Files
genetic-algorithms/lab6/report/report.tex
2025-11-21 17:00:45 +03:00

328 lines
21 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[a4paper, final]{article}
%\usepackage{literat} % Нормальные шрифты
\usepackage[14pt]{extsizes} % для того чтобы задать нестандартный 14-ый размер шрифта
\usepackage{tabularx}
\usepackage{booktabs}
\usepackage[T2A]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[russian]{babel}
\usepackage{amsmath}
\usepackage[left=25mm, top=20mm, right=20mm, bottom=20mm, footskip=10mm]{geometry}
\usepackage{ragged2e} %для растягивания по ширине
\usepackage{setspace} %для межстрочно го интервала
\usepackage{moreverb} %для работы с листингами
\usepackage{indentfirst} % для абзацного отступа
\usepackage{moreverb} %для печати в листинге исходного кода программ
\usepackage{pdfpages} %для вставки других pdf файлов
\usepackage{tikz}
\usepackage{graphicx}
\usepackage{afterpage}
\usepackage{longtable}
\usepackage{float}
\usepackage{xcolor}
% \usepackage[paper=A4,DIV=12]{typearea}
\usepackage{pdflscape}
% \usepackage{lscape}
\usepackage{array}
\usepackage{multirow}
\renewcommand\verbatimtabsize{4\relax}
\renewcommand\listingoffset{0.2em} %отступ от номеров строк в листинге
\renewcommand{\arraystretch}{1.4} % изменяю высоту строки в таблице
\usepackage[font=small, singlelinecheck=false, justification=centering, format=plain, labelsep=period]{caption} %для настройки заголовка таблицы
\usepackage{listings} %листинги
\usepackage{xcolor} % цвета
\usepackage{hyperref}% для гиперссылок
\usepackage{enumitem} %для перечислений
\newcommand{\specialcell}[2][l]{\begin{tabular}[#1]{@{}l@{}}#2\end{tabular}}
\setlist[enumerate,itemize]{leftmargin=1.2cm} %отступ в перечислениях
\hypersetup{colorlinks,
allcolors=[RGB]{010 090 200}} %красивые гиперссылки (не красные)
% подгружаемые языки — подробнее в документации listings (это всё для листингов)
\lstloadlanguages{ SQL}
% включаем кириллицу и добавляем кое−какие опции
\lstset{tabsize=2,
breaklines,
basicstyle=\footnotesize,
columns=fullflexible,
flexiblecolumns,
numbers=left,
numberstyle={\footnotesize},
keywordstyle=\color{blue},
inputencoding=cp1251,
extendedchars=true
}
\lstdefinelanguage{MyC}{
language=SQL,
% ndkeywordstyle=\color{darkgray}\bfseries,
% identifierstyle=\color{black},
% morecomment=[n]{/**}{*/},
% commentstyle=\color{blue}\ttfamily,
% stringstyle=\color{red}\ttfamily,
% morestring=[b]",
% showstringspaces=false,
% morecomment=[l][\color{gray}]{//},
keepspaces=true,
escapechar=\%,
texcl=true
}
\textheight=24cm % высота текста
\textwidth=16cm % ширина текста
\oddsidemargin=0pt % отступ от левого края
\topmargin=-1.5cm % отступ от верхнего края
\parindent=24pt % абзацный отступ
\parskip=5pt % интервал между абзацами
\tolerance=2000 % терпимость к "жидким" строкам
\flushbottom % выравнивание высоты страниц
% Настройка листингов
\lstset{
language=python,
extendedchars=\true,
inputencoding=utf8,
keepspaces=true,
% captionpos=b, % подписи листингов снизу
}
\begin{document} % начало документа
% НАЧАЛО ТИТУЛЬНОГО ЛИСТА
\begin{center}
\hfill \break
\hfill \break
\normalsize{МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ\\
федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого»\\[10pt]}
\normalsize{Институт компьютерных наук и кибербезопасности}\\[10pt]
\normalsize{Высшая школа технологий искусственного интеллекта}\\[10pt]
\normalsize{Направление: 02.03.01 <<Математика и компьютерные науки>>}\\
\hfill \break
\hfill \break
\hfill \break
\hfill \break
\large{Лабораторная работа №6}\\
\large{по дисциплине}\\
\large{<<Генетические алгоритмы>>}\\
\large{Вариант 18}\\
% \hfill \break
\hfill \break
\end{center}
\small{
\begin{tabular}{lrrl}
\!\!\!Студент, & \hspace{2cm} & & \\
\!\!\!группы 5130201/20101 & \hspace{2cm} & \underline{\hspace{3cm}} &Тищенко А. А. \\\\
\!\!\!Преподаватель & \hspace{2cm} & \underline{\hspace{3cm}} & Большаков А. А. \\\\
&&\hspace{4cm}
\end{tabular}
\begin{flushright}
<<\underline{\hspace{1cm}}>>\underline{\hspace{2.5cm}} 2025г.
