J1iPkZ6aDidm4jINDj8RNbp3j1tuEnWoBFffAFMmQJkyJDoUyWQSDCRWVCGRcOesRbWa1A8J8JvRSJ7scpcUZiIyAww1JD12bZNm6L99CmQObM21NSqVbJeQoJLvWKealq2FA8nFFjk8D2vrHB0dEzlX4KIiJKLoYasR3i4Ntw0caJ2XK4csGYNULhwil5OAkyVQtlSt41ERGQ0DDVkHW7f1rY6OHJEO+7TRws3sss2ERHZBIYasnwbNwKdOwPPnwNubsDixUDLlqZuFRERpTHOfiLLFRYGDBgAfPihFmgqVgROn2agISKyUQw1ZJl8fIBq1YBp07TjgQOBgwcBLy9Tt4yIiEyEw09kedat01YEDggAsmQBli0DmjUzdauIiMjE2FNDliMkBPD2Bj75RAs0VaoAZ84w0BARkcJQQ5bh+nWgalVtR20xeDCwbx+QL5+pW0ZERGaCw09k/lavBnr0AF68ADw8gOXLgUaNTN0qIiIyMww1ZL5evQL69wcWLNCOP/gAWLUKyJ37jV42MkqX6ErBRERkeRhqyDxdvaptbXDuHGBnp60UPHIkkO7N/pPdceFhnD2dcsXa04mIiCwTa2rI/PzyC1C+vBZocuQA/vwT+P77VAk0vX45FSPQCN+AEHVe7iciIsvFUEPmIygI6NIF6NBB+75WLW12U716b/zSMuQkPTS6eO7Tn5P75XFERGSZGGrIPFy8CFSqBCxZAtjbA6NHA7t2AblSZ0hIamhi99AYkigj98vjiIjIMrGmhkxLpwOWLgV699YKgz09tWLgmjVT9cdIUXBqPo6IiMwPQw2ZzsuXQK9eWg2NqF8fWLECkR7ZcezG02TNTkpsRpOcS4qkPo6IiMwPQw2ZhhQBy+wmmeUkw01SCDx0KHZceoTRi/Yka3ZSUmY0SciRc1IUHF/VjMQfTzctDBERkWViTQ2l/XCTrDsj9TMSaGTNmb//BoYNU4EmubOTkjqjSXptJOSI2H0++mO5n+vVEBFZLoYaSjuBgUDbtkDPnkBoKNC4sTa76YMPUjQ7KbnPkV6bue3LqR4ZQ3Is57lODRGRZePwE6WN06e14SbZw0nWmxk3Dhg0SBt6SubspCqFsqX4ORJc6hXz5IrCRERWiKGGjD/cNGcOMHAgEBambUApeznJDttvODsppTOaJMDoQw4REVkPhhoyHn9/oFs3YN067bh5c20dmqxxi3FTMjuJM5qIiMgQa2rIKCKPHkNIqTIq0EQ5OiJq6lRgw4Z4A43h7KSEBoHkfK5Ys5NS8hwiIrJeDDWUunQ6XB4yBlHvv4/0d2/jjltOfNhmAt5/VRI7Lvom+LSUzE7ijCYiIjLEUEOp59kzPKrdEO/+NBKOkRHY9k5VNO00HedyvZOkTSNTMjuJM5qIiEiPNTWUOg4fhq51a+S8cwehDunwQ+1uWFG2CWBnFz0Tye6/KdYy+yih3pOUzE7ijCYiIhIMNfRmoqKAyZPV4nl2ERHwyZIL3i2G4mLOQkmaYh2flMxO4owmIiJiqKEk7Z0ULz8/oGNHYNs2dXivQQs0e7cdXjq7vPZp3DSSiIiMgaGGkrR3UhwHDgBt2gD37wPp0wPTp+Nu7ZZ4+fPRRH8ep1gTEZExsFDYxiV176QYw02yGnCtWlqgKVIEOHoU6NEDlQpm4xRrIiIyGYYaG5bs/ZYePwYaNgSGDwciI4EOHYATJ4BSpdTdnGJNRESmxFBjw5KzdxL27gVKlwZ27QIyZAAWLwaWLQMyZYrxHE6xJiIiU2FNjQ1LSsGufVQkskwaByyYpg09FSsG/Pab9jUBnGJNRESmwFBjwxIr2M3+8hmmb56EonfOaSe6dAFmzgRcXj+7SXCKNRERpTWGGhum3ztJioJj19VU8zmNaVsmwyPYH7qMGWE3bx7Qvr2JWkpERJQ41tTYsPgKex2iIjFo/wosXztCBZrAd4rBToqBGWiIiMjMMdTYOMPCXs9AP6xcNQx9Dq+BPXS482kHuJ45ARQtaupmEhERJYrDT6QV9t4+jaiJA+H4/BkiMmaC/YIFyNe2jambRkRElGTsqbF14eHAkCFwaNpEBRqULYt0Z07DnoGGiIgsDHtqbNmdO0Dr1mqHbcXbG5g4Udv2gIiIyMIw1NiqTZuATp2A588BNzdg0SLg449N3SoiIqIU4/CTrQkLAwYOBFq00AJNxYrA6dMMNEREZPEYamyJjw9QrRowdap2PGAAcPAg4OVl6pYRERG9MQ4/2Yr167UVgQMCgCxZgKVLgebNTd0qIiKiVMOeGmsXGgr06