This commit is contained in:
2025-11-07 12:54:27 +03:00
parent 74e02df205
commit bacfa20061
3 changed files with 110 additions and 95 deletions

View File

@@ -17,7 +17,7 @@ type FitnessFn = Callable[[Chromosome], float]
type InitializePopulationFn = Callable[[int], Population]
type CrossoverFn = Callable[[Chromosome, Chromosome], tuple[Chromosome, Chromosome]]
type MutationFn = Callable[[Chromosome, int], Chromosome]
type MutationFn = Callable[[Chromosome], Chromosome]
type SelectionFn = Callable[[Population, Fitnesses], Population]
@@ -132,7 +132,7 @@ def mutation(
next_population = []
for chrom in population:
next_population.append(
mutation_fn(chrom, gen_num) if np.random.random() <= pm else chrom
mutation_fn(chrom) if np.random.random() <= pm else chrom
)
return next_population

View File

@@ -1,12 +1,22 @@
import random
from abc import ABC, abstractmethod
from typing import Sequence
from .chromosome import Chromosome
def shrink_mutation(chromosome: Chromosome) -> Chromosome:
"""Усекающая мутация. Заменяет случайно выбранную операцию на случайный терминал."""
class BaseMutation(ABC):
@abstractmethod
def mutate(self, chromosome: Chromosome) -> Chromosome: ...
def __call__(self, chromosome: Chromosome) -> Chromosome:
chromosome = chromosome.copy()
return self.mutate(chromosome)
class ShrinkMutation(BaseMutation):
"""Усекающая мутация. Заменяет случайно выбранную операцию на случайный терминал."""
def mutate(self, chromosome: Chromosome) -> Chromosome:
operation_nodes = [n for n in chromosome.root.list_nodes() if n.value.arity > 0]
if not operation_nodes:
@@ -19,13 +29,16 @@ def shrink_mutation(chromosome: Chromosome) -> Chromosome:
return chromosome
def grow_mutation(chromosome: Chromosome, max_depth: int) -> Chromosome:
class GrowMutation(BaseMutation):
"""Растущая мутация. Заменяет случайно выбранный узел на случайное поддерево."""
chromosome = chromosome.copy()
def __init__(self, max_depth: int):
self.max_depth = max_depth
def mutate(self, chromosome: Chromosome) -> Chromosome:
target_node = random.choice(chromosome.root.list_nodes())
max_subtree_depth = max_depth - target_node.get_level() + 1
max_subtree_depth = self.max_depth - target_node.get_level() + 1
subtree = Chromosome.grow_init(
chromosome.terminals, chromosome.operations, max_subtree_depth
@@ -39,7 +52,7 @@ def grow_mutation(chromosome: Chromosome, max_depth: int) -> Chromosome:
return chromosome
def node_replacement_mutation(chromosome: Chromosome) -> Chromosome:
class NodeReplacementMutation(BaseMutation):
"""Мутация замены операции (Node Replacement Mutation).
Выбирает случайный узел и заменяет его
@@ -47,8 +60,8 @@ def node_replacement_mutation(chromosome: Chromosome) -> Chromosome:
Если подходящей альтернативы нет — возвращает копию без изменений.
"""
chromosome = chromosome.copy()
def mutate(self, chromosome: Chromosome) -> Chromosome:
target_node = random.choice(chromosome.root.list_nodes())
current_arity = target_node.value.arity
@@ -67,16 +80,15 @@ def node_replacement_mutation(chromosome: Chromosome) -> Chromosome:
return chromosome
def hoist_mutation(chromosome: Chromosome) -> Chromosome:
class HoistMutation(BaseMutation):
def mutate(self, chromosome: Chromosome) -> Chromosome:
"""Hoist-мутация (анти-bloat).
Выбирает случайное поддерево, затем внутри него — случайное поддерево меньшей глубины,
и заменяет исходное поддерево на это внутреннее.
Выбирает случайное поддерево, затем внутри него — случайное поддерево меньшей
глубины, и заменяет исходное поддерево на это внутреннее.
В результате дерево становится короче, сохраняя часть структуры.
"""
chromosome = chromosome.copy()
operation_nodes = [n for n in chromosome.root.list_nodes() if n.value.arity > 0]
if not operation_nodes:
return chromosome
@@ -92,3 +104,28 @@ def hoist_mutation(chromosome: Chromosome) -> Chromosome:
chromosome.root = inner_subtree
return chromosome
class CombinedMutation(BaseMutation):
"""Комбинированная мутация.
Принимает список (или словарь) мутаций и случайно выбирает одну из них
для применения. Можно задать веса вероятностей.
"""
def __init__(
self, mutations: Sequence[BaseMutation], probs: Sequence[float] | None = None
):
if probs is not None:
assert abs(sum(probs) - 1.0) < 1e-8, (
"Сумма вероятностей должна быть равна 1"
)
assert len(probs) == len(mutations), (
"Число вероятностей должно совпадать с числом мутаций"
)
self.mutations = mutations
self.probs = probs
def mutate(self, chromosome: Chromosome) -> Chromosome:
mutation = random.choices(self.mutations, weights=self.probs, k=1)[0]
return mutation(chromosome)

