На GPU вычисления

This commit is contained in:
2025-12-02 12:39:09 +00:00
parent 78bdb1ddb7
commit 73c9e580e4
5 changed files with 344 additions and 17 deletions

View File

@@ -2,7 +2,7 @@ CXX = mpic++
CXXFLAGS = -std=c++17 -O2 -Wall -Wextra -Wno-cast-function-type
NVCC = nvcc
NVCCFLAGS = -O2 -Xcompiler -fPIC
NVCCFLAGS = -O3 -std=c++17 -arch=sm_86 -Xcompiler -fPIC
SRC_DIR = src
BUILD_DIR = build

View File

@@ -1,12 +1,116 @@
#include "gpu_loader.hpp"
#include <dlfcn.h>
#include <map>
#include <algorithm>
static void* get_gpu_lib_handle() {
static void* h = dlopen("./libgpu_compute.so", RTLD_NOW | RTLD_LOCAL);
return h;
}
gpu_is_available_fn load_gpu_is_available() {
void* h = dlopen("./libgpu_compute.so", RTLD_NOW | RTLD_LOCAL);
void* h = get_gpu_lib_handle();
if (!h) return nullptr;
auto fn = (gpu_is_available_fn)dlsym(h, "gpu_is_available");
if (!fn) return nullptr;
return fn;
}
gpu_aggregate_days_fn load_gpu_aggregate_days() {
void* h = get_gpu_lib_handle();
if (!h) return nullptr;
auto fn = (gpu_aggregate_days_fn)dlsym(h, "gpu_aggregate_days");
return fn;
}
bool aggregate_days_gpu(
const std::vector<Record>& records,
std::vector<DayStats>& out_stats,
gpu_aggregate_days_fn gpu_fn)
{
if (!gpu_fn || records.empty()) {
return false;
}
// Группируем записи по дням и подготавливаем данные для GPU
std::map<DayIndex, std::vector<size_t>> day_record_indices;
for (size_t i = 0; i < records.size(); i++) {
DayIndex day = static_cast<DayIndex>(records[i].timestamp) / 86400;
day_record_indices[day].push_back(i);
}
int num_days = static_cast<int>(day_record_indices.size());
// Подготавливаем массивы для GPU
std::vector<GpuRecord> gpu_records;
std::vector<int> day_offsets;
std::vector<int> day_counts;
std::vector<long long> day_indices;
gpu_records.reserve(records.size());
day_offsets.reserve(num_days);
day_counts.reserve(num_days);
day_indices.reserve(num_days);
int current_offset = 0;
for (auto& [day, indices] : day_record_indices) {
day_indices.push_back(day);
day_offsets.push_back(current_offset);
day_counts.push_back(static_cast<int>(indices.size()));
// Добавляем записи этого дня
for (size_t idx : indices) {
const auto& r = records[idx];
GpuRecord gr;
gr.timestamp = r.timestamp;
gr.open = r.open;
gr.high = r.high;
gr.low = r.low;
gr.close = r.close;
gr.volume = r.volume;
gpu_records.push_back(gr);
}
current_offset += static_cast<int>(indices.size());
}
// Выделяем память для результата
std::vector<GpuDayStats> gpu_stats(num_days);
// Вызываем GPU функцию
int result = gpu_fn(
gpu_records.data(),
static_cast<int>(gpu_records.size()),
day_offsets.data(),
day_counts.data(),
day_indices.data(),
num_days,
gpu_stats.data()
);
if (result != 0) {
return false;
}
// Конвертируем результат в DayStats
out_stats.clear();
out_stats.reserve(num_days);
for (const auto& gs : gpu_stats) {
DayStats ds;
ds.day = gs.day;
ds.low = gs.low;
ds.high = gs.high;
ds.open = gs.open;
ds.close = gs.close;
ds.avg = gs.avg;
ds.first_ts = gs.first_ts;
ds.last_ts = gs.last_ts;
out_stats.push_back(ds);
}
return true;
}