aMNL0mgqVJFG25ioCEiIivDUGPNrl8HqlYFZs3SjgcPBvbtA/LnN3XLiIiIUh2Hn6zVmjVA9+7AixdAtmzA8uVA48ambhUREZHRsKfG2rx6BXzxhbb+jAQaKQw+c4aBhoiIrB5DjTW5ehWoXBmYPx+wswOGDwf27gXy5DF1y4iIiIyOw0/W4pdftB6aoCAge3bg11+BevVM3SoiIqI0w54aSxccDHTtCnTooAWaWrWAs2cZaIiIyOYw1FiyS5eASpWAxYu14aZRo4Bdu4BcuUzdMiIiojTH4SdLpNNpi+f17q0VBnt6AitXar00RERENoo9NZbm5UugY0dtdWAJNDLMJLObGGiIiMjGWUSouXXrFrp27QovLy9kyJABhQoVwsiRIxEmmzPaknPntA0oV6wA7O2BsWOBHTuAnDlN3TIiIiKTs4jhpytXriAqKgrz589H4cKFceHCBXTv3h1BQUGYNGkSrJ5OB7uff9Z21w4JAXLnBlatAj74wNQtIyIiMhsWEWoaNmyobnoFCxbE1atXMXfuXOsPNYGBKD9lCtIdOKAdN2qkrQ7s4WHqlhEREZkViwg18QkICEDWrFlf+5jQ0FB10wsMDFRfw8PD1c3snT4Nh7ZtkefGDegcHBD1ww+IGjBAG3qyhPZbOf1/Qxbx35KN4bUxX7w25ivcjK9NUttkp9PJVBrLcv36dZQvX1710sgwVEJGjRqF0aNHxzm/cuVKuLi4wGzpdCiwfTtKLF4Mh4gIBHt44MRXX+F50aKmbhkREVGaCw4ORtu2bVWHhqurq3mGmqFDh2LChAmvfczly5dR1ODD/P79+6hRowZq1qyJn6XOJJk9NXnz5oWfn99r3xSTCgiAQ8+esF+/Xh1GNGmCna1bo2bLlnB0dDR16yjWXw67du1CvXr1eG3MDK+N+eK1MV/hZnxt5PPbw8Mj0VBj0uGnQYMGoVOnTq99jNTP6D148AC1atVC1apVsWDBgkRf39nZWd1ik4tlbhdMOX4c+OwzwMdHGgn89BN0X36J8O3bzbfNxGtjxnhtzBevjflyNMNrk9T2mDTUZM+eXd2SQnpoJNDIsNOSJUtgL3Ul1kI6y6ZPBwYP1mplChQA1q7Vpm+b4dgmERGRObKIQmEJNDLclD9/flVH8+TJk+j7PGU1XUv27Jm2kN7Gjdpxy5bAokWAu7upW0ZERGRRLCLUyBifFAfLLU+ePDHus8A65/87ckQbbrpzB3ByAqZMAb78UtvHiYiIiJLFIsZwpO5Gwkt8N4sUFQVMnKgtnieBplAh4PBhbS8nBhoiIiLr7amxKn5+ktKArVu1Y+mpkaJnc52NRUREZCEYatLSwYNA69ZSJCRTs4AZMwBZZ4e9M0RERLYx/GTxZLhp/HigZk0t0LzzDnDsGNCjBwMNERFRKmFPjbE9fgx06ADs3Kkdt28PzJ0LZMpk6pYRERFZFYYaY/r7b6BtW+DhQyBDBmDWLKBzZ/bOEBERGQFDjTFERgJjxwKy75QMPRUrpi2mV7x4wk+J0uGYzzM8fhGCHJnTo5JXVjjYM/wQERElFUNNavP1Bdq1A/bs0Y6lZ2bmTCBjxgSfsuPCQ4zefAkPA0Kiz+VyS4+RzYqhThGPtGg1ERGRxWOhcGravRsoXVoLNBJili8HFi9ONND0+uVUjEAjfANC1Pk/Lz5Kg4YTERFZPoaa1BARAXz7LVC/vlYYXLIkcOKEViD8GjLkJD008S0hqD83dvsVRFnoGoNERERpicNPb0qmaEsx8P792rFM0542TSsMToTU0MTuoTEkWeZhQChuBLK2hoiIKDEMNW9ixw6tN0ZWCZYp2gsXaovrJZEUBSdFIDfqJiIiShSHn1IiPBwYOhRo1EgLNGXLAqdOJSvQCJnllBSujilsJxERkQ1hqEku2YBSVgaeMEE7lk0oDx0C3n472S8l07ZlllNCg0tyPpebMwq5sqiGiIgoMQw1ybF5s9YrIyFGNqD87TdtQb30SetxiU3WoZFp2yJ2sNEfD29UFFyuhoiIKHEMNUkRFgYMGgQ0bw48ewZUqACcPg188skbv3TDErkwt305eLrFDEZyLOcbFM/5xj+DiIjIFrBQODE+PlqtjGxAKfr314aenJxS7UdIsKlXzDPeFYXDpX6HiIiIEsVQ8zrr1wNdugABAYC7O7B0KdCihVF+lASYKoWyGeW1iYiIbAGHn+ITGgr06QN8/LEWaCpXBs6cMVqgISIiojfHUBPb9etA1apaAbD4+mttYb38+U3dMiIiInoNDj8Zkp20u3UDXrwAsmUDli0DmjQxdauIiIgoCdhTI169Anr1Aj77TAs01appw00MNERERBaDoebqVa1mZt48wM4OGDYM2LsXyJPH1C0jIiKiZLDt4adffwV69gSCgoDs2YFfftF22iYiIiKLY5s9NcHBWu1M+/ZaoJFtD2S4iYGGiIjIYtlmT02tWsCVK9pw04gRwHffAQ4Opm4VERERvQHbDDUSaDw9teGn2rVN3RoiIiJKBTYVanQ6bbfrQJndtGQJkCMHEBgIcybbJAQHByMwMBCOjo6mbg4Z4LUxX7w25ovXxnyFm/G1kTYZfo4nxE6X2COsyL1795A3b15TN4OIiIhS4O7du8jzmtnJNhVqoqKi8ODBA2TOnBl2Uk9jASSdShCTC+nq6mrq5pABXhvzxWtjvnhtzFegGV8biSovXrzAW2+9BXv7hOc42dTwk7wRr0t45kz+AzO3/8hIw2tjvnhtzBevjflyNdNr4+bmluhjbHNKNxEREVkdhhoiIiKyCgw1Zs7Z2RkjR45UX8m88NqYL14b88VrY76creDa2FShMBEREVkv9tQQERGRVWCoISIiIqvAUENERERWgaGGiIiIrAJDjYW4desWunbtCi8vL2TIkAGFChVSVephYWGmbhoBGDt2LKpWrQoXFxe4u7ubujk2b/bs2ShQoADSp0+P9957D8eOHTN1k2ze/v370axZM7UirKzovmHDBlM3if4zfvx4VKxYUa22nyNHDnz44Ye4evUqLBFDjYW4cuWK2uZh/vz5uHjxIqZOnYp58+Zh2LBhpm4aASpcfvrpp+jVq5epm2Lz1qxZg4EDB6rQf+rUKZQuXRoNGjTA48ePTd00mxYUFKSuhQROMi/79u1D7969ceTIEezatUttbFm/fn11zSwNp3RbsIkTJ2Lu3Lm4efOmqZtC/1m6dCn69+8Pf39/UzfFZknPjPzVOWvWLHUsfwzIfjZ9+vTB0KFDTd08kg8eOzv88ccfqkeAzM+TJ09Uj42EnerVq8OSsKfGggUEBCBr1qymbgaRWfWYnTx5EnXr1o2x55scHz582KRtI7KkzxZhiZ8vDDUW6vr165g5cyZ69uxp6qYQmQ0/Pz9ERkYiZ86cMc7Lsa+vr8naRWQpoqKiVG/z+++/jxIlSsDSMNSYmHSHS1fs625ST2Po/v37aNiwoarh6N69u8nabu1Scm2IiCxZ7969ceHCBaxevRqWKJ2pG2DrBg0ahE6dOr32MQULFoz+/sGDB6hVq5aaabNgwYI0aKHtSu61IdPz8PCAg4MDHj16FOO8HHt6epqsXUSWwNvbG1u2bFEz1fLkyQNLxFBjYtmzZ1e3pJAeGgk05cuXx5IlS1StAJnHtSHz4OTkpP59/PXXX9FFqNKdLsfyP2wiikvmC0khvRRv//3332rpEEvFUGMhJNDUrFkT+fPnx6RJk1R1uh7/AjW9O3fu4NmzZ+qr1HScOXNGnS9cuDAyZcpk6ubZFJnO3bFjR1SoUAGVKlXCtGnT1NTUzp07m7ppNu3ly5eqFlDPx8dH/TuRYtR8+fKZtG22rnfv3li5ciU2btyo1qrR15+5ubmpddEsikzpJvO3ZMkSmXof741Mr2PHjvFem71795q6aTZp5syZunz58umcnJx0lSpV0h05csTUTbJ58m8hvn8j8m+HTAsJfLbI546l4To1REREZBVYlEFERERWgaGGiIiIrAJDDREREVkFhhoiIiKyCgw1REREZBUYaoiIiMgqMNQQERGRVWCoISIiIqvAUENkJWTPFtk53N/fH5ZE2rxhw4ZUe70CBQqorREs3a1bt9R7o99yw1KvL1FaYqghsgDyYfa626hRo2DupI1lypSJc/7hw4do1KhRmrZF9unq37+/2ktNNsF866230KVLF7V3lynIbvD6DTj18ubNq96bEiVKmKRNRJaIG1oSWQD5cNNbs2YNRowYgatXr0afk00zT5w4YZK2hYWFqWCQUmm9IasEmsqVK6s2z5s3D8WLF1e9It9++y0qVqyIw4cPo2DBgjA1BwcHblZLlEzsqSGyAPLhpr/JzrnSO2N4znAn8JMnT6odql1cXFC1atUY4UfITrzlypVD+vTp1Yf36NGjEREREX2/9Fa0aNFCvaarqytatWqFR48exelx+fnnn+Hl5aVeR8iwSLdu3ZA9e3b1vNq1a+Ps2bPqvqVLl6qfI8f63iU5F9/w071799CmTRu1e3PGjBnV73L06FF1340bN1TbcubMqdonIWT37t3Jei+HDx+OBw8eqOdJD5HsEF29enX8+eefcHR0VDsWv24oS353w56xKVOmoGTJkqqt0rvy5Zdfqh2p9eT3dHd3V6//7rvvqnY3bNgwOqjKay1btkxdF/17I0NNsYef4nPw4EF88MEHaidl+dl9+/ZVO5LrzZkzB2+//ba6RvKeffLJJ8l6r4gsDUMNkZWRD+3Jkyernpt06dKpYRW9AwcO4PPPP0e/fv1w6dIlzJ8/X33ojh07Vt0fFRWlQoP0Zuzbtw+7du3CzZs38dlnn8X4GdevX8e6deuwfv366A/dTz/9FI8fP8b27dtVsJLgVKdOHfVa8vxBgwapXhH5MJdb7NcUEgZq1KiB+/fvY9OmTSoEDR48WLVLf3/jxo3x119/4fTp0yocNGvWLMnDRvI6q1evRrt27eL0gkgwkEAi4UPanFT29vaYMWMGLl68qMLJnj17VJsNBQcHY9KkSVixYgX279+v2vvVV1+p++SrBEd90JGbhNHESMCT53z88cc4d+6c6sGTkOPt7a3ul+svIWfMmDEq2O7YsUOFNyKrZuptwokoeZYsWaJzc3OLc37v3r06+Se9e/fu6HNbt25V5169eqWO69Spoxs3blyM561YsUKXK1cu9f3OnTt1Dg4Oujt37kTff/HiRfUax44dU8cjR47UOTo66h4/fhz9mAMHDuhcXV11ISEhMV67UKFCuvnz50c/r3Tp0nHaLa/9xx9/qO/lsZkzZ9Y9ffo0ye9H8eLFdTNnzow+zp8/v27q1KnxPtbX11f9vITuX79+vbr/6NGjCb6W/A7yuyTkt99+02XLli3G9ZLXvH79evS52bNn63LmzBl93LFjR12LFi1ivI6Pj4963unTp2Nc3+fPn6vjrl276nr06BHjOXId7O3t1fVet26duiaBgYEJtpXI2rCmhsjKlCpVKvr7XLlyqa/SgyLDLNLz8c8//0T3zIjIyEiEhISo3oTLly+rYQy56RUrVkwNn8h9MtwjpMBWhpn05HWlFyVbtmwx2vLq1SvVo5BU0utTtmxZNfQUH/kZMlyzdetW1aMhw2byM5Jb4KtlqYQlp0ZIhrHGjx+PK1euIDAwULVJ/37KEKCQr4UKFYpxXeSavAl5z6WH5tdff43xe0lvlI+PD+rVq6eukwwxSo+O3D766KPoNhFZI4YaIisjdSF6UpMhDIdvpLalZcuWcZ6nr41JCqkfMSSvKx/UUgsSmwSipJIhoNeRoRoZEpOhnMKFC6vHS52IFCsnhQQxfUCLj5yXITupFdIPLcUOQOHh4dHfS91L06ZN0atXLxUUJYzJEFDXrl1Vm/QBwvCa6K9LYsEqMfKe9+zZUw0xxSYBVoLZqVOn1DXZuXOnKi6XQHj8+PFkXRMiS8JQQ2RDpM5F6iskEMRHClnv3r2rbvreGqm9kSJg6bF53ev6+vqqQCDFtfGRD1npFUqsl0kKkKWmJb7eGullkunP0uOg/2CXYJFUElKkfkV6N6TWxLCuRnp8pLBWXluKsfUhyHDmmfTESC+IntQOSWCUGiZ5bbF27VokV1Lem/jec7k2CV1LIdejbt266jZy5EgVZqTmJ75QS2QNWChMZEPkr/Xly5er3hopbJWeCSmclenMQj78ZCaPFNLKX/nHjh1ThcVSvCuzkBIiz6tSpYpaa0V6BSRoHDp0SBUt66eaS9iRQCBDTH5+fggNDY3zOjLrSYKGvI4EGClSloJkmWYtZCaPvjhZhl/atm0b3QuVVNKjIj9DhmekqFkCnBTvNmjQQAWT6dOnRz9WZnBJca8UWJ8/fx4dO3ZUU631JFBIz83MmTNVW+WxMk08ueS9kaEkCZzy3hj2BiVkyJAh6j2WwmB5P/799181g0pfKLxlyxZVwCz33b59W113ea+KFCmS7PYRWQqGGiIbIh/c8mEnwUPqY2S9lqlTp6raC/2wiHwwZsmSRc2UkbAiNRkys+Z15Hnbtm1Tz+ncuTPeeecdtG7dWn2YylRiIbN0pK6jVq1aqgdk1apV8fZYSNty5MihZjlJwPrxxx+jg4RMn5a2yewgmfUkv4/0WCSHh4cHjhw5otohwzcy1CShTXpKJADo65DEN998o+6TIaYmTZqosGVYG1O6dGnVpgkTJqhF8qQHSOprkqt79+4qbEhwlPdGAl1ipFdLZqhdu3ZNTeuWWiQJrbKQoJBeGQmAEsykB07ClrznMgONyFrZSbWwqRtBRGRKixYtUtO5JbzFXtmXiCwHe2qIyOZJYa8Mw8lwnNTWEJFlYk8NERERWQX21BAREZFVYKghIiIiq8BQQ0RERFaBoYaIiIisAkMNERERWQWGGiIiIrIKDDVERERkFRhqiIiIyCow1BARERGswf8A3Bm+3UGbgIAAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import