Таблица с алгоритмами на А3

This commit is contained in:
2024-11-03 19:25:56 +03:00
parent ecc603e2cd
commit 6a3d9addb2
3 changed files with 53 additions and 49 deletions

2
.gitignore vendored
View File

@@ -3,3 +3,5 @@
!*.tex !*.tex
!img !img
!img/** !img/**
!ml_table
!ml_table/*.tex

40
ml_table/ml_table.tex Normal file
View File

@@ -0,0 +1,40 @@
\documentclass{article}
\usepackage[14pt]{extsizes}
\usepackage[T2A]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[a3paper, landscape, left=25mm, top=20mm, right=20mm, bottom=20mm, footskip=10mm]{geometry}
\usepackage{tabularx}
\usepackage{caption}
\usepackage{graphicx}
\usepackage{array}
\renewcommand{\arraystretch}{1.4} % изменяю высоту строки в таблице
\begin{document}
\setcounter{page}{8}
\begin{table}[h!]
\centering
\caption*{Table 2. Machine learning algorithms comparison.}
\footnotesize
\begin{tabularx}{\textwidth}{|p{6cm}|X|X|X|X|X|X|X|X|X|X|}
\hline
\textbf{Article} & \textbf{DT} & \textbf{KNN} & \textbf{SVM} & \textbf{NN} & \textbf{LASSO} & \textbf{RF} & \textbf{PCA-LDA} & \textbf{XGB} & \textbf{GLM} & \textbf{LR} \\
\hline
Classification of paclitaxel-resistant ovarian cancer cells using holographic flow cytometry through interpretable machine learning~[1] & + & & + & + & + & & & & & \\
\hline
Heterogeneity of computational pathomic signature predicts drug resistance and intra-tumor heterogeneity of ovarian cancer~[2] & & & & & + & & & & & \\
\hline
Mitochondria-related chemoradiotherapy resistance genes-based machine learning model associated with immune cell infiltration on the prognosis of esophageal cancer and its value in pan-cancer~[3] & & + & + & + & + & + & & + & + & \\
\hline
Molecular separation-assisted label-free SERS combined with machine learning for nasopharyngeal cancer screening and radiotherapy resistance prediction~[4] & & & & & & & + & & & \\
\hline
A Predictive Model for Initial Platinum-Based Chemotherapy Efficacy in Patients with Postoperative Epithelial Ovarian Cancer Using Tissue-Derived Small Extracellular Vesicles~[5] & & & & & + & & & & & + \\
\hline
Identifying genes associated with resistance to KRAS G12C inhibitors via machine learning methods~[6] & + & + & + & & & + & & & & \\
\hline
\end{tabularx}
\end{table}
\end{document}

View File

@@ -14,6 +14,8 @@
\usepackage{moreverb} %для печати в листинге исходного кода программ \usepackage{moreverb} %для печати в листинге исходного кода программ
\usepackage{graphicx} \usepackage{graphicx}
\usepackage{pdfpages}
\usepackage{array} \usepackage{array}
\usepackage{multirow} \usepackage{multirow}
@@ -167,7 +169,7 @@
% \section{Results} % \section{Results}
\newpage
\begin{table}[h!] \begin{table}[h!]
\centering \centering
\caption{Methods used in research papers.} \caption{Methods used in research papers.}
@@ -189,6 +191,7 @@
\end{tabularx} \end{tabularx}
\end{table} \end{table}
\newpage
\addtocounter{table}{-1} \addtocounter{table}{-1}
\begin{table}[h!] \begin{table}[h!]
\centering \centering
@@ -208,40 +211,10 @@
\end{table} \end{table}
\newpage \newpage
\begin{table}[h!] \addtocounter{table}{1}
\centering \includepdf[pages={1}, fitpaper, pagecommand={
\caption{Machine learning algorithms comparision.} \thispagestyle{empty}
\footnotesize }]{ml_table/ml_table.pdf}
\begin{tabularx}{\textwidth}{|p{3cm}|c|c|c|c|c|c|X|c|c|c|}
\hline
\textbf{Article} & \textbf{DT} & \textbf{KNN} & \textbf{SVM} & \textbf{NN} & \textbf{LASSO} & \textbf{RF} & \textbf{PCA-LDA} & \textbf{XGB} & \textbf{GLM} & \textbf{LR} \\
\hline
Classification of paclitaxel-resistant ovarian cancer cells using holographic flow cytometry through interpretable machine learning~\cite{paclitaxel} & + & & + & + & + & & & & & \\
\hline
Heterogeneity of computational pathomic signature predicts drug resistance and intra-tumor heterogeneity of ovarian cancer~\cite{heterogeneity} & & & & & + & & & & & \\
\hline
Mitochondria-related chemoradiotherapy resistance genes-based machine learning model associated with immune cell infiltration on the prognosis of esophageal cancer and its value in pan-cancer~\cite{mitochondria} & & + & + & + & + & + & & + & + & \\
\hline
Molecular separation-assisted label-free SERS combined with machine learning for nasopharyngeal cancer screening and radiotherapy resistance prediction~\cite{sers} & & & & & & & + & & & \\
\hline
\end{tabularx}
\end{table}
\addtocounter{table}{-1}
\begin{table}[h!]
\centering
\caption{Machine learning algorithms comparision (continued).}
\footnotesize
\begin{tabularx}{\textwidth}{|p{3cm}|c|c|c|c|c|c|X|c|c|c|}
\hline
\textbf{Article} & \textbf{DT} & \textbf{KNN} & \textbf{SVM} & \textbf{NN} & \textbf{LASSO} & \textbf{RF} & \textbf{PCA-LDA} & \textbf{XGB} & \textbf{GLM} & \textbf{LR} \\
\hline
A Predictive Model for Initial Platinum-Based Chemotherapy Efficacy in Patients with Postoperative Epithelial Ovarian Cancer Using Tissue-Derived Small Extracellular Vesicles~\cite{platinum} & & & & & + & & & & & + \\
\hline
Identifying genes associated with resistance to KRAS G12C inhibitors via machine learning methods~\cite{kras} & + & + & + & & & + & & & & \\
\hline
\end{tabularx}
\end{table}
\newpage \newpage
@@ -266,6 +239,7 @@
\end{tabularx} \end{tabularx}
\end{table} \end{table}
\newpage
\addtocounter{table}{-1} \addtocounter{table}{-1}
\begin{table}[h!] \begin{table}[h!]
\centering \centering
@@ -288,18 +262,6 @@
% \addcontentsline{toc}{section}{Conclusion} % \addcontentsline{toc}{section}{Conclusion}
% Conclusion text % Conclusion text
\newpage
\phantom{text}
\newpage
\phantom{text}
\newpage
\phantom{text}
\newpage
\phantom{text}
\newpage
\phantom{text}
\newpage
\phantom{text}
\newpage \newpage
% \section*{Literature} % \section*{Literature}
% \addcontentsline{toc}{section}{Literature} % \addcontentsline{toc}{section}{Literature}