\documentclass[a4paper, final]{article} %\usepackage{literat} % Нормальные шрифты \usepackage[14pt]{extsizes} % для того чтобы задать нестандартный 14-ый размер шрифта \usepackage{tabularx} \usepackage{booktabs} \usepackage[T2A]{fontenc} \usepackage[utf8]{inputenc} \usepackage[russian]{babel} \usepackage{amsmath} \usepackage[left=25mm, top=20mm, right=20mm, bottom=20mm, footskip=10mm]{geometry} \usepackage{ragged2e} %для растягивания по ширине \usepackage{setspace} %для межстрочно го интервала \usepackage{moreverb} %для работы с листингами \usepackage{indentfirst} % для абзацного отступа \usepackage{moreverb} %для печати в листинге исходного кода программ \usepackage{pdfpages} %для вставки других pdf файлов \usepackage{tikz} \usepackage{graphicx} \usepackage{afterpage} \usepackage{longtable} \usepackage{float} \usepackage{xcolor} % \usepackage[paper=A4,DIV=12]{typearea} \usepackage{pdflscape} % \usepackage{lscape} \usepackage{array} \usepackage{multirow} \renewcommand\verbatimtabsize{4\relax} \renewcommand\listingoffset{0.2em} %отступ от номеров строк в листинге \renewcommand{\arraystretch}{1.4} % изменяю высоту строки в таблице \usepackage[font=small, singlelinecheck=false, justification=centering, format=plain, labelsep=period]{caption} %для настройки заголовка таблицы \usepackage{listings} %листинги \usepackage{xcolor} % цвета \usepackage{hyperref}% для гиперссылок \usepackage{enumitem} %для перечислений \newcommand{\specialcell}[2][l]{\begin{tabular}[#1]{@{}l@{}}#2\end{tabular}} \setlist[enumerate,itemize]{leftmargin=1.2cm} %отступ в перечислениях \hypersetup{colorlinks, allcolors=[RGB]{010 090 200}} %красивые гиперссылки (не красные) % подгружаемые языки — подробнее в документации listings (это всё для листингов) \lstloadlanguages{ SQL} % включаем кириллицу и добавляем кое−какие опции \lstset{tabsize=2, breaklines, basicstyle=\footnotesize, columns=fullflexible, flexiblecolumns, numbers=left, numberstyle={\footnotesize}, keywordstyle=\color{blue}, inputencoding=cp1251, extendedchars=true } \lstdefinelanguage{MyC}{ language=SQL, % ndkeywordstyle=\color{darkgray}\bfseries, % identifierstyle=\color{black}, % morecomment=[n]{/**}{*/}, % commentstyle=\color{blue}\ttfamily, % stringstyle=\color{red}\ttfamily, % morestring=[b]", % showstringspaces=false, % morecomment=[l][\color{gray}]{//}, keepspaces=true, escapechar=\%, texcl=true } \textheight=24cm % высота текста \textwidth=16cm % ширина текста \oddsidemargin=0pt % отступ от левого края \topmargin=-1.5cm % отступ от верхнего края \parindent=24pt % абзацный отступ \parskip=5pt % интервал между абзацами \tolerance=2000 % терпимость к "жидким" строкам \flushbottom % выравнивание высоты страниц % Настройка листингов \lstset{ language=python, extendedchars=\true, inputencoding=utf8, keepspaces=true, % captionpos=b, % подписи листингов снизу } \begin{document} % начало документа % НАЧАЛО ТИТУЛЬНОГО ЛИСТА \begin{center} \hfill \break \hfill \break \normalsize{МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ\\ федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого»\\[10pt]} \normalsize{Институт компьютерных наук и кибербезопасности}\\[10pt] \normalsize{Высшая школа технологий искусственного интеллекта}\\[10pt] \normalsize{Направление: 02.03.01 <<Математика и компьютерные науки>>}\\ \hfill \break \hfill \break \hfill \break \hfill \break \large{Лабораторная работа №6}\\ \large{по дисциплине}\\ \large{<<Генетические алгоритмы>>}\\ \large{Вариант 18}\\ % \hfill \break \hfill \break \end{center} \small{ \begin{tabular}{lrrl} \!\!\!Студент, & \hspace{2cm} & & \\ \!\!\!группы 5130201/20101 & \hspace{2cm} & \underline{\hspace{3cm}} &Тищенко А. А. \\\\ \!\!\!Преподаватель & \hspace{2cm} & \underline{\hspace{3cm}} & Большаков А. А. \\\\ &&\hspace{4cm} \end{tabular} \begin{flushright} <<\underline{\hspace{1cm}}>>\underline{\hspace{2.5cm}} 2025г. \end{flushright} } \hfill \break % \hfill \break \begin{center} \small{Санкт-Петербург, 2025} \end{center} \thispagestyle{empty} % выключаем отображение номера для этой страницы % КОНЕЦ ТИТУЛЬНОГО ЛИСТА \newpage \tableofcontents \newpage \section {Постановка задачи} В данной работе были поставлены следующие задачи: \begin{itemize} \item Реализовать с использованием муравьиных алгоритмов решение задачи коммивояжера по индивидуальному заданию согласно номеру варианта. \item Представить графически найденное решение \item Сравнить найденное решение с представленным в условии задачи оптимальным решением и результатами, полученными в лабораторной работе №3. \end{itemize} \textbf{Индивидуальное задание вариант 18:} \textbf{Дано:} Эвклидовы координаты городов 38 городов в Джибути (см.