mutation
This commit is contained in:
@@ -17,7 +17,7 @@ type FitnessFn = Callable[[Chromosome], float]
|
||||
|
||||
type InitializePopulationFn = Callable[[int], Population]
|
||||
type CrossoverFn = Callable[[Chromosome, Chromosome], tuple[Chromosome, Chromosome]]
|
||||
type MutationFn = Callable[[Chromosome, int], Chromosome]
|
||||
type MutationFn = Callable[[Chromosome], Chromosome]
|
||||
type SelectionFn = Callable[[Population, Fitnesses], Population]
|
||||
|
||||
|
||||
@@ -132,7 +132,7 @@ def mutation(
|
||||
next_population = []
|
||||
for chrom in population:
|
||||
next_population.append(
|
||||
mutation_fn(chrom, gen_num) if np.random.random() <= pm else chrom
|
||||
mutation_fn(chrom) if np.random.random() <= pm else chrom
|
||||
)
|
||||
return next_population
|
||||
|
||||
|
||||
@@ -1,12 +1,22 @@
|
||||
import random
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Sequence
|
||||
|
||||
from .chromosome import Chromosome
|
||||
|
||||
|
||||
def shrink_mutation(chromosome: Chromosome) -> Chromosome:
|
||||
"""Усекающая мутация. Заменяет случайно выбранную операцию на случайный терминал."""
|
||||
class BaseMutation(ABC):
|
||||
@abstractmethod
|
||||
def mutate(self, chromosome: Chromosome) -> Chromosome: ...
|
||||
def __call__(self, chromosome: Chromosome) -> Chromosome:
|
||||
chromosome = chromosome.copy()
|
||||
return self.mutate(chromosome)
|
||||
|
||||
|
||||
class ShrinkMutation(BaseMutation):
|
||||
"""Усекающая мутация. Заменяет случайно выбранную операцию на случайный терминал."""
|
||||
|
||||
def mutate(self, chromosome: Chromosome) -> Chromosome:
|
||||
operation_nodes = [n for n in chromosome.root.list_nodes() if n.value.arity > 0]
|
||||
|
||||
if not operation_nodes:
|
||||
@@ -19,13 +29,16 @@ def shrink_mutation(chromosome: Chromosome) -> Chromosome:
|
||||
return chromosome
|
||||
|
||||
|
||||
def grow_mutation(chromosome: Chromosome, max_depth: int) -> Chromosome:
|
||||
class GrowMutation(BaseMutation):
|
||||
"""Растущая мутация. Заменяет случайно выбранный узел на случайное поддерево."""
|
||||
chromosome = chromosome.copy()
|
||||
|
||||
def __init__(self, max_depth: int):
|
||||
self.max_depth = max_depth
|
||||
|
||||
def mutate(self, chromosome: Chromosome) -> Chromosome:
|
||||
target_node = random.choice(chromosome.root.list_nodes())
|
||||
|
||||
max_subtree_depth = max_depth - target_node.get_level() + 1
|
||||
max_subtree_depth = self.max_depth - target_node.get_level() + 1
|
||||
|
||||
subtree = Chromosome.grow_init(
|
||||
chromosome.terminals, chromosome.operations, max_subtree_depth
|
||||
@@ -39,7 +52,7 @@ def grow_mutation(chromosome: Chromosome, max_depth: int) -> Chromosome:
|
||||
return chromosome
|
||||
|
||||
|
||||
def node_replacement_mutation(chromosome: Chromosome) -> Chromosome:
|
||||
class NodeReplacementMutation(BaseMutation):
|
||||
"""Мутация замены операции (Node Replacement Mutation).
|
||||
|
||||
Выбирает случайный узел и заменяет его
|
||||
@@ -47,8 +60,8 @@ def node_replacement_mutation(chromosome: Chromosome) -> Chromosome:
|
||||
|
||||
Если подходящей альтернативы нет — возвращает копию без изменений.
|
||||
"""
|
||||
chromosome = chromosome.copy()
|
||||
|
||||
def mutate(self, chromosome: Chromosome) -> Chromosome:
|
||||
target_node = random.choice(chromosome.root.list_nodes())
|
||||
current_arity = target_node.value.arity
|
||||
|
||||
@@ -67,16 +80,15 @@ def node_replacement_mutation(chromosome: Chromosome) -> Chromosome:
|
||||
return chromosome
|
||||
|
||||
|
||||
def hoist_mutation(chromosome: Chromosome) -> Chromosome:
|
||||
class HoistMutation(BaseMutation):
|
||||
def mutate(self, chromosome: Chromosome) -> Chromosome:
|
||||
"""Hoist-мутация (анти-bloat).
|
||||
|
||||
Выбирает случайное поддерево, затем внутри него — случайное поддерево меньшей глубины,
|
||||
и заменяет исходное поддерево на это внутреннее.
|
||||
Выбирает случайное поддерево, затем внутри него — случайное поддерево меньшей
|
||||
глубины, и заменяет исходное поддерево на это внутреннее.
|
||||
|
||||
В результате дерево становится короче, сохраняя часть структуры.
|
||||
"""
|
||||
chromosome = chromosome.copy()
|
||||
|
||||
operation_nodes = [n for n in chromosome.root.list_nodes() if n.value.arity > 0]
|
||||
if not operation_nodes:
|
||||
return chromosome
|
||||
@@ -92,3 +104,28 @@ def hoist_mutation(chromosome: Chromosome) -> Chromosome:
|
||||
chromosome.root = inner_subtree
|
||||
|
||||
return chromosome
|
||||
|
||||
|
||||
class CombinedMutation(BaseMutation):
|
||||
"""Комбинированная мутация.
