diff --git a/lab1/report/report.tex b/lab1/report/report.tex index ee82edc..5d0dfca 100644 --- a/lab1/report/report.tex +++ b/lab1/report/report.tex @@ -522,6 +522,25 @@ \newpage \phantom{text} + \newpage + \phantom{text} + \subsection{Анализ результатов} + + Ключевые наблюдения: + \begin{itemize} + \item При небольших популяциях ($N=10$) повышение $p_m$ ускоряет поиск; наилучшее время при $p_c=0.5$, $p_m=0.2$ (3.1 мс, 44 пок.). + \item Для $N=25$ оптимум при умеренной мутации $p_m\in[0.05,0.10]$; минимум времени при $p_c=0.5$, $p_m=0.05$ (2.2 мс, 16 пок.) — лучшее среди всех экспериментов. + \item Для $N=50$ лучшее время при $p_c=0.6$, $p_m=0.01$ (4.6 мс, 19 пок.). Слишком большая мутация ($p_m=0.2$) резко ухудшает результаты. + \item Для $N=100$ оптимальны низкие $p_m$; лучший результат при $p_c=0.3$, $p_m=0.001$ (7.6 мс, 16 пок.). При $p_m=0.2$ решение часто не находится за 200 поколений. + \item Рост $N$ не гарантирует ускорения: число поколений может уменьшаться, но суммарное время часто растёт из-за большей стоимости одной итерации. + \end{itemize} + + Практические выводы: + \begin{itemize} + \item Для умеренных затрат времени и стабильной сходимости разумно выбирать $N\approx25\text{--}50$, $p_c\approx0.5\text{--}0.6$, $p_m\approx0.01\text{--}0.05$. + \item Оптимальное $p_m$ снижается с ростом $N$: при малых популяциях полезна более агрессивная мутация, при больших — слабая. + \item Слишком большие значения $p_m$ и $p_c$ могут разрушать хорошие решения и ухудшать сходимость; стоит избегать $p_m\ge 0.2$ и высоких $p_c$ при больших $N$. + \end{itemize} \newpage \section{Ответ на контрольный вопрос}