Остановка по повтореням лучшего значения
This commit is contained in:
20
lab2/gen.py
20
lab2/gen.py
@@ -30,6 +30,9 @@ class GARunConfig:
|
||||
pc: float # вероятность кроссинговера
|
||||
pm: float # вероятность мутации
|
||||
max_generations: int # максимальное количество поколений
|
||||
max_best_repetitions: int | None = (
|
||||
None # остановка при повторении лучшего результата
|
||||
)
|
||||
seed: int | None = None # seed для генератора случайных чисел
|
||||
minimize: bool = False # если True, ищем минимум вместо максимума
|
||||
save_generations: list[int] | None = (
|
||||
@@ -39,6 +42,7 @@ class GARunConfig:
|
||||
fitness_avg_threshold: float | None = (
|
||||
None # порог среднего значения фитнес функции для остановки
|
||||
)
|
||||
log_every_generation: bool = False # логировать каждое поколение
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
@@ -337,6 +341,7 @@ def genetic_algorithm(config: GARunConfig) -> GARunResult:
|
||||
best: Generation | None = None
|
||||
|
||||
generation_number = 1
|
||||
best_repetitions = 0
|
||||
|
||||
while True:
|
||||
# Вычисляем фитнес для всех особей в популяции
|
||||
@@ -357,6 +362,12 @@ def genetic_algorithm(config: GARunConfig) -> GARunResult:
|
||||
)
|
||||
history.append(current)
|
||||
|
||||
if config.log_every_generation:
|
||||
print(
|
||||
f"Generation #{generation_number} best: {current.best_fitness},"
|
||||
f" avg: {np.mean(current.fitnesses)}"
|
||||
)
|
||||
|
||||
# Обновляем лучшую эпоху
|
||||
if (
|
||||
best is None
|
||||
@@ -371,6 +382,15 @@ def genetic_algorithm(config: GARunConfig) -> GARunResult:
|
||||
if generation_number >= config.max_generations:
|
||||
stop_algorithm = True
|
||||
|
||||
if config.max_best_repetitions is not None and generation_number > 1:
|
||||
if history[-2].best_fitness == current.best_fitness:
|
||||
best_repetitions += 1
|
||||
|
||||
if best_repetitions == config.max_best_repetitions:
|
||||
stop_algorithm = True
|
||||
else:
|
||||
best_repetitions = 0
|
||||
|
||||
# if config.variance_threshold is not None:
|
||||
# fitness_variance = np.var(fitnesses)
|
||||
# if fitness_variance < config.variance_threshold:
|
||||
|
||||
Reference in New Issue
Block a user