\end{flushright}
}
\hfill \break
% \hfill \break
\begin{center} \small{Санкт-Петербург, 2025} \end{center}
\thispagestyle{empty} % выключаем отображение номера для этой страницы
% КОНЕЦ ТИТУЛЬНОГО ЛИСТА
\newpage
\tableofcontents
\newpage
\section {Постановка задачи}
В данной работе были поставлены следующие задачи:
\begin{itemize}
\item Реализовать с использованием муравьиных алгоритмов решение задачи коммивояжера по индивидуальному заданию согласно номеру варианта.
\item Представить графически найденное решение
\item Сравнить найденное решение с представленным в условии задачи оптимальным решением и результатами, полученными в лабораторной работе №3.
\end{itemize}
\textbf{Индивидуальное задание вариант 18:}
\textbf{Дано:} Эвклидовы координаты городов 38 городов в Джибути (см.~Приложение~А). Оптимальный тур представлен на Рис.~\ref{fig:optimal_tour}, его длина равна 6659.
\begin{figure}[h!]
\centering
\includegraphics[width=0.5\linewidth]{img/optimal_tour.png}
\caption{Оптимальный тур для заданного набора данных}
\label{fig:optimal_tour}
\end{figure}
\newpage
\section{Теоретические сведения}
\subsection{Общие сведения о муравьиных алгоритмах}
Муравьиные алгоритмы (МА) относятся к метаэвристическим методам оптимизации и предназначены преимущественно для решения задач комбинаторной оптимизации, в частности задачи поиска оптимальных путей на графах. Основная идея таких алгоритмов основана на моделировании коллективного поведения реальных муравьёв, использующих феромонные следы для обмена информацией.
Каждый агент, называемый \textit{искусственным муравьём}, поэтапно строит решение задачи, перемещаясь по графу и выбирая следующую вершину на основе вероятностного правила, учитывающего концентрацию феромона на дугах графа. Феромон отражает привлекательность соответствующих маршрутов: чем выше его концентрация на дуге, тем вероятнее выбор этой дуги муравьём.
\subsection{Простой муравьиный алгоритм (SACO)}
Для иллюстрации рассмотрим простой муравьиный алгоритм SACO (Simple Ant Colony Optimization). Пусть задан граф
\[
G = (V, E),
\]
где $V$ — множество вершин, $E$ — множество рёбер. Каждой дуге $(i,j)$ сопоставлена величина феромона $\tau_{ij}$.
В начальный момент концентрация феромона обычно принимается нулевой, однако для предотвращения зацикливания каждому ребру присваивается малое случайное начальное значение $\tau_{ij}^{(0)}$.
Каждый муравей $k=1,\ldots,n_k$ помещается в стартовую вершину и начинает построение пути. Если муравей находится в вершине $i$, он выбирает следующую вершину $j \in N_i^k$ на основе вероятностного правила
\[
p_{ij}^k(t) = \frac{\tau_{ij}^\alpha(t)}{\sum\limits_{l \in N_i^k} \tau_{il}^\alpha(t)},
\]
где $\alpha$ — параметр, определяющий степень влияния феромона.
