Refine lab6 assets and report comparison
This commit is contained in:
@@ -256,129 +256,61 @@
|
||||
\newpage
|
||||
\section{Особенности реализации}
|
||||
|
||||
=== Нужно обновить раздел ===
|
||||
|
||||
В рамках работы создана мини-библиотека \texttt{gen.py} для решения задачи коммивояжёра (TSP) генетическим алгоритмом с путевым представлением хромосом. Второй модуль
|
||||
\texttt{expirements.py} организует серийные эксперименты (перебор параметров,
|
||||
форматирование и сохранение результатов).
|
||||
|
||||
В рамках шестой лабораторной работы реализован простой муравьиный алгоритм для решения задачи коммивояжёра. Алгоритм оформлен в модуле \texttt{aco.py} и состоит из следующих компонентов:
|
||||
\begin{itemize}
|
||||
\item \textbf{Кодирование особей}: каждая хромосома представлена как перестановка городов (\texttt{Chromosome = list[int]}), где каждый элемент -- индекс города. Популяция -- список хромосом (\texttt{Population = list[Chromosome]}). Инициализация случайными перестановками без повторений:
|
||||
\begin{itemize}
|
||||
\item \texttt{initialize\_random\_population(pop\_size: int, cities: Cites) -> Population}
|
||||
\end{itemize}
|
||||
\item \textbf{Фитнесс-функция}: целевая функция принимает хромосому (маршрут) и возвращает скалярное значение фитнесса (длину пути). Для режима минимизации используется внутреннее преобразование при селекции (сдвиг и инверсия знака), что позволяет применять рулетку:
|
||||
\begin{itemize}
|
||||
\item \texttt{eval\_population(population: Population, fitness\_func: FitnessFn) -> Fitnesses}
|
||||
\item Логика режима минимизации в \texttt{genetic\_algorithm(config: GARunConfig) -> GARunResult}
|
||||
\end{itemize}
|
||||
\item \textbf{Селекция (рулетка)}: вероятности нормируются после сдвига на минимальное значение в поколении (устойчиво к отрицательным фитнессам). Функция:
|
||||
\texttt{reproduction(population: Population, fitnesses: Fitnesses) -> Population}.
|
||||
\item \textbf{Кроссинговер}: реализованы специализированные операторы для перестановок: PMX (Partially Mapped Crossover), OX (Ordered Crossover) и CX (Cycle Crossover). Кроссинговер выполняется попарно по перемешанной популяции с вероятностью $p_c$. Функции:
|
||||
\begin{itemize}
|
||||
\item \texttt{partially\_mapped\_crossover\_fn(p1: Chromosome, p2: Chromosome) -> tuple[Chromosome, Chromosome]}
|
||||
\item \texttt{ordered\_crossover\_fn(p1: Chromosome, p2: Chromosome) -> tuple[Chromosome, Chromosome]}
|
||||
\item \texttt{cycle\_crossover\_fn(p1: Chromosome, p2: Chromosome) -> tuple[Chromosome, Chromosome]}
|
||||
\item \texttt{crossover(population: Population, pc: float, crossover\_fn: CrossoverFn) -> Population}
|
||||
\end{itemize}
|
||||
\item \textbf{Мутация}: реализованы три типа мутаций для перестановок: обмен двух городов (swap), инверсия сегмента (inversion), вырезка и вставка города (insertion). Мутация применяется с вероятностью $p_m$. Функции:
|
||||
\begin{itemize}
|
||||
\item \texttt{swap\_mutation\_fn(chrom: Chromosome) -> Chromosome}
|
||||
\item \texttt{inversion\_mutation\_fn(chrom: Chromosome) -> Chromosome}
|
||||
\item \texttt{insertion\_mutation\_fn(chrom: Chromosome) -> Chromosome}
|
||||
\item \texttt{mutation(population: Population, pm: float, mutation\_fn: MutationFn) -> Population}
|
||||
\end{itemize}
|
||||
|
||||
\item \textbf{Критерий остановки}: поддерживаются критерии по максимальному количеству поколений, повторению лучшего результата, достижению порогового значения фитнесса. Хранится история всех поколений. Проверка выполняется в функции:
|
||||
|
||||
\texttt{genetic\_algorithm(config: GARunConfig) -> GARunResult}.
