Files
genetic-algorithms/lab4/gp/selection.py
2025-11-07 00:11:02 +03:00

89 lines
3.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import numpy as np
from .types import Fitnesses, Population
def roulette_selection(population: Population, fitnesses: Fitnesses) -> Population:
"""Селекция методом рулетки.
Чем больше значение фитнеса, тем больше вероятность выбора особи. Для минимизации
значения фитнеса нужно предварительно инвертировать.
"""
# Чтобы работать с отрицательными f, сдвигаем значения фитнес функции на минимальное
# значение в популяции. Вычитаем min_fit, т. к. min_fit может быть отрицательным.
min_fit = np.min(fitnesses)
shifted_fitnesses = fitnesses - min_fit + 1e-12
# Получаем вероятности для каждой особи
probs = shifted_fitnesses / np.sum(shifted_fitnesses)
cum = np.cumsum(probs)
# Выбираем особей методом рулетки
selected = []
for _ in population:
r = np.random.random()
idx = int(np.searchsorted(cum, r, side="left"))
selected.append(population[idx])
return selected
def tournament_selection(
population: Population,
fitnesses: Fitnesses,
k: int = 3,
) -> Population:
"""Турнирная селекция.
В каждом турнире случайно выбирается k особей, и побеждает та,
у которой лучшее (наибольшее) значение фитнеса. Для минимизации
значения фитнеса нужно предварительно инвертировать.
Args:
population: список особей (Population)
fitnesses: список или массив фитнесов (Fitnesses)
k: размер турнира
Returns:
Новая популяция того же размера
"""
size = len(population)
selected = []
for _ in range(size):
idxs = np.random.choice(size, size=k, replace=False)
fits = fitnesses[idxs]
winner_idx = idxs[np.argmax(fits)]
selected.append(population[winner_idx])
return selected
def stochastic_tournament_selection(
population: Population,
fitnesses: Fitnesses,
k: int = 3,
p_best: float = 0.75,
) -> Population:
"""Стохастическая турнирная селекция.
Побеждает лучший в турнире с вероятностью p_best, иначе выбирается
случайный участник турнира.
"""
size = len(population)
selected = []
for _ in range(size):
idxs = np.random.choice(size, size=k, replace=False)
fits = fitnesses[idxs]
order = np.argsort(-fits)
if np.random.random() < p_best:
winner_idx = idxs[order[0]]
else:
winner_idx = np.random.choice(idxs[1:]) if k > 1 else idxs[0]
selected.append(population[winner_idx])
return selected