Анализ результатов от claude
This commit is contained in:
@@ -467,7 +467,7 @@
|
||||
\item $p_m = 0.001, 0.01, 0.05, 0.1, 0.2$ -- вероятность мутации.
|
||||
\end{itemize}
|
||||
|
||||
Результаты измерений представлены в таблицах \ref{tab:pc_pm_results_10}--\ref{tab:pc_pm_results_50}. В ячейках указано усредненное время в миллисекундах нахождения минимума функции. В скобках указано усредненное количество поколений, за которое было найдено решение. Каждый эксперимент запускался 30 раз. Если в ячейке стоит прочерк, то это означает, что решение не было найдено за 200 поколений. Лучшее значение по времени выполнения для каждого размера популяции выделено жирным шрифтом.
|
||||
Результаты измерений представлены в таблицах \ref{tab:pc_pm_results_10}--\ref{tab:pc_pm_results_100}. В ячейках указано время в миллисекундах нахождения минимума функции. В скобках указано количество поколений, за которое было найдено решение. Если в ячейке стоит прочерк, то это означает, что решение не было найдено за 200 поколений. Лучшее значение по времени выполнения для каждого размера популяции выделено жирным шрифтом.
|
||||
|
||||
\newcolumntype{Y}{>{\centering\arraybackslash}X}
|
||||
|
||||
@@ -559,18 +559,19 @@
|
||||
|
||||
Ключевые наблюдения:
|
||||
\begin{itemize}
|
||||
\item При небольших популяциях ($N=10$) повышение $p_m$ ускоряет поиск; наилучшее время при $p_c=0.5$, $p_m=0.2$ (3.1 мс, 44 пок.).
|
||||
\item Для $N=25$ оптимум при умеренной мутации $p_m\in[0.05,0.10]$; минимум времени при $p_c=0.5$, $p_m=0.05$ (2.2 мс, 16 пок.) — лучшее среди всех экспериментов.
|
||||
\item Для $N=50$ лучшее время при $p_c=0.6$, $p_m=0.01$ (4.6 мс, 19 пок.). Слишком большая мутация ($p_m=0.2$) резко ухудшает результаты.
|
||||
\item Для $N=100$ оптимальны низкие $p_m$; лучший результат при $p_c=0.3$, $p_m=0.001$ (7.6 мс, 16 пок.). При $p_m=0.2$ решение часто не находится за 200 поколений.
|
||||
\item Рост $N$ не гарантирует ускорения: число поколений может уменьшаться, но суммарное время часто растёт из-за большей стоимости одной итерации.
|
||||
\item При небольших популяциях ($N=10$) лучший результат достигается при $p_c=0.7$, $p_m=0.1$ (1.1 мс, 9 пок.). Многие комбинации с низкой мутацией ($p_m \leq 0.01$) и высокой мутацией ($p_m=0.2$) не сходятся за 200 поколений.
|
||||
\item Для $N=25$ оптимальные параметры: $p_c=0.5$, $p_m=0.001$ (1.9 мс, 10 пок.) — лучший результат среди всех экспериментов. Большинство комбинаций с $p_m \geq 0.05$ показывают плохую сходимость.
|
||||
\item Для $N=50$ минимальное время при $p_c=0.4$, $p_m=0.001$ (3.3 мс, 11 пок.). Почти все комбинации с $p_m \geq 0.05$ не сходятся, что указывает на чувствительность к избыточной мутации.
|
||||
\item Для $N=100$ лучший результат при $p_c=0.8$, $p_m=0.001$ (7.0 мс, 10 пок.). Только комбинации с очень низкой мутацией обеспечивают сходимость.
|
||||
\item С ростом размера популяции диапазон работающих параметров сужается: для больших $N$ критична минимальная мутация ($p_m=0.001$).
|
||||
\end{itemize}
|
||||
|
||||
Практические выводы:
|
||||
\begin{itemize}
|
||||
\item Для умеренных затрат времени и стабильной сходимости разумно выбирать $N\approx25\text{--}50$, $p_c\approx0.5\text{--}0.6$, $p_m\approx0.01\text{--}0.05$.
|
||||
\item Оптимальное $p_m$ снижается с ростом $N$: при малых популяциях полезна более агрессивная мутация, при больших — слабая.
|
||||
\item Слишком большие значения $p_m$ и $p_c$ могут разрушать хорошие решения и ухудшать сходимость; стоит избегать $p_m\ge 0.2$ и высоких $p_c$ при больших $N$.
|
||||
\item Для данной задачи axis parallel hyper-ellipsoid function оптимальная стратегия — использование очень низких значений мутации ($p_m=0.001$) для популяций $N \geq 25$.
|
||||
\item Малые популяции ($N=10$) требуют умеренной мутации ($p_m=0.1$) для обеспечения достаточного разнообразия.
|
||||
\item Функция показывает высокую чувствительность к параметрам: большинство неоптимальных комбинаций приводят к отсутствию сходимости за 200 поколений.
|
||||
\item Лучшее соотношение скорости и надёжности показывает $N=25$ с минимальной мутацией — компромисс между вычислительными затратами и качеством решения.
|
||||
\end{itemize}
|
||||
|
||||
\newpage
|
||||
@@ -585,7 +586,7 @@
|
||||
\section*{Заключение}
|
||||
\addcontentsline{toc}{section}{Заключение}
|
||||
|
||||
В ходе первой лабораторной работы:
|
||||
В ходе второй лабораторной работы:
|
||||
|
||||
\begin{enumerate}
|
||||
\item Был изучен теоретический материал, основная терминология ГА, генетические операторы,
|
||||
|
||||
Reference in New Issue
Block a user