|
||||
\item \textbf{Визуализация}: реализована отрисовка маршрутов обхода городов на плоскости с отображением лучшей особи поколения. Функции:
|
||||
\begin{itemize}
|
||||
\item \texttt{plot\_tour(cities: list[tuple[float, float]], tour: list[int], ax: Axes)}
|
||||
\item \texttt{save\_generation(generation: Generation, history: list[Generation], config: GARunConfig)}
|
||||
\item \texttt{plot\_fitness\_history(result: GARunResult, save\_path: str | None) -> None}
|
||||
\end{itemize}
|
||||
\item \textbf{Элитизм}: поддерживается перенос лучших особей без изменения в следующее поколение (\texttt{elitism} параметр).
|
||||
\item \textbf{Измерение времени}: длительность вычислений возвращается в миллисекундах как часть \texttt{GARunResult.time\_ms}.
|
||||
\item \textbf{Файловая организация}: результаты экспериментов сохраняются в структуре \texttt{experiments/N/} с таблицами результатов. Задействованные функции:
|
||||
\begin{itemize}
|
||||
\item \texttt{clear\_results\_directory(results\_dir: str) -> None}
|
||||
\item Функции для проведения экспериментов в модуле \texttt{expirements.py}
|
||||
\end{itemize}
|
||||
\item \textbf{Структуры данных}: конфигурация \texttt{ACOConfig} (число муравьёв, количество итераций, параметры $\alpha$, $\beta$, $\rho$ и $q$) и результат \texttt{ACOResult} (лучший тур, его длина и история улучшений).
|
||||
\item \textbf{Матрицы расстояний и феромона}: расстояния между городами предвычисляются один раз; феромон хранится в виде симметричной матрицы и инициализируется единицами с нулями на диагонали.
|
||||
\item \textbf{Построение тура}: каждый муравей стартует в случайном городе и последовательно добавляет вершины. Выбор следующего города происходит по вероятности, пропорциональной $\tau^\alpha \cdot (1/d)^\beta$, где $\tau$ — феромон на ребре, $d$ — расстояние между городами.
|
||||
\item \textbf{Обновление феромона}: после прохода всех муравьёв выполняется испарение $\tau \leftarrow (1-\rho)\tau$ и добавление феромона $q/L$ на рёбра их маршрутов, где $L$ — длина тура.
|
||||
\item \textbf{Визуализация}: для отчёта сгенерированы PNG-файлы. График маршрута рисуется посредством собственного минимального генератора PNG (без сторонних библиотек), который строит линии по методу Брезенхема и сохраняет изображение в папку \texttt{lab6/report/img}.
|
||||
\end{itemize}
|
||||
|
||||
В модуле \texttt{expirements.py} задаются координаты городов и параметры экспериментов.
|
||||
Серийные запуски и сохранение результатов реализованы для исследования влияния параметров ГА на качество решения задачи коммивояжёра.
|
||||
Для загрузки координат использован тот же код, что и в лабораторной работе №3: исходные точки читаются из \texttt{lab3/data.txt}, где в файле содержатся 38 уникальных городов.
|
||||
|
||||
\newpage
|
||||
\section{Результаты работы}
|
||||
|
||||
=== Нужно обновить раздел ===
|
||||
Алгоритм был запущен со следующими параметрами: 50 муравьёв, 400 итераций, $\alpha = 1{,}2$, $\beta = 5$, $\rho = 0{,}5$, $q = 1$, случайное зерно $7$. Лучший найденный тур имеет длину $6662{,}35$, что на $0{,}05\%$ отличается от оптимального значения 6659.
|
||||
|
||||
На Рис.~\ref{fig:results} представлены результаты работы простого муравьиного алгоритма со следующими параметрами:
|
||||
\begin{itemize}
|
||||
\item $N = 500$ -- размер популяции.
|
||||
\item $p_c = 0.9$ -- вероятность кроссинговера.
|
||||
\item $p_m = 0.3$ -- вероятность мутации.
|
||||
\item $2500$ -- максимальное количество поколений.
|
||||
\item $3$ -- количество "элитных" особей, переносимых без изменения в следующее поколение.
