import numpy as np from numpy.typing import NDArray from .primitive import Operation type Value = NDArray[np.float64] # Унарные операции NEG = Operation("-", 1, lambda x: -x[0]) SIN = Operation("sin", 1, lambda x: np.sin(x[0])) COS = Operation("cos", 1, lambda x: np.cos(x[0])) def _safe_exp(v: Value) -> Value: v_clipped = np.clip(v, -10.0, 10.0) out = np.exp(v_clipped) out[np.isnan(out) | np.isinf(out)] = 0.0 return out EXP = Operation("exp", 1, lambda x: _safe_exp(x[0])) # Бинарные операции ADD = Operation("+", 2, lambda x: x[0] + x[1]) SUB = Operation("-", 2, lambda x: x[0] - x[1]) MUL = Operation("*", 2, lambda x: x[0] * x[1]) def _safe_div(a: Value, b: Value) -> Value: eps = 1e-12 denom = np.where(np.abs(b) >= eps, b, eps) out = np.divide(a, denom) out = np.where(np.isnan(out) | np.isinf(out), 0.0, out) return out DIV = Operation("/", 2, lambda x: _safe_div(x[0], x[1])) def _safe_pow(a: Value, b: Value) -> Value: a_clip = np.clip(a, -1e3, 1e3) b_clip = np.clip(b, -3.0, 3.0) # 0 в отрицательной степени → 0 mask_zero_neg = (a_clip == 0.0) & (b_clip < 0.0) with np.errstate(over="ignore", invalid="ignore", divide="ignore", under="ignore"): out = np.power(a_clip, b_clip) out[mask_zero_neg] = 0.0 out[np.isnan(out) | np.isinf(out)] = 0.0 return out POW = Operation("^", 2, lambda x: _safe_pow(x[0], x[1])) # Все операции в либе ALL = (NEG, SIN, COS, EXP, ADD, SUB, MUL, DIV, POW)