statsmodels.api as sm\n", + "\n", + "sm.qqplot(residuals, line='45', fit=True)\n", + "plt.title('Q-Q график остатков')\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "87f134c2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Тест Шапиро-Уилка: p-value = 0.949\n", + "Не отвергаем H₀: остатки нормальны.\n" + ] + } + ], + "source": [ + "from scipy.stats import shapiro\n", + "\n", + "stat, p_value = shapiro(residuals)\n", + "print(f\"Тест Шапиро-Уилка: p-value = {p_value:.3f}\")\n", + "if p_value < 0.02:\n", + " print(\"Отвергаем H₀: остатки не нормальны.\")\n", + "else:\n", + " print(\"Не отвергаем H₀: остатки нормальны.\")" + ] + }, + { + "cell_type": "markdown", + "id": "4d4cf712", + "metadata": {}, + "source": [ + "### Результаты\n", + "- **Гистограмма:** Распределение остатков близко к нормальному, совпадает с наложенной кривой $N(0, \\sigma^2)$.\n", + "- **Q-Q график:** Точки лежат вдоль линии $y=x$, что подтверждает нормальность.\n", + "- **Тест Шапиро-Уилка:** гипотеза о нормальности не отвергается." + ] + }, + { + "cell_type": "markdown", + "id": "d0ccccb4", + "metadata": {}, + "source": [ + "## Пункт d)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "a3830347", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Таблица ANOVA:\n", + " df sum_sq mean_sq F PR(>F)\n", + "C(A) 1.0 478.108752 478.108752 631.694471 4.061068e-26\n", + "C(B) 3.0 153.241356 51.080452 67.489330 1.051893e-15\n", + "C(A):C(B) 3.0 178.558140 59.519380 78.639144 8.022881e-17\n", + "Residual 40.0 30.274683 0.756867 NaN NaN\n" + ] + } + ], + "source": [ + "from statsmodels.stats.anova import anova_lm\n", + "\n", + "# ANOVA с взаимодействием\n", + "anova_table = anova_lm(model_full)\n", + "print(\"Таблица ANOVA:\")\n", + "print(anova_table)" + ] + }, + { + "cell_type": "markdown", + "id": "c9a05af7", + "metadata": {}, + "source": [ + "### Результаты ANOVA\n", + "Из таблицы ANOVA:\n", + "- **Фактор A:**\n", + " $$\n", + " F = 631.69,\\ p\\text{-value} < 0.001 \\ \\rightarrow \\ \\text{значимо влияет на } Y.\n", + " $$\n", + " \n", + "- **Фактор B:**\n", + " $$\n", + " F = 67.49,\\ p\\text{-value} < 0.001 \\ \\rightarrow \\ \\text{значимо влияет на } Y.