View File

@@ -15,10 +15,11 @@ from gp.fitness import (
)
from gp.ga import GARunConfig, genetic_algorithm
from gp.mutations import (
grow_mutation,
hoist_mutation,
node_replacement_mutation,
shrink_mutation,
CombinedMutation,
GrowMutation,
HoistMutation,
NodeReplacementMutation,
ShrinkMutation,
)
from gp.ops import ADD, COS, DIV, EXP, MUL, NEG, POW, SIN, SQUARE, SUB
from gp.population import ramped_initialization
@@ -36,7 +37,6 @@ X = np.random.uniform(-5.536, 5.536, size=(TEST_POINTS, NUM_VARS))
# axes = [np.linspace(-5.536, 5.536, TEST_POINTS) for _ in range(NUM_VARS)]
# X = np.array(np.meshgrid(*axes)).T.reshape(-1, NUM_VARS)
operations = [SQUARE, SIN, COS, EXP, ADD, SUB, MUL, DIV, POW]
# operations = [SQUARE, ADD, SUB, MUL]
terminals = [Var(f"x{i}") for i in range(1, NUM_VARS + 1)]
@@ -53,36 +53,16 @@ def target_function(x: NDArray[np.float64]) -> NDArray[np.float64]:
return np.sum(prefix_sums, axis=1)
# fitness_function = MSEFitness(target_function, lambda: X)
# fitness_function = HuberFitness(target_function, lambda: X, delta=0.5)
# fitness_function = PenalizedFitness(
# target_function, lambda: X, base_fitness=fitness, lambda_=0.1
# )
# fitness_function = NRMSEFitness(target_function, lambda: X)
fitness_function = RMSEFitness(target_function, lambda: X)
# fitness_function = PenalizedFitness(
# target_function, lambda: X, base_fitness=fitness_function, lambda_=0.0001
# )
def adaptive_mutation(
chromosome: Chromosome,
generation: int,
max_generations: int,
max_depth: int,
) -> Chromosome:
r = random.random()
if r < 0.4:
return grow_mutation(chromosome, max_depth=max_depth)
elif r < 0.7:
return node_replacement_mutation(chromosome)
elif r < 0.85:
return hoist_mutation(chromosome)
return shrink_mutation(chromosome)
combined_mutation = CombinedMutation(
mutations=[
GrowMutation(max_depth=MAX_DEPTH),
NodeReplacementMutation(),
HoistMutation(),
ShrinkMutation(),
],
probs=[0.4, 0.3, 0.15, 0.15],
)
init_population = ramped_initialization(
20, [i for i in range(MAX_DEPTH - 9, MAX_DEPTH + 1)], terminals, operations
@@ -93,9 +73,7 @@ print("Population size:", len(init_population))
config = GARunConfig(
fitness_func=fitness_function,
crossover_fn=lambda p1, p2: crossover_subtree(p1, p2, max_depth=MAX_DEPTH),
mutation_fn=lambda chrom, gen_num: adaptive_mutation(
chrom, gen_num, MAX_GENERATIONS, MAX_DEPTH
),
mutation_fn=combined_mutation,
# selection_fn=roulette_selection,
selection_fn=lambda p, f: tournament_selection(p, f, k=3),
init_population=init_population,