~Приложение~А). Оптимальный тур представлен на Рис.~\ref{fig:optimal_tour}, его длина равна 6659. \begin{figure}[h!] \centering \includegraphics[width=0.5\linewidth]{img/optimal_tour.png} \caption{Оптимальный тур для заданного набора данных} \label{fig:optimal_tour} \end{figure} \newpage \section{Теоретические сведения} \subsection{Общие сведения о муравьиных алгоритмах} Муравьиные алгоритмы (МА) относятся к метаэвристическим методам оптимизации и предназначены преимущественно для решения задач комбинаторной оптимизации, в частности задачи поиска оптимальных путей на графах. Основная идея таких алгоритмов основана на моделировании коллективного поведения реальных муравьёв, использующих феромонные следы для обмена информацией. Каждый агент, называемый \textit{искусственным муравьём}, поэтапно строит решение задачи, перемещаясь по графу и выбирая следующую вершину на основе вероятностного правила, учитывающего концентрацию феромона на дугах графа. Феромон отражает привлекательность соответствующих маршрутов: чем выше его концентрация на дуге, тем вероятнее выбор этой дуги муравьём. \subsection{Простой муравьиный алгоритм (SACO)} Для иллюстрации рассмотрим простой муравьиный алгоритм SACO (Simple Ant Colony Optimization). Пусть задан граф \[ G = (V, E), \] где $V$ — множество вершин, $E$ — множество рёбер. Каждой дуге $(i,j)$ сопоставлена величина феромона $\tau_{ij}$. В начальный момент концентрация феромона обычно принимается нулевой, однако для предотвращения зацикливания каждому ребру присваивается малое случайное начальное значение $\tau_{ij}^{(0)}$. Каждый муравей $k=1,\ldots,n_k$ помещается в стартовую вершину и начинает построение пути. Если муравей находится в вершине $i$, он выбирает следующую вершину $j \in N_i^k$ на основе вероятностного правила \[ p_{ij}^k(t) = \frac{\tau_{ij}^\alpha(t)}{\sum\limits_{l \in N_i^k} \tau_{il}^\alpha(t)}, \] где $\alpha$ — параметр, определяющий степень влияния феромона. При отсутствии допустимых переходов допускается возврат в предыдущую вершину, что приводит к появлению петель, которые впоследствии удаляются. После завершения построения полного пути $x_k(t)$ выполняется его оценка. Длина пути обозначается как $L_k(t)$ и равна числу пройденных дуг. \subsection{Обновление феромона} Каждый муравей откладывает феромон на рёбрах своего пути согласно правилу \[ \Delta \tau_{ij}^k(t) = \begin{cases} \frac{1}{L_k(t)}, &\text{если дуга } (i,j) \in x_k(t), \\ 0, &\text{иначе}. \end{cases} \] Общее обновление феромона на дуге $(i,j)$: \[ \tau_{ij}(t+1) = \tau_{ij}(t) + \sum_{k=1}^{n_k} \Delta\tau_{ij}^k(t). \] Чем короче путь, тем больше феромона откладывается на его рёбрах, что повышает вероятность выбора коротких маршрутов в последующих итерациях. \subsection{Испарение феромона} Чтобы предотвратить преждевременную сходимость алгоритма к локальным минимумам, применяется механизм \textit{искусственного испарения феромона}. На каждом шаге выполняется: \[ \tau_{ij}(t) = (1 - \rho)\,\tau_{ij}(t), \] где $\rho \in [0,1]$ — коэффициент испарения. Большие значения $\rho$ усиливают случайность поиска, малые — повышают устойчивость к изменениям. \subsection{Критерии остановки алгоритма} Муравьиные алгоритмы могут завершаться при выполнении одного из условий: \begin{itemize} \item достигнуто максимальное число итераций; \item найдено решение приемлемого качества $f(x_k(t)) \leq \varepsilon$; \item все муравьи начинают строить одинаковые маршруты, что говорит о стабилизации процесса. \end{itemize} \subsection{Описание общего алгоритма} Алгоритм SACO можно представить в следующем виде: \begin{enumerate} \item Инициализация феромона малыми случайными значениями $\tau_{ij}^{(0)}$. \item Размещение всех муравьёв в начальной вершине. \item Для каждой итерации: \begin{enumerate} \item Каждый муравей строит путь согласно вероятностному правилу выбора вершины. \item Выполняется удаление петель. \item Вычисляется длина пути $L_k(t)$. \end{enumerate} \item Выполняется испарение феромона. \item Каждый муравей откладывает феромон на рёбрах своего пути. \item Итерация продолжается до выполнения критерия остановки. \end{enumerate} Муравьиные алгоритмы позволяют эффективно находить приближённые