This commit is contained in:
2025-10-15 16:43:11 +03:00
parent 2cf0693070
commit 740a7be984
18 changed files with 2087 additions and 0 deletions

339
lab3/csv_to_tex.py Normal file
View File

@@ -0,0 +1,339 @@
"""
Скрипт для конвертации результатов экспериментов из CSV в LaTeX таблицы.
Этот скрипт автоматически сканирует папку experiments/, находит все подпапки
с файлами results.csv, парсит данные экспериментов и генерирует LaTeX код
таблиц в формате, готовом для вставки в отчёт.
Структура входных данных:
- experiments/N/results.csv, где N - размер популяции
- CSV содержит результаты экспериментов с различными параметрами Pc и Pm
- Значения в формате "X.Y (Z)" где X.Y - время выполнения, Z - количество итераций
- "" для отсутствующих данных
Выходной файл: tables.tex с готовым LaTeX кодом всех таблиц.
Лучшие результаты по времени и фитнесу выделяются жирным (и цветом, если задан HIGHLIGHT_COLOR).
"""
import re
from pathlib import Path
# Настройка цвета для выделения лучших результатов
# None - только жирным, строка (например "magenta") - жирным и цветом
HIGHLIGHT_COLOR = "magenta"
def parse_csv_file(csv_path: str) -> tuple[str, list[list[str]]]:
"""
Парсит CSV файл с результатами эксперимента.
Args:
csv_path: Путь к CSV файлу
Returns:
Tuple с заголовком и данными таблицы
"""
with open(csv_path, "r", encoding="utf-8") as file:
lines = file.readlines()
# Удаляем пустые строки и берём только строки с данными
clean_lines = [line.strip() for line in lines if line.strip()]
# Первая строка - заголовки
header = clean_lines[0]
# Остальные строки - данные
data_lines = clean_lines[1:]
# Парсим данные
data_rows = []
for line in data_lines:
parts = line.split(",")
if len(parts) >= 6: # Pc + 5 значений Pm
data_rows.append(parts)
return header, data_rows
def extract_time_value(value: str) -> float | None:
"""
Извлекает значение времени из строки формата "X.Y (Z)" или "X.Y (Z) W.V".
Args:
value: Строка с результатом
Returns:
Время выполнения как float или None если значение пустое
"""
value = value.strip()
if value == "" or value == "" or value == "":
return None
# Ищем паттерн "число.число (число)"
match = re.match(r"(\d+\.?\d*)\s*\(", value)
if match:
return float(match.group(1))
return None
def extract_fitness_value(value: str) -> float | None:
"""
Извлекает значение фитнеса из строки формата "X.Y (Z) W.V".
Args:
value: Строка с результатом
Returns:
Значение фитнеса как float или None если значение пустое
"""
value = value.strip()
if value == "" or value == "" or value == "":
return None
# Ищем паттерн "число.число (число) число.число"
# Фитнес - это последнее число в строке
match = re.search(r"\)\s+(\d+\.?\d*)\s*$", value)
if match:
return float(match.group(1))
return None
def find_best_time(data_rows: list[list[str]]) -> float | None:
"""
Находит минимальное время выполнения среди всех значений в таблице.
Args:
data_rows: Строки данных таблицы
Returns:
Минимальное время или None если нет валидных значений
"""
min_time = None
for row in data_rows:
for i in range(1, min(6, len(row))): # Пропускаем первую колонку (Pc)
time_value = extract_time_value(row[i])
if time_value is not None:
if min_time is None or time_value < min_time:
min_time = time_value
return min_time
def find_best_fitness(data_rows: list[list[str]]) -> float | None:
"""
Находит минимальное значение фитнеса среди всех значений в таблице.
Args:
data_rows: Строки данных таблицы
Returns:
Минимальное значение фитнеса или None если нет валидных значений
"""
min_fitness = None
for row in data_rows:
for i in range(1, min(6, len(row))): # Пропускаем первую колонку (Pc)
fitness_value = extract_fitness_value(row[i])
if fitness_value is not None:
if min_fitness is None or fitness_value < min_fitness:
min_fitness = fitness_value
return min_fitness
def format_value(
value: str, best_time: float | None = None, best_fitness: float | None = None
) -> str:
"""
Форматирует значение для LaTeX таблицы, выделяя лучшие результаты жирным.