|
||||
\item Partially mapped crossover - кроссовер.
|
||||
\item Inversion mutation - мутация
|
||||
\end{itemize}
|
||||
\begin{figure}[h!]
|
||||
\centering
|
||||
\begin{minipage}{0.48\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=0.95\linewidth]{img/optimal_tour.png}
|
||||
\caption{Оптимальный маршрут длиной 6659}
|
||||
\label{fig:optimal_result}
|
||||
\end{minipage}\hfill
|
||||
\begin{minipage}{0.48\linewidth}
|
||||
\centering
|
||||
\includegraphics[width=0.95\linewidth]{img/aco_best_tour.png}
|
||||
\caption{Лучший маршрут, найденный муравьиным алгоритмом (6662{,}35)}
|
||||
\label{fig:aco_tour}
|
||||
\end{minipage}
|
||||
\end{figure}
|
||||
|
||||
На Рис.~\ref{fig:fitness_history} показан график изменения фитнесса по поколениям. Видно, что алгоритм постепенно сходится к минимально возможному значению фитнеса. Лучший маршрут был найден на поколнении №1896 (см. Рис.~\ref{fig:lastgen}).
|
||||
|
||||
% \begin{figure}[h!]
|
||||
% \centering
|
||||
% \includegraphics[width=1\linewidth]{img/results/fitness_history.png}
|
||||
% \caption{График изменения фитнесса по поколениям}
|
||||
% \label{fig:fitness_history}
|
||||
% \end{figure}
|
||||
\begin{figure}[h!]
|
||||
\centering
|
||||
\includegraphics[width=0.9\linewidth]{img/aco_history.png}
|
||||
\caption{Сходимость длины лучшего тура по итерациям}
|
||||
\label{fig:aco_history}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Сравнение с результатами лабораторной работы №3}
|
||||
|
||||
=== Нужно написать раздел, ниже представлена часть отчёта из лаб3, чтобы было с чем сравнить ===
|
||||
Для лабораторной работы №3 с генетическим алгоритмом лучший результат составил \textbf{6667{,}03} при популяции $N=500$, вероятностях $P_c=0{,}9$ и $P_m=0{,}5$. Муравьиный алгоритм показал более точное решение: длина тура \textbf{6662{,}35} против оптимального 6659. Разница с оптимумом составила 3{,}35 единицы (0{,}05\%), тогда как в лабораторной работе №3 отклонение было 8{,}03 (0{,}12\%).
|
||||
|
||||
Наилучшее найденное решение составило \textbf{6667.03} при параметрах $N=500$, $P_c=0.9$, $P_m=0.5$ за 1644 поколения. Это всего на \textbf{0.12\%} хуже оптимального значения 6659, что демонстрирует высокую эффективность алгоритма. Наихудшие результаты показала конфигурация с $N=10$, $P_c=0.7$, $P_m=0.3$ (лучший фитнес 6796.98), что на 2.07\% хуже оптимума. Малый размер популяции в 10 особей оказался недостаточным для стабильного поиска качественных решений — более половины конфигураций при $N=10$ вообще не нашли решение за 2500 поколений.
|
||||
|
||||
Наиболее быстрая конфигурация — $N=10$, $P_c=0.7$, $P_m=0.5$ — нашла решение за \textbf{201 мс} (503 поколения). Однако качество решения при таких параметрах нестабильно. Среди конфигураций с большой популяцией лучшее время показала $N=500$, $P_c=0.5$, $P_m=0.2$ — \textbf{5232 мс} (341 поколение), что является оптимальным балансом скорости и качества для больших популяций.
|
||||
|
||||
С ростом размера популяции наблюдается явное улучшение качества решений: при $N=10$ лучший результат 6762.97, при $N=500$ — 6667.03. Одновременно количество необходимых поколений снижается (с 503 до 341), но общее время выполнения растет линейно из-за увеличения числа особей в каждом поколении. Этот эффект объясняется тем, что большая популяция обеспечивает большее генетическое разнообразие, позволяя алгоритму быстрее находить оптимальные решения.