|
||||
|
||||
Принимает список (или словарь) мутаций и случайно выбирает одну из них
|
||||
для применения. Можно задать веса вероятностей.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, mutations: Sequence[BaseMutation], probs: Sequence[float] | None = None
|
||||
):
|
||||
if probs is not None:
|
||||
assert abs(sum(probs) - 1.0) < 1e-8, (
|
||||
"Сумма вероятностей должна быть равна 1"
|
||||
)
|
||||
assert len(probs) == len(mutations), (
|
||||
"Число вероятностей должно совпадать с числом мутаций"
|
||||
)
|
||||
self.mutations = mutations
|
||||
self.probs = probs
|
||||
|
||||
def mutate(self, chromosome: Chromosome) -> Chromosome:
|
||||
mutation = random.choices(self.mutations, weights=self.probs, k=1)[0]
|
||||
return mutation(chromosome)
|
||||
|
||||
52
lab4/main.py
52
lab4/main.py
@@ -15,10 +15,11 @@ from gp.fitness import (
|
||||
)
|
||||
from gp.ga import GARunConfig, genetic_algorithm
|
||||
from gp.mutations import (
|
||||
grow_mutation,
|
||||
hoist_mutation,
|
||||
node_replacement_mutation,
|
||||
shrink_mutation,
|
||||
CombinedMutation,
|
||||
GrowMutation,
|
||||
HoistMutation,
|
||||
NodeReplacementMutation,
|
||||
ShrinkMutation,
|
||||
)
|
||||
from gp.ops import ADD, COS, DIV, EXP, MUL, NEG, POW, SIN, SQUARE, SUB
|
||||
from gp.population import ramped_initialization
|
||||
@@ -36,7 +37,6 @@ X = np.random.uniform(-5.536, 5.536, size=(TEST_POINTS, NUM_VARS))
|
||||
# axes = [np.linspace(-5.536, 5.536, TEST_POINTS) for _ in range(NUM_VARS)]
|
||||
# X = np.array(np.meshgrid(*axes)).T.reshape(-1, NUM_VARS)
|
||||
operations = [SQUARE, SIN, COS, EXP, ADD, SUB, MUL, DIV, POW]
|
||||
# operations = [SQUARE, ADD, SUB, MUL]
|
||||
terminals = [Var(f"x{i}") for i in range(1, NUM_VARS + 1)]
|
||||
|
||||
|
||||
@@ -53,36 +53,16 @@ def target_function(x: NDArray[np.float64]) -> NDArray[np.float64]:
|
||||
return np.sum(prefix_sums, axis=1)
|
||||
|
||||
|
||||
# fitness_function = MSEFitness(target_function, lambda: X)
|
||||
# fitness_function = HuberFitness(target_function, lambda: X, delta=0.5)
|
||||
# fitness_function = PenalizedFitness(
|
||||
# target_function, lambda: X, base_fitness=fitness, lambda_=0.1
|
||||
# )
|
||||
# fitness_function = NRMSEFitness(target_function, lambda: X)
|
||||
fitness_function = RMSEFitness(target_function, lambda: X)
|
||||
|
||||
# fitness_function = PenalizedFitness(
|
||||
# target_function, lambda: X, base_fitness=fitness_function, lambda_=0.0001
|
||||
# )
|
||||
|
||||
|
||||
def adaptive_mutation(
|
||||
chromosome: Chromosome,
|
||||
generation: int,
|
||||
max_generations: int,
|
||||
max_depth: int,
|
||||
) -> Chromosome:
|
||||
r = random.random()
|
||||
|
||||
if r < 0.4:
|
||||
return grow_mutation(chromosome, max_depth=max_depth)
|
||||
elif r < 0.7:
|
||||
return node_replacement_mutation(chromosome)
|
||||
elif r < 0.85:
|
||||
return hoist_mutation(chromosome)
|
||||
|
||||
return shrink_mutation(chromosome)
|
||||
|
||||
combined_mutation = CombinedMutation(
|
||||
mutations=[
|
||||
GrowMutation(max_depth=MAX_DEPTH),
|
||||
NodeReplacementMutation(),
|
||||
HoistMutation(),
|
||||
ShrinkMutation(),
|
||||
],
|
||||
probs=[0.4, 0.3, 0.15, 0.15],
|
||||
)
|
||||
|
||||
init_population = ramped_initialization(
|
||||
20, [i for i in range(MAX_DEPTH - 9, MAX_DEPTH + 1)], terminals, operations
|
||||
@@ -93,9 +73,7 @@ print("Population size:", len(init_population))
|
||||
config = GARunConfig(
|
||||
fitness_func=fitness_function,
|
||||
crossover_fn=lambda p1, p2: crossover_subtree(p1, p2, max_depth=MAX_DEPTH),
|
||||
mutation_fn=lambda chrom, gen_num: adaptive_mutation(
|
||||
chrom, gen_num, MAX_GENERATIONS, MAX_DEPTH
|
||||
),
|
||||
mutation_fn=combined_mutation,
|
||||
# selection_fn=roulette_selection,
|
||||
selection_fn=lambda p, f: tournament_selection(p, f, k=3),
|
||||
init_population=init_population,
|
||||
|
||||
Reference in New Issue
Block a user