решения задач комбинаторной оптимизации, таких как задача коммивояжёра, что и является целью данной лабораторной работы. \newpage \section{Особенности реализации} В рамках шестой лабораторной работы реализован простой муравьиный алгоритм для решения задачи коммивояжёра. Алгоритм оформлен в модуле \texttt{aco.py} и состоит из следующих компонентов: \begin{itemize} \item \textbf{Структуры данных}: конфигурация \texttt{ACOConfig} (число муравьёв, количество итераций, параметры $\alpha$, $\beta$, $\rho$ и $q$) и результат \texttt{ACOResult} (лучший тур, его длина и история улучшений). \item \textbf{Матрицы расстояний и феромона}: расстояния между городами предвычисляются один раз; феромон хранится в виде симметричной матрицы и инициализируется единицами с нулями на диагонали. \item \textbf{Построение тура}: каждый муравей стартует в случайном городе и последовательно добавляет вершины. Выбор следующего города происходит по вероятности, пропорциональной $\tau^\alpha \cdot (1/d)^\beta$, где $\tau$ — феромон на ребре, $d$ — расстояние между городами. \item \textbf{Обновление феромона}: после прохода всех муравьёв выполняется испарение $\tau \leftarrow (1-\rho)\tau$ и добавление феромона $q/L$ на рёбра их маршрутов, где $L$ — длина тура. \item \textbf{Визуализация}: для отчёта сгенерированы PNG-файлы. График маршрута рисуется посредством собственного минимального генератора PNG (без сторонних библиотек), который строит линии по методу Брезенхема и сохраняет изображение в папку \texttt{lab6/report/img}. \end{itemize} Для загрузки координат использован тот же код, что и в лабораторной работе №3: исходные точки читаются из \texttt{lab3/data.txt}, где в файле содержатся 38 уникальных городов. \newpage \section{Результаты работы} Алгоритм был запущен со следующими параметрами: 50 муравьёв, 400 итераций, $\alpha = 1{,}2$, $\beta = 5$, $\rho = 0{,}5$, $q = 1$, случайное зерно $7$. Лучший найденный тур имеет длину $6662{,}35$, что на $0{,}05\%$ отличается от оптимального значения 6659. \begin{figure}[h!] \centering \begin{minipage}{0.48\linewidth} \centering \includegraphics[width=0.95\linewidth]{img/optimal_tour.png} \caption{Оптимальный маршрут длиной 6659} \label{fig:optimal_result} \end{minipage}\hfill \begin{minipage}{0.48\linewidth} \centering \includegraphics[width=0.95\linewidth]{img/aco_best_tour.png} \caption{Лучший маршрут, найденный муравьиным алгоритмом (6662{,}35)} \label{fig:aco_tour} \end{minipage} \end{figure} \begin{figure}[h!] \centering \includegraphics[width=0.9\linewidth]{img/aco_history.png} \caption{Сходимость длины лучшего тура по итерациям} \label{fig:aco_history} \end{figure} \subsection{Сравнение с результатами лабораторной работы №3} Для лабораторной работы №3 с генетическим алгоритмом лучший результат составил \textbf{6667{,}03} при популяции $N=500$, вероятностях $P_c=0{,}9$ и $P_m=0{,}5$. Муравьиный алгоритм показал более точное решение: длина тура \textbf{6662{,}35} против оптимального 6659. Разница с оптимумом составила 3{,}35 единицы (0{,}05\%), тогда как в лабораторной работе №3 отклонение было 8{,}03 (0{,}12\%). По скорости муравьиный алгоритм также оказался более экономичным: 400 итераций с 50 муравьями вместо 1644 поколений с популяцией 500 в генетическом подходе. Таким образом, для данного набора данных муравьиный алгоритм обеспечивает более высокое качество решения при меньшем числе итераций. \newpage \section*{Заключение} \addcontentsline{toc}{section}{Заключение} В ходе шестой лабораторной работы выполнена реализация простого муравьиного алгоритма для задачи коммивояжёра: \begin{enumerate} \item Разработан модуль \texttt{aco.py} с конфигурацией алгоритма, построением туров, обновлением феромона и собственными средствами визуализации без сторонних библиотек. \item Проведён численный эксперимент на данных из варианта 18 (38 городов Джибути); подобраны параметры $\alpha=1{,}2$, $\beta=5$, $\rho=0{,}5$, 50 муравьёв, 400 итераций. \item Получено приближённое решение длиной 6662{,}35, что всего на 0{,}05\% хуже известного оптимума 6659 и лучше результата, достигнутого генетическим алгоритмом из лабораторной работы №3. \end{enumerate} \newpage \section*{Список литературы} \addcontentsline{toc}{section}{Список литературы} \vspace{-1.5cm} \begin{thebibliography}{0} \bibitem{vostrov} Методические указания по выполнению лабораторных работ к курсу «Генетические алгоритмы», 119 стр. \end{thebibliography} \end{document}