При отсутствии допустимых переходов допускается возврат в предыдущую вершину, что приводит к появлению петель, которые впоследствии удаляются.
После завершения построения полного пути $x_k(t)$ выполняется его оценка. Длина пути обозначается как $L_k(t)$ и равна числу пройденных дуг.
\subsection{Обновление феромона}
Каждый муравей откладывает феромон на рёбрах своего пути согласно правилу
\[
\Delta \tau_{ij}^k(t) =
\begin{cases}
\frac{1}{L_k(t)}, &\text{если дуга } (i,j) \in x_k(t), \\
0, &\text{иначе}.
\end{cases}
\]
Общее обновление феромона на дуге $(i,j)$:
\[
\tau_{ij}(t+1) = \tau_{ij}(t) + \sum_{k=1}^{n_k} \Delta\tau_{ij}^k(t).
\]
Чем короче путь, тем больше феромона откладывается на его рёбрах, что повышает вероятность выбора коротких маршрутов в последующих итерациях.
\subsection{Испарение феромона}
Чтобы предотвратить преждевременную сходимость алгоритма к локальным минимумам, применяется механизм \textit{искусственного испарения феромона}. На каждом шаге выполняется:
\[
\tau_{ij}(t) = (1 - \rho)\,\tau_{ij}(t),
\]
где $\rho \in [0,1]$ — коэффициент испарения. Большие значения $\rho$ усиливают случайность поиска, малые — повышают устойчивость к изменениям.
\subsection{Критерии остановки алгоритма}
Муравьиные алгоритмы могут завершаться при выполнении одного из условий:
\begin{itemize}
\item достигнуто максимальное число итераций;
\item найдено решение приемлемого качества $f(x_k(t)) \leq \varepsilon$;
\item все муравьи начинают строить одинаковые маршруты, что говорит о стабилизации процесса.
\end{itemize}
\subsection{Описание общего алгоритма}
Алгоритм SACO можно представить в следующем виде:
\begin{enumerate}
\item Инициализация феромона малыми случайными значениями $\tau_{ij}^{(0)}$.
\item Размещение всех муравьёв в начальной вершине.
\item Для каждой итерации:
\begin{enumerate}
\item Каждый муравей строит путь согласно вероятностному правилу выбора вершины.
\item Выполняется удаление петель.
\item Вычисляется длина пути $L_k(t)$.
\end{enumerate}
\item Выполняется испарение феромона.
\item Каждый муравей откладывает феромон на рёбрах своего пути.
\item Итерация продолжается до выполнения критерия остановки.
\end{enumerate}
Муравьиные алгоритмы позволяют эффективно находить приближённые решения задач комбинаторной оптимизации, таких как задача коммивояжёра, что и является целью данной лабораторной работы.
\newpage
\section{Особенности реализации}
В рамках шестой лабораторной работы реализован простой муравьиный алгоритм для решения задачи коммивояжёра. Алгоритм оформлен в модуле \texttt{aco.py} и состоит из следующих компонентов:
\begin{itemize}
\item \textbf{Структуры данных}: конфигурация \texttt{ACOConfig} (число муравьёв, количество итераций, параметры $\alpha$, $\beta$, $\rho$ и $q$) и результат \texttt{ACOResult} (лучший тур, его длина и история улучшений).
\item \textbf{Матрицы расстояний и феромона}: расстояния между городами предвычисляются один раз; феромон хранится в виде симметричной матрицы и инициализируется единицами с нулями на диагонали.
\item \textbf{Построение тура}: каждый муравей стартует в случайном городе и последовательно добавляет вершины. Выбор следующего города происходит по вероятности, пропорциональной $\tau^\alpha \cdot (1/d)^\beta$, где $\tau$ — феромон на ребре, $d$ — расстояние между городами.
