Files
genetic-algorithms/lab3/main.py
2025-10-15 16:43:11 +03:00

112 lines
3.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import math
import os
import matplotlib.pyplot as plt
import numpy as np
from gen import (
Chromosome,
GARunConfig,
genetic_algorithm,
initialize_random_population,
inversion_mutation_fn,
partially_mapped_crossover_fn,
plot_fitness_history,
plot_tour,
swap_mutation_fn,
)
# В списке из 89 городов только 38 уникальных
cities = set()
with open("data.txt", "r") as file:
for line in file:
# x и y поменяны местами в визуализациях в методичке
_, y, x = line.split()
cities.add((float(x), float(y)))
cities = list(cities)
def euclidean_distance(city1, city2):
return math.sqrt((city1[0] - city2[0]) ** 2 + (city1[1] - city2[1]) ** 2)
def build_fitness_function(cities):
def fitness_function(chromosome: Chromosome) -> float:
return sum(
euclidean_distance(cities[chromosome[i]], cities[chromosome[i + 1]])
for i in range(len(chromosome) - 1)
) + euclidean_distance(cities[chromosome[0]], cities[chromosome[-1]])
return fitness_function
config = GARunConfig(
fitness_func=build_fitness_function(cities),
initialize_population_fn=initialize_random_population,
cities=cities,
crossover_fn=partially_mapped_crossover_fn,
# mutation_fn=swap_mutation_fn,
mutation_fn=inversion_mutation_fn,
pop_size=500,
elitism=3,
pc=0.9,
pm=0.3,
max_generations=2500,
# max_best_repetitions=10,
minimize=False,
seed=17,
save_generations=[
1,
5,
20,
50,
100,
300,
500,
700,
900,
1500,
2000,
2500,
3000,
3500,
4000,
4500,
],
log_every_generation=True,
)
result = genetic_algorithm(config)
# Сохраняем конфиг и результаты в файлы
config.save()
result.save(config.results_dir)
# Выводим результаты
print(f"Лучшая особь: {result.best_generation.best}")
print(f"Лучшее значение фитнеса: {result.best_generation.best_fitness:.6f}")
print(f"Количество поколений: {result.generations_count}")
print(f"Время выполнения: {result.time_ms:.2f} мс")
# Сохраняем лучшую особь за всё время
fig = plt.figure(figsize=(7, 7))
fig.suptitle(
f"Поколение #{result.best_generation.number}. "
f"Лучшая особь: {result.best_generation.best_fitness:.4f}. "
f"Среднее значение: {np.mean(result.best_generation.fitnesses):.4f}",
fontsize=14,
y=0.95,
)
# Рисуем лучший маршрут в поколении
ax = fig.add_subplot(1, 1, 1)
plot_tour(config.cities, result.best_generation.best, ax)
filename = f"best_generation_{result.best_generation.number:03d}.png"
path_png = os.path.join(config.results_dir, filename)
fig.savefig(path_png, dpi=150, bbox_inches="tight")
plt.close(fig)
# Рисуем график прогресса по поколениям
plot_fitness_history(
result, save_path=os.path.join(config.results_dir, "fitness_history.png")
)