|
||||
|
||||
Что касается вероятности кроссовера, средние значения $P_c=0.6$--$0.8$ показывают стабильные результаты для всех размеров популяций. Экстремальные значения ($P_c=0.9$ или $1.0$) работают хорошо только при больших популяциях ($N \geq 100$), при малых — часто приводят к преждевременной сходимости (наблюдается много прочерков в таблицах). Это связано с тем, что высокая вероятность кроссовера при малой популяции быстро приводит к гомогенизации генофонда.
|
||||
|
||||
Анализ влияния вероятности мутации показал, что низкие значения $P_m=0.05$ неэффективны для малых популяций — недостаточно разнообразия для выхода из локальных минимумов. Умеренные значения $P_m=0.2$--$0.5$ демонстрируют лучшие результаты, обеспечивая баланс между эксплуатацией найденных решений и исследованием нового пространства поиска. Высокое значение $P_m=0.8$ часто приводит к расхождению алгоритма, так как слишком сильные изменения разрушают хорошие решения быстрее, чем алгоритм успевает их найти (многие конфигурации не нашли решение за отведенное время).
|
||||
|
||||
|
||||
\newpage
|
||||
\section{Ответ на контрольный вопрос}
|
||||
|
||||
\textbf{Вопрос}: Какие критерии окончания могут быть использованы в простом МА?
|
||||
|
||||
\textbf{Ответ}: В простом муравьином алгоритме могут использоваться следующие критерии завершения работы:
|
||||
|
||||
\begin{itemize}
|
||||
\item окончание при превышении заданного числа итераций;
|
||||
\item окончание по достижению приемлемого решения;
|
||||
\item окончание в случае, когда все муравьи начинают следовать одним и тем же путём.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
По скорости муравьиный алгоритм также оказался более экономичным: 400 итераций с 50 муравьями вместо 1644 поколений с популяцией 500 в генетическом подходе. Таким образом, для данного набора данных муравьиный алгоритм обеспечивает более высокое качество решения при меньшем числе итераций.
|
||||
|
||||
\newpage
|
||||
\section*{Заключение}
|
||||
\addcontentsline{toc}{section}{Заключение}
|
||||
|
||||
=== Нужно обновить раздел ===
|
||||
|
||||
В ходе третьей лабораторной работы была успешно решена задача коммивояжера с использованием генетических алгоритмов для 38 городов Джибути:
|
||||
В ходе шестой лабораторной работы выполнена реализация простого муравьиного алгоритма для задачи коммивояжёра:
|
||||
|
||||
\begin{enumerate}
|
||||
\item Изучен теоретический материал о представлениях туров (соседское, порядковое, путевое) и специализированных операторах кроссинговера и мутации для задачи коммивояжера;
|
||||
\item Создана программная библиотека на языке Python с реализацией путевого представления хромосом, операторов PMX, OX и CX для кроссинговера, операторов swap, inversion и insertion для мутации, а также селекции методом рулетки с поддержкой элитизма;
|
||||
\item Проведено исследование влияния параметров генетического алгоритма на качество и скорость нахождения решения для популяций размером 10, 50, 100 и 500 особей с различными значениями вероятностей кроссинговера и мутации;
|
||||
\item Получено решение с длиной маршрута 6667.03, отклоняющееся от оптимального значения 6659 всего на 0.12\%.
|
||||
\item Разработан модуль \texttt{aco.py} с конфигурацией алгоритма, построением туров, обновлением феромона и собственными средствами визуализации без сторонних библиотек.
|
||||
\item Проведён численный эксперимент на данных из варианта 18 (38 городов Джибути); подобраны параметры $\alpha=1{,}2$, $\beta=5$, $\rho=0{,}5$, 50 муравьёв, 400 итераций.
|
||||
\item Получено приближённое решение длиной 6662{,}35, что всего на 0{,}05\% хуже известного оптимума 6659 и лучше результата, достигнутого генетическим алгоритмом из лабораторной работы №3.
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
@@ -392,4 +324,4 @@
|
||||
Методические указания по выполнению лабораторных работ к курсу «Генетические алгоритмы», 119 стр.
|
||||
\end{thebibliography}
|
||||
|
||||
\end{document}
|
||||
\end{document}
|
||||
|
||||
Reference in New Issue
Block a user