View File

@@ -1,4 +1,49 @@
#pragma once
#include "day_stats.hpp"
#include "record.hpp"
#include <vector>
// Типы функций из GPU плагина
using gpu_is_available_fn = int (*)();
// Структуры для GPU (должны совпадать с gpu_plugin.cu)
struct GpuRecord {
double timestamp;
double open;
double high;
double low;
double close;
double volume;
};
struct GpuDayStats {
long long day;
double low;
double high;
double open;
double close;
double avg;
double first_ts;
double last_ts;
};
using gpu_aggregate_days_fn = int (*)(
const GpuRecord* h_records,
int num_records,
const int* h_day_offsets,
const int* h_day_counts,
const long long* h_day_indices,
int num_days,
GpuDayStats* h_out_stats
);
// Загрузка функций из плагина
gpu_is_available_fn load_gpu_is_available();
gpu_aggregate_days_fn load_gpu_aggregate_days();
// Обёртка для агрегации на GPU (возвращает true если успешно)
bool aggregate_days_gpu(
const std::vector<Record>& records,
std::vector<DayStats>& out_stats,
gpu_aggregate_days_fn gpu_fn
);

View File

@@ -1,4 +1,27 @@
#include <cuda_runtime.h>
#include <cstdint>
#include <cfloat>
// Структуры данных (должны совпадать с C++ кодом)
struct GpuRecord {
double timestamp;
double open;
double high;
double low;
double close;
double volume;
};
struct GpuDayStats {
long long day;
double low;
double high;
double open;
double close;
double avg;
double first_ts;
double last_ts;
};
extern "C" int gpu_is_available() {
int n = 0;
@@ -6,3 +29,139 @@ extern "C" int gpu_is_available() {
if (err != cudaSuccess) return 0;
return (n > 0) ? 1 : 0;
}
// Kernel для агрегации (один поток обрабатывает все данные)
__global__ void aggregate_kernel(
const GpuRecord* records,
int num_records,
const int* day_offsets, // начало каждого дня в массиве records
const int* day_counts, // количество записей в каждом дне
const long long* day_indices, // индексы дней
int num_days,
GpuDayStats* out_stats)
{
// Один поток обрабатывает все дни последовательно
for (int d = 0; d < num_days; d++) {
int offset = day_offsets[d];
int count = day_counts[d];
GpuDayStats stats;
stats.day = day_indices[d];
stats.low = DBL_MAX;
stats.high = -DBL_MAX;
stats.first_ts = DBL_MAX;
stats.last_ts = -DBL_MAX;
stats.open = 0;
stats.close = 0;
for (int i = 0; i < count; i++) {
const GpuRecord& r = records[offset + i];
// min/max
if (r.low < stats.low) stats.low = r.low;
if (r.high > stats.high) stats.high = r.high;
// first/last по timestamp
if (r.timestamp < stats.first_ts) {
stats.first_ts = r.timestamp;
stats.open = r.open;
}
if (r.timestamp > stats.last_ts) {
stats.last_ts = r.timestamp;
stats.close = r.close;
}
}
stats.avg = (stats.low + stats.high) / 2.0;
out_stats[d] = stats;
}
}
// Функция агрегации, вызываемая из C++
extern "C" int gpu_aggregate_days(
const GpuRecord* h_records,
int num_records,
const int* h_day_offsets,
const int* h_day_counts,
const long long* h_day_indices,
int num_days,
GpuDayStats* h_out_stats)
{
// Выделяем память на GPU
GpuRecord* d_records = nullptr;
int* d_day_offsets = nullptr;
int* d_day_counts = nullptr;
long long* d_day_indices = nullptr;
GpuDayStats* d_out_stats = nullptr;
cudaError_t err;
err = cudaMalloc(&d_records, num_records * sizeof(GpuRecord));
if (err != cudaSuccess) return -1;
err = cudaMalloc(&d_day_offsets, num_days * sizeof(int));
if (err != cudaSuccess) { cudaFree(d_records); return -2; }
err = cudaMalloc(&d_day_counts, num_days * sizeof(int));
if (err != cudaSuccess) { cudaFree(d_records); cudaFree(d_day_offsets); return -3; }
err = cudaMalloc(&d_day_indices, num_days * sizeof(long long));
if (err != cudaSuccess) { cudaFree(d_records); cudaFree(d_day_offsets); cudaFree(d_day_counts); return -4; }
err = cudaMalloc(&d_out_stats, num_days * sizeof(GpuDayStats));
if (err != cudaSuccess) { cudaFree(d_records); cudaFree(d_day_offsets); cudaFree(d_day_counts); cudaFree(d_day_indices); return -5; }
// Копируем данные на GPU
err = cudaMemcpy(d_records, h_records, num_records * sizeof(GpuRecord), cudaMemcpyHostToDevice);
if (err != cudaSuccess) return -10;
err = cudaMemcpy(d_day_offsets, h_day_offsets, num_days * sizeof(int), cudaMemcpyHostToDevice);
if (err != cudaSuccess) return -11;
err = cudaMemcpy(d_day_counts, h_day_counts, num_days * sizeof(int), cudaMemcpyHostToDevice);
if (err != cudaSuccess) return -12;
err = cudaMemcpy(d_day_indices, h_day_indices, num_days * sizeof(long long), cudaMemcpyHostToDevice);
if (err != cudaSuccess) return -13;
// Запускаем kernel (1 блок, 1 поток)
aggregate_kernel<<<1, 1>>>(
d_records, num_records,
d_day_offsets, d_day_counts, d_day_indices,
num_days, d_out_stats
);
// Проверяем ошибку запуска kernel
err = cudaGetLastError();
if (err != cudaSuccess) {
cudaFree(d_records);
cudaFree(d_day_offsets);
cudaFree(d_day_counts);
cudaFree(d_day_indices);
cudaFree(d_out_stats);
return -7;
}
// Ждём завершения
err = cudaDeviceSynchronize();
if (err != cudaSuccess) {
cudaFree(d_records);
cudaFree(d_day_offsets);
cudaFree(d_day_counts);
cudaFree(d_day_indices);
cudaFree(d_out_stats);
return -6;
}
// Копируем результат обратно
cudaMemcpy(h_out_stats, d_out_stats, num_days * sizeof(GpuDayStats), cudaMemcpyDeviceToHost);
// Освобождаем память
cudaFree(d_records);
cudaFree(d_day_offsets);
cudaFree(d_day_counts);
cudaFree(d_day_indices);
cudaFree(d_out_stats);
return 0;
}