Args:
value: Строковое значение из CSV
best_time: Лучшее время в таблице для сравнения
best_fitness: Лучший фитнес в таблице для сравнения
Returns:
Отформатированное значение для LaTeX
"""
value = value.strip()
if value == "" or value == "" or value == "":
return ""
# Проверяем есть ли фитнес в строке
fitness_match = re.search(r"(\d+\.?\d*)\s*\((\d+)\)\s+(\d+\.?\d*)\s*$", value)
if fitness_match:
# Есть фитнес: "время (поколения) фитнес"
time_str = fitness_match.group(1)
generations_str = fitness_match.group(2)
fitness_str = fitness_match.group(3)
current_time = float(time_str)
current_fitness = float(fitness_str)
# Проверяем, является ли время лучшим
time_part = f"{time_str} ({generations_str})"
if best_time is not None and abs(current_time - best_time) < 0.001:
if HIGHLIGHT_COLOR is not None:
time_part = (
f"\\textcolor{{{HIGHLIGHT_COLOR}}}{{\\textbf{{{time_part}}}}}"
)
else:
time_part = f"\\textbf{{{time_part}}}"
# Проверяем, является ли фитнес лучшим
fitness_part = fitness_str
if best_fitness is not None and abs(current_fitness - best_fitness) < 0.00001:
if HIGHLIGHT_COLOR is not None:
fitness_part = (
f"\\textcolor{{{HIGHLIGHT_COLOR}}}{{\\textbf{{{fitness_part}}}}}"
)
else:
fitness_part = f"\\textbf{{{fitness_part}}}"
return f"{time_part} {fitness_part}"
else:
# Нет фитнеса: только "время (поколения)"
time_match = re.match(r"(\d+\.?\d*)\s*\((\d+)\)", value)
if time_match:
current_time = float(time_match.group(1))
if best_time is not None and abs(current_time - best_time) < 0.001:
if HIGHLIGHT_COLOR is not None:
return f"\\textcolor{{{HIGHLIGHT_COLOR}}}{{\\textbf{{{value}}}}}"
else:
return f"\\textbf{{{value}}}"
return value
def generate_latex_table(n: str, header: str, data_rows: list[list[str]]) -> str:
"""
Генерирует LaTeX код таблицы.
Args:
n: Размер популяции
header: Заголовок таблицы
data_rows: Строки данных
Returns:
LaTeX код таблицы
"""
# Находим лучшее время и лучший фитнес в таблице
best_time = find_best_time(data_rows)
best_fitness = find_best_fitness(data_rows)
# Извлекаем заголовки колонок из header
header_parts = header.split(",")
pm_values = header_parts[1:] # Пропускаем "Pc \ Pm"
latex_code = f""" \\begin{{table}}[h!]
\\centering
\\small
\\caption{{Результаты для $N = {n}$}}
\\begin{{tabularx}}{{\\linewidth}}{{l *{{5}}{{Y}}}}
\\toprule
$\\mathbf{{P_c \\;\\backslash\\; P_m}}$"""
# Добавляем заголовки Pm
for pm in pm_values:
latex_code += f" & \\textbf{{{pm.strip()}}}"
latex_code += " \\\\\n \\midrule\n"
# Добавляем строки данных
for row in data_rows:
pc_value = row[0].strip()
latex_code += f" \\textbf{{{pc_value}}}"
# Добавляем значения для каждого Pm
for i in range(1, min(6, len(row))): # Максимум 5 колонок Pm
value = format_value(row[i], best_time, best_fitness)
latex_code += f" & {value}"
# Заполняем недостающие колонки если их меньше 5
for i in range(len(row) - 1, 5):
latex_code += " & —"
latex_code += " \\\\\n"
latex_code += f""" \\bottomrule
\\end{{tabularx}}
\\label{{tab:pc_pm_results_{n}}}
\\end{{table}}"""
return latex_code
def main():
"""Основная функция скрипта."""
experiments_path = Path("experiments")
if not experiments_path.exists():
print("Папка experiments не найдена!")
return
tables = []
# Сканируем все подпапки в experiments, сортируем по числовому значению N
subdirs = [
subdir
for subdir in experiments_path.iterdir()
if subdir.is_dir() and subdir.name.isdigit()
]
subdirs.sort(key=lambda x: int(x.name))
for subdir in subdirs:
n = subdir.name
csv_file = subdir / "results.csv"
if csv_file.exists():
print(f"Обрабатываем {csv_file}...")
try:
header, data_rows = parse_csv_file(str(csv_file))
best_time = find_best_time(data_rows)
best_fitness = find_best_fitness(data_rows)
latex_table = generate_latex_table(n, header, data_rows)
tables.append(latex_table)
print(
f"✓ Таблица для N={n} готова (лучшее время: {best_time}, лучший фитнес: {best_fitness})"
)
except Exception as e:
print(f"✗ Ошибка при обработке {csv_file}: {e}")
else:
print(f"✗ Файл {csv_file} не найден")
# Сохраняем все таблицы в файл
if tables:
with open("tables.tex", "w", encoding="utf-8") as f:
f.write("% Автоматически сгенерированные LaTeX таблицы\n")
f.write(
"% Лучший результат по времени и по фитнесу выделены жирным отдельно\n"
)
f.write("% Убедитесь, что подключен \\usepackage{tabularx}\n")
if HIGHLIGHT_COLOR is not None:
f.write(
"% ВНИМАНИЕ: Убедитесь, что подключен \\usepackage{xcolor} для цветового выделения\n"
)
f.write(
"% Используйте \\newcolumntype{Y}{>{\\centering\\arraybackslash}X} перед таблицами\n\n"
)
for i, table in enumerate(tables):
if i > 0:
f.write("\n \n")
f.write(table + "\n")
print(f"\nВсе таблицы сохранены в файл 'tables.tex'")
print(f"Сгенерировано таблиц: {len(tables)}")
else:
print("Не найдено данных для генерации таблиц!")
if __name__ == "__main__":
main()