\n", + " $$\n", + " \n", + "- **Взаимодействие $A \\times B$:**\n", + " $$\n", + " F = 78.64,\\ p\\text{-value} < 0.001 \\ \\rightarrow \\ \\text{значимо влияет на } Y.\n", + " $$\n", + "\n", + "- **Вывод:**\n", + " На уровне значимости $\\alpha=0.02$ все факторы (A, B) и их взаимодействие **значимо** ($p < 0.02$). Это означает, что влияние фактора A на Y зависит от уровня фактора B, и наоборот." + ] + }, + { + "cell_type": "markdown", + "id": "0121b2ed", + "metadata": {}, + "source": [ + "## Пункт e)\n", + "Для выбора оптимальной модели используются критерии:\n", + "- AIC оценивает баланс между качеством подгонки модели и её сложностью, накладывая штраф за избыточное количество параметров.\n", + "- BIC работает аналогично AIC, но применяет более строгий штраф за сложность, особенно при больших объемах данных.\n", + "\n", + "Сравниваем две модели:\n", + "1. **Полная модель** (с взаимодействием): \n", + " $$\n", + " Y \\sim A + b + A : B.\n", + " $$\n", + "2. **Аддитивная модель** (без взаимодействия):\n", + " $$\n", + " Y \\sim A + B.\n", + " $$" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "2db6d2ce", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Модель\t\tAIC\tBIC\n", + "Полная \t130.10\t145.07\n", + "Аддитивная \t216.79\t226.15\n" + ] + } + ], + "source": [ + "# Список моделей\n", + "models = {\n", + " \"Полная\": model_full,\n", + " \"Аддитивная\": model_additive\n", + "}\n", + "\n", + "# Вывод AIC и BIC\n", + "print(\"Модель\\t\\tAIC\\tBIC\")\n", + "for name, model in models.items():\n", + " print(f\"{name} \\t{model.aic:.2f}\\t{model.bic:.2f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "2747e9f7", + "metadata": {}, + "source": [ + "### Вывод о сравнении моделей\n", + "\n", + "- **Результаты AIC и BIC:**\n", + " - **AIC:** Полная модель имеет AIC = 130.10, в то время как аддитивная модель имеет AIC = 216.79. Это указывает на значительное преимущество полной модели.\n", + " - **BIC:** Полная модель также имеет BIC = 145.07, а аддитивная модель — BIC = 226.15. Разница подтверждает выбор полной модели.\n", + "\n", + "- **Заключение:**\n", + " - Полная модель **предпочтительнее**, так как она лучше соответствует данным, что подтверждается меньшими значениями AIC и BIC.\n", + " - Аддитивная модель не учитывает взаимодействие факторов." + ] + }, + { + "cell_type": "markdown", + "id": "6dff2300", + "metadata": {}, + "source": [ + "## Пункт f)\n", + "### 1. Основные эффекты факторов A и B\n", + "- **Фактор A:** \n", + " Оказал **сильное статистически значимое влияние** на $Y$ ($F=631.69, p<0.001$). \n", + "\n", + "\n", + "- **Фактор B:** \n", + " Также **значимо влияет** на $Y$ ($F=67.49, p<0.001$). \n", + "\n", + "### 2. Взаимодействие факторов $A \\times B$\n", + "- **Статистическая значимость:** \n", + " Взаимодействие **значимо** ($F=78.64, p<0.001$).\n", + " \n", + "- **Визуальное подтверждение:** \n", + " График зависимости $Y$ от $A$ при фиксированных $B$ показывает пересечение линий (особенно для $B=4$), что указывает на **неаддитивность эффектов**.\n", + "\n", + "\n", + "### 3. Выбор оптимальной модели\n", + "- **AIC/BIC:** \n", + " | Модель | AIC | BIC |\n", + " |-----------------|--------|--------|\n", + " | Полная (с взаимодействием) | 130.10 | 145.07 |\n", + " | Аддитивная | 216.79 | 226.15 |\n", + "\n", + " - Разница $\\Delta AIC = 86.69$ и $\\Delta BIC = 81.08$ **явно указывает на преимущество полной модели**. \n", + " - Аддитивная модель не учитывает взаимодействие, что приводит к потере информации.\n", + "\n", + "\n", + "### 4. Нормальность остатков\n", + "- **Тест Шапиро-Уилка:** \n", + " $$p\\text{-value} = 0.949 \\implies \\text{гипотеза о нормальности остатков не отвергается}.$$\n", + "- **Графическая проверка:** \n", + " - Гистограмма остатков близка к нормальной форме. \n", + " - Q-Q график показывает совпадение точек с линией $y = x$.\n", + "\n", + "\n", + "- **Рекомендации:** \n", + " Для прогнозирования $Y$ **необходимо учитывать взаимодействие** $A \\times B$, так как его игнорирование приведет к систематической ошибке.\n", + "\n", + "\n", + "## Итоговый вывод\n", + "1. **Полная модель с взаимодействием** предпочтительна по критериям AIC/BIC и объясняет данные лучше аддитивной. \n", + "2. **Нормальность остатков** подтверждена тестами и графиками.\n", + "\n", + "**Рекомендации:** \n", + "- Проверить данные на наличие выбросов для уровня $B=4$. \n", + "- Использовать полную модель для прогнозирования и анализа эффектов." + ] + }, + { + "cell_type": "markdown", + "id": "2135d306", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}