View File

@@ -34,6 +34,18 @@ int main(int argc, char** argv) {
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
// ====== ЗАГРУЗКА GPU ФУНКЦИЙ ======
auto gpu_is_available = load_gpu_is_available();
auto gpu_aggregate = load_gpu_aggregate_days();
bool have_gpu = false;
if (gpu_is_available && gpu_is_available()) {
have_gpu = true;
std::cout << "Rank " << rank << ": GPU available" << std::endl;
} else {
std::cout << "Rank " << rank << ": GPU not available, using CPU" << std::endl;
}
std::vector<Record> local_records;
if (rank == 0) {
@@ -75,10 +87,26 @@ int main(int argc, char** argv) {
std::cout << "Rank " << rank << " received "
<< local_records.size() << " records" << std::endl;
// ====== АГРЕГАЦИЯ НА КАЖДОМ УЗЛЕ ======
auto local_stats = aggregate_days(local_records);
// ====== АГРЕГАЦИЯ НА КАЖДОМ УЗЛЕ (GPU или CPU) ======
std::vector<DayStats> local_stats;
if (have_gpu && gpu_aggregate) {
bool gpu_success = aggregate_days_gpu(local_records, local_stats, gpu_aggregate);
if (gpu_success) {
std::cout << "Rank " << rank << " aggregated "
<< local_stats.size() << " days" << std::endl;
<< local_stats.size() << " days (GPU)" << std::endl;
} else {
// Fallback на CPU при ошибке GPU
std::cout << "Rank " << rank << ": GPU aggregation failed, falling back to CPU" << std::endl;
local_stats = aggregate_days(local_records);
std::cout << "Rank " << rank << " aggregated "
<< local_stats.size() << " days (CPU)" << std::endl;
}
} else {
local_stats = aggregate_days(local_records);
std::cout << "Rank " << rank << " aggregated "
<< local_stats.size() << " days (CPU)" << std::endl;
}
// ====== СБОР АГРЕГИРОВАННЫХ ДАННЫХ НА RANK 0 ======
std::vector<DayStats> all_stats;
@@ -134,15 +162,6 @@ int main(int argc, char** argv) {
}
}
// Проверка GPU (оставляем как есть)
auto gpu_is_available = load_gpu_is_available();
int have_gpu = 0;
if (gpu_is_available) {
std::cout << "Rank " << rank << " dll loaded" << std::endl;
have_gpu = gpu_is_available();
}
std::cout << "Rank " << rank << ": gpu_available=" << have_gpu << "\n";
MPI_Finalize();
return 0;
}