\item \textbf{Обновление феромона}: после прохода всех муравьёв выполняется испарение $\tau \leftarrow (1-\rho)\tau$ и добавление феромона $q/L$ на рёбра их маршрутов, где $L$ — длина тура.
\item \textbf{Визуализация}: для отчёта сгенерированы PNG-файлы. График маршрута рисуется посредством собственного минимального генератора PNG (без сторонних библиотек), который строит линии по методу Брезенхема и сохраняет изображение в папку \texttt{lab6/report/img}.
\end{itemize}
Для загрузки координат использован тот же код, что и в лабораторной работе №3: исходные точки читаются из \texttt{lab3/data.txt}, где в файле содержатся 38 уникальных городов.
\newpage
\section{Результаты работы}
Алгоритм был запущен со следующими параметрами: 50 муравьёв, 400 итераций, $\alpha = 1{,}2$, $\beta = 5$, $\rho = 0{,}5$, $q = 1$, случайное зерно $7$. Лучший найденный тур имеет длину $6662{,}35$, что на $0{,}05\%$ отличается от оптимального значения 6659.
\begin{figure}[h!]
\centering
\begin{minipage}{0.48\linewidth}
\centering
\includegraphics[width=0.95\linewidth]{img/optimal_tour.png}
\caption{Оптимальный маршрут длиной 6659}
\label{fig:optimal_result}
\end{minipage}\hfill
\begin{minipage}{0.48\linewidth}
\centering
\includegraphics[width=0.95\linewidth]{img/aco_best_tour.png}
\caption{Лучший маршрут, найденный муравьиным алгоритмом (6662{,}35)}
\label{fig:aco_tour}
\end{minipage}
\end{figure}
\begin{figure}[h!]
\centering
\includegraphics[width=0.9\linewidth]{img/aco_history.png}
\caption{Сходимость длины лучшего тура по итерациям}
\label{fig:aco_history}
\end{figure}
\subsection{Сравнение с результатами лабораторной работы №3}
Для лабораторной работы №3 с генетическим алгоритмом лучший результат составил \textbf{6667{,}03} при популяции $N=500$, вероятностях $P_c=0{,}9$ и $P_m=0{,}5$. Муравьиный алгоритм показал более точное решение: длина тура \textbf{6662{,}35} против оптимального 6659. Разница с оптимумом составила 3{,}35 единицы (0{,}05\%), тогда как в лабораторной работе №3 отклонение было 8{,}03 (0{,}12\%).
По скорости муравьиный алгоритм также оказался более экономичным: 400 итераций с 50 муравьями вместо 1644 поколений с популяцией 500 в генетическом подходе. Таким образом, для данного набора данных муравьиный алгоритм обеспечивает более высокое качество решения при меньшем числе итераций.
\newpage
\section*{Заключение}
\addcontentsline{toc}{section}{Заключение}
В ходе шестой лабораторной работы выполнена реализация простого муравьиного алгоритма для задачи коммивояжёра:
\begin{enumerate}
\item Разработан модуль \texttt{aco.py} с конфигурацией алгоритма, построением туров, обновлением феромона и собственными средствами визуализации без сторонних библиотек.
\item Проведён численный эксперимент на данных из варианта 18 (38 городов Джибути); подобраны параметры $\alpha=1{,}2$, $\beta=5$, $\rho=0{,}5$, 50 муравьёв, 400 итераций.
\item Получено приближённое решение длиной 6662{,}35, что всего на 0{,}05\% хуже известного оптимума 6659 и лучше результата, достигнутого генетическим алгоритмом из лабораторной работы №3.
\end{enumerate}
\newpage
\section*{Список литературы}
\addcontentsline{toc}{section}{Список литературы}
\vspace{-1.5cm}
\begin{thebibliography}{0}
\bibitem{vostrov}
Методические указания по выполнению лабораторных работ к курсу «Генетические алгоритмы», 119 стр.
\end{